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The zebrafish (Danio rerio) is a vertebrate species offering multitude of

advantages for the study of conserved biological systems in human and

has considerably enriched our knowledge in developmental biology and

physiology. Being equally important in medical research, the zebrafish

has become a critical tool in the fields of diagnosis, gene discovery,

disease modeling, and pharmacology-based therapy. Studies on the zebrafish

neuromuscular system allowed for deciphering key molecular pathways in

this tissue, and established it as a model of choice to study numerous motor

neurons, neuromuscular junctions, and muscle diseases. Starting with the

similarities of the zebrafish neuromuscular system with the human system,

we review disease models associated with the neuromuscular system to focus

on current methodologies employed to study them and outline their caveats.

In particular, we put in perspective the necessity to develop standardized

and high-resolution methodologies that are necessary to deepen our

understanding of not only fundamental signaling pathways in a healthy tissue

but also the changes leading to disease phenotype outbreaks, and offer

templates for high-content screening strategies. While the development of

high-throughput methodologies is underway for motility assays, there is no

automated approach to quantify the key molecular cues of the neuromuscular

junction. Here, we provide a novel high-throughput imaging methodology

in the zebrafish that is standardized, highly resolutive, quantitative, and fit

for drug screening. By providing a proof of concept for its robustness in

identifying novel molecular players and therapeutic drugs in giant axonal

neuropathy (GAN) disease, we foresee that this new tool could be useful for

both fundamental and biomedical research.
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Introduction

Over the last 30 years, the zebrafish (Danio rerio) has
become the model of choice for many fundamental and
translational research studies. With about 70% ortholog genes
shared with the human genome (Barbazuk, 2000; Howe et al.,
2013), the zebrafish is largely used in the fields of embryology,
pharmacology, and toxicology to expand our knowledge on
complex biological processes and accelerate the emergence
of precision medicine (MacRae and Peterson, 2015). It has
also become a preferred species for the modeling of various
diseases, including cancer, and cardiovascular, metabolic, and
neuromuscular diseases (NMDs) (Seth et al., 2013; Patton et al.,
2021).

The success of this animal model largely relies on the
numerous advantages it offers to the research community.
Regarding practical aspects, the husbandry of zebrafish is
relatively simple and inexpensive. Its high fertility rate (∼200
embryos per clutch), rapid and external development, and
transparent skin allow direct access to all developmental
stages from embryo (one-cell zygote at 0 h post-fertilization,
hpf, to hatching at 2–3 days post-fertilization, dpf), to larva
(from 3 to 29 dpf) and juvenile (until 6 weeks). As a
consequence, zebrafish presents many advantages: (i) genetic
manipulation can be achieved at an early stage of embryonic
development (injection of antisense oligonucleotides/mRNA
for transient effects, or CRISPR agents for the creation of
stable transgenic lines), (ii) transparency of embryos allows
for the visualization of internal structures and networks at
the level of the whole organism, (iii) small-size (0.9–3.5 mm)
zebrafish embryos can be kept in 96- or 384-well plates,
and (iv) chemical compounds can be administered by simply
adding to water (Zon and Peterson, 2005). In practice, the
study of zebrafish is cost-effective and compatible with large-
scale/high-throughput pharmacological screening (Rennekamp
and Peterson, 2015), explaining why it has become the
leading model organism for chemical screening and drug
discovery.

The zebrafish model has particularly proven to be valuable in
vertebrate neuromuscular system studies, which have deepened
our knowledge in normal axonal/muscle synapse development
and degeneration (Guyon et al., 2007; McLean and Fetcho,
2008; Li et al., 2017) and in identifying the deficits underlying
neuromuscular pathologies (Panzer et al., 2005, 2006). The
locomotion-sustaining human neuronal circuitry, which is
highly conserved in zebrafish, was characterized, thanks to this
species (Kimmel et al., 1995; Beattie, 2000). In particular, studies
using this model contributed to the identification of molecular
signals required for the establishment of motor networks (Berg
et al., 2018), neuromuscular junction (NMJ) development, NMJ
maintenance, synaptogenesis (Jing et al., 2009, 2010; Banerjee
et al., 2011), and identification of muscle precursor types
(Devoto et al., 1996).

With the ease of genetic manipulation, various transgenic
zebrafish lines represent powerful models to study human
diseases, in an era where whole-genome/-exon sequencing
generates big data of genetic variants in patients (Pipis et al.,
2019; Westra et al., 2019; Herman et al., 2021). In this regard, the
zebrafish can be extremely valuable in (1) discovering the disease
gene among potential candidates, (2) identifying pathological
variants of a known gene, and (3) deciphering pathological
mechanisms (McCammon and Sive, 2015; Vaz et al., 2019).

Here, we first describe the key events in zebrafish
neuromuscular system development and its resemblance to
human counterpart. We then briefly present how the creation
of disease models of the neuromuscular system contributes to
the understanding of this specific synapse in health, as well
as the underlying mechanisms in disease. We then focus on
the current behavioral and imaging-based techniques used in
the zebrafish, putting in perspective the need to generate tools
with greater precision to enable a deeper exploration of the
neuromuscular system and to apprehend specificity in disease,
an essential aspect for personalized medicine. Finally, we present
a novel quantitative and standardized imaging methodology
with a proof of concept for its effectiveness in identifying both
novel regulators of the neuromuscular system and therapeutic
drugs using high-throughput screening.

Zebrafish is a model of choice to
study the motor system in human

At the cellular level, the NMJ is made up of the same
components across species (Figure 1A). It is formed by two
entities: the presynaptic motor neuron (MN) of the nervous
system and the postsynaptic muscle fiber, which are separated
by a synaptic cleft. The transmission of electrical input along
the MN axon is achieved by a spread of action potentials.
Upon activation, the fusion of vesicles in MN terminals results
in a release of acetylcholine (ACh) into the synaptic cleft,
which activates postsynaptic nicotinic ACh receptors (AChRs)
in the postsynaptic muscle fibers (Kummer et al., 2006). This
event depolarizes the muscle cell and triggers calcium release
from the sarcoplasmic reticulum to initiate muscle contraction.
Many molecular, histological, and ultrastructural features of
NMJ development and integrity are well conserved between
mammals and zebrafish (Swenarchuk, 2019). Among other
examples, the key role of AChR pre-patterning in guiding MN
terminals to the muscle fibers was discovered in the zebrafish
model (Panzer et al., 2005), as well as the role of the Wnt
pathway in this process (Jing et al., 2010).

The skeletal muscle, which is the only muscle tissue
voluntary controlled by the central nervous system, is closely
related in zebrafish and humans, at histological, biochemical,
and ultrastructural levels (Luna et al., 2015). These similarities
include the preservation of two sets of MNs, two main types of
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FIGURE 1

Zebrafish as a model of choice to study the neuromuscular system in human. (A) Schematic representation of the neuromuscular synapse (top)
and the topographical differences (bottom) between the zebrafish and the human species. (B) Table summarizing the different NMD
pathologies modeled in zebrafish, categorized into four groups according to the first disease target (see Table 1 for details). UMN, upper motor
neuron; LMN, lower motor neuron; HSP, hereditary spastic paraplegia; ALS, amyotrophic lateral sclerosis; SMA, spinal muscular atrophy; CMT,
Charcot–Marie–Tooth; GAN, giant axonal neuropathy; NMJ, neuromuscular junction; CMS, congenital myasthenic syndrome; DMD, Duchenne
muscular dystrophy; CMD, congenital muscular dystrophy; LGMD, limb–girdle muscular dystrophy; BM, Bethlem myopathy; CNM,
centronuclear myopathies; CM, congenital myopathy. (C) Scheme summarizing the common tools for NMD phenotyping in the zebrafish,
divided into two levels of investigation: (1) the locomotion at the behavioral level and (2) the visualization of the NMJ at the cellular level; and
highlighting the methodological challenge presented as perspectives in this review.

muscle fibers (slow and fast), the dystrophin-associated protein
(DAPC) complex, and the excitation–contraction coupling
system (Berger and Currie, 2012). Differences are restricted to
morphological variables such as MN axon diameters and average
area of AChR clusters (Jones et al., 2017; Boehm et al., 2020),
and the specificity/subclassification of muscle fibers, which
have their source in an adaptation of locomotor behavior. In
humans, there are two major types of spinal MNs located in
the anterior horn of the spinal cord, differentiated according
to the size of the soma and their innervation (Figure 1A): α-
MNs and γ-MNs (Kanning et al., 2010; Manuel and Zytnicki,
2011). The α-MNs are the most abundant type of MNs in
mammals. They innervate extrafusal muscle fibers classified into
different subtypes, whose contractile properties differ: slow-
twitch, fatigue-resistant (S), and fast-twitch fibers, which are

further subdivided into fatigue-resistant (FR) and fatigable
(FF) fibers (Brooke and Kaiser, 1970; Burke et al., 1971).
The γ-MNs innervate intrafusal muscle fibers responsible for
muscle tone and proprioception. Zebrafish spinal MNs are
also divided into two groups, differentiated in two distinct
waves during development: primary motor neurons (pMNs)
and secondary motor neurons (sMNs) innervating specific
musculature (Myers, 1985; Eisen et al., 1986). There is also
a subclassification of primary motor neurons (pMNs) in each
hemisegment, originally designated according to their specific
location as caudal primary motor neuron (CaP); middle primary
motor neuron (MiP), and rostral primary motor neuron (RoP)
(Figure 1A), innervating different muscle fiber territories.
Motor neurons from the second wave (sMNs) are considered
to be equivalent to α-MNs in humans (Beattie et al., 1997).
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They have small-size somas, are more numerous, and innervate
both deeper fast-twitch muscle and superficial slow-twitch
muscle fibers (Menelaou and McLean, 2012; Bello-Rojas et al.,
2019). It is worth noting that the proportion of fast muscles
is much higher in zebrafish than in mammals, an adaptative
response to the need to produce bursting and rapid powerful
movements.

Zebrafish mimics pathologies of
the neuromuscular system

The genome is highly conserved between the human
and zebrafish species, with a homology for over 80% of
disease-causing genes (Howe et al., 2013). This evolutionary
characteristic fostered the generation of zebrafish mutants
to model pathologies of the human neuromuscular system
(Pappalardo et al., 2013). Strategies of transient genetic
manipulations using microinjection (Eisen and Smith, 2008)
(gene inactivation to model recessive diseases or mRNA
overexpression for dominant pathologies), followed by
genome editing (Gaj et al., 2013; Schmid and Haass, 2013),
have been successfully used to assess the significance of
pathological mutations associated with neurodevelopmental
and neurodegenerative conditions, including NMDs.

Here, NMDs are defined as pathologies inducing muscle
weakness and atrophy (Efthymiou et al., 2016). Thus, NMDs
cover a large group of diseases of heterogeneous etiology,
affecting the muscles and/or the nerves and comprising (1)
motor neuron disorders [e.g., amyotrophic lateral sclerosis
(ALS), spinal muscular atrophy (SMA), and hereditary spastic
paraplegia (HSP)], (2) disorders with a component in the
peripheral nerves [e.g., Charcot–Marie–Tooth disease (CMT)
and giant axonal neuropathy (GAN)], (3) disorders directly
affecting the NMJ [e.g., congenital myasthenic syndrome,
(CMS) and Lambert–Eaton syndrome], and (4) primary
disorders of the muscle (myopathies and muscular dystrophies)
(Figure 1B).

While we present numerous zebrafish models generated to
model NMDs (Table 1), we do not intend to describe them all.
Instead, we focus on highlighting some features as evidence for
great relevance and advantage of the zebrafish research model in
these types of studies:

- Zebrafish models of the same disease group, for example,
of the MNs (ALS, SMA, and HSP) induce similar
deficits, including loss of MNs, aberrant axonal outgrowth,
loss of neuromuscular connectivity, muscle denervation,
and defective motor performance. The study of these
parameters, as easily performed in the zebrafish, enriches
our knowledge of the molecular players in the settings and
maintenance of the neuromuscular system.

- In a context of diseases with multiple genetic origins
(most of the clinical groups described in Table 1), the

zebrafish model provides the versatility to validate gene
discovery and pathogenic variants using fast and penetrant
functional characterization (see Patten et al., 2014; Naef
et al., 2019 for review).

- For several diseases, such as GAN (Arribat et al., 2019) and
HSP (als2, Gros-Louis et al., 2008), zebrafish models are the
first to reproduce the severity of motor and neuromuscular
symptoms, where mouse models have so far failed (Cai
et al., 2008; Dequen et al., 2008; Ganay et al., 2011).
This reinforces the notion of the conservation of the
neuromuscular system between the zebrafish and human
species.

- The zebrafish represents a highly relevant model for
therapeutic development as its physiology is well
conserved with human. For example, the zebrafish
is an excellent model for muscle pathologies (Jagla
et al., 2017), more adapted than mouse (Berger and
Currie, 2012). Models with mutations in the zebrafish
dystrophin gene (dmd and sapje models) of DMD have
been developed (Bassett and Currie, 2004; Guyon et al.,
2009), whose robustness of phenotypes (muscle lesions
and birefringence, almost 100% penetrant) has led to the
development of a therapeutic strategy for human patients
(Johnson et al., 2013; Farr et al., 2020), which is now in
phase 3 in clinical trial.

Current methods to study the
neuromuscular system in health
and in neuromuscular diseases

The phenotyping of zebrafish models of NMDs and,
more generally, the study on the regulation(s) of the
neuromuscular system rely on two levels of analysis: the
locomotion at the behavioral level (Granato et al., 1996)
and the visualization of the NMJ at the cellular level
(Fetcho, 2007). We present the most common tools used in
zebrafish, highlighting their advantages and their limitations
(Figure 1C).

Locomotion assay: First level of
investigation

The zebrafish larvae serve as a powerful model to dissect
locomotor patterns as their swimming behavior is defined by
sequences of stereotyped movements (Wolman and Granato,
2012). At 5 dpf, when the neuromuscular system is established,
the zebrafish is capable of fully autonomous and spontaneous
movement. At this stage, motility assays have the advantage to
be purely motor, contrary to other locomotor tests performed on
younger zebrafish embryos, which include a sensory component
(e.g., evoked response to stimuli at 48 hpf). The analysis
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TABLE 1 Zebrafish models of NMDs and their distinct behavioral and cellular phenotypes.

Disease Gene Zebrafish
model

Locomotor
phenotype

Cellular phenotype References

Human ZF
Motor neuron Hereditary

spastic
paraplegia

(HSP):
Upper MN

SPG3A spg3a spg3a MO Impaired touch-evoked
escape response (72 hpf)

Abnormal axonal branching
and outgrowth

Fassier et al.,
2010

SPG4
spg4 spg4 MO Impaired locomotion and

endurance (5 dpf)
Abnormal axonal
outgrowth/
NMJ defects (reduction in
SV2 and BTX colocalization)

Wood et al., 2006

SPG8 spg8 spg8 MO N/D Possible defects in axonal
outgrowth

Valdmanis et al.,
2007

SPG11
SPG15

spg11
spg15

spg11 MO
spg15 MO

N/D Abnormal axonal branching Martin et al.,
2012

SPG39/
PNPLA6

spg39 pnpla6 MO N/D
MN loss/Abnormal axonal
branching and outgrowth

Song et al., 2013

SPG42/
SLC33A1

slc33a1 slc33a1MO and
mutant mRNA

N/D Abnormal axonal branching
and outgrowth

Lin et al., 2008;
Mao et al., 2015

SPG46/GBA2 gba2 gba2 MO Impaired touch-evoked
escape response (48 hpf)

Possible defects in axonal
outgrowth and branching

Martin et al.,
2013

SPG53/
VPS37A

vsp37a vsp37a MO Impaired touch-evoked
escape response (96 hpf)

N/D Zivony-Elboum
et al., 2012

SPG76/
CAPN1

capn1a capn1a MO N/D N/D Gan-Or et al.,
2016

SPG80/
UBAP1

ubap1 ubap1−/− and
mutant RNA

N/D Possible defects in axonal
outgrowth

Farazi Fard et al.,
2019

IAHSP/
ALS2

als2 als2 MO Impaired touch-evoked
escape response (48 hpf)

Possible defects in axonal
outgrowth

Gros-Louis et al.,
2008

Amyotrophic
lateral sclerosis

(ALS):
Upper and lower

MN

SOD1 sod1 sod1 mutant
mRNA

N/D Abnormal branching and
outgrowth

Lemmens et al.,
2007

sod1 mutant
mRNA

Impaired locomotion
upon light stimuli (48 hpf)

Abnormal axonal branching
and outgrowth

Robinson et al.,
2019

sod1G93R Decreased endurance and
partial paralysis
(10 months)

MN loss/NMJ defects
(reduction in SV2 and BTX
colocalization)/muscle
defects (caliber and
degeneration)

Ramesh et al.,
2010; Benedetti

et al., 2016

sod1T 70I Decreased endurance
(20 months)

MN loss/NMJ defects
(reduction in SV2 and BTX
colocalization)

Da Costa et al.,
2014

sod1G93A Impaired locomotion and
endurance (5 months)

MN loss/Abnormal axonal
branching and
outgrowth/impaired NMJs

Sakowski et al.,
2012

TDP-43/
TARDBP

tdp-43 tdp-43 MO and
mutant mRNA

Impaired touch-evoked
escape response (48 hpf)

Abnormal axonal branching
and outgrowth

Kabashi et al.,
2010

tdp-43 mutant
mRNA

N/D Abnormal axonal branching
and outgrowth

Laird et al., 2010

tardbp−/− N/D Abnormal axonal
outgrowth/disorganization
of
myofibrils

Schmid et al.,
2013

tardbpfh301 Impaired escape response
(5 dpf)

Abnormal axonal outgrowth Hewamadduma
et al., 2013

FUS fus fus MO and
mutant mRNA

Impaired touch-evoked
escape response (48 hpf)

Abnormal axonal branching
and outgrowth

Kabashi et al.,
2011

fus MO and
mutant mRNA

Impaired touch-evoked
escape response (48hpf)

Reduced CaP rheobase
current/NMJ defects
(reduction in SV2 and BTX
colocalization)

Armstrong and
Drapeau, 2013

C9ORF72 c9orf72 c9orf72 MO Impaired touch-evoked
escape response (48 hpf)
and spontaneous
locomotion (96 hpf)

Abnormal axonal branching
and outgrowth

Ciura et al., 2013

(Continued)
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TABLE 1 (Continued)

Disease Gene Zebrafish
model

Locomotor
phenotype

Cellular phenotype References

Human ZF
c9orf72 mutant

mRNA
N/D Abnormal axonal branching

and outgrowth
Swinnen et al.,

2018
c9orf7289HRE Center avoidance behavior

(5 dpf) and decreased
endurance (8 months)

MN loss/Muscle atrophy Shaw et al., 2018

c9orf72100GR Impaired locomotion
(7 dpf)

Abnormal axonal branching
and outgrowth/Increase
apoptosis in the spinal cord

Swaminathan
et al., 2018

c9orf72 MO Impaired touch-evoked
escape response (48 hpf)

Abnormal axonal branching
and outgrowth

Yeh et al., 2018

c9orf72miR Impaired locomotion
(6 dpf, 12 months)

MN loss/Reduced AChR
clusters at NMJ/Muscle
atrophy and defects (weak
mEPCs, thin diameter)

Butti et al., 2021

SQSTM1 sqstm1 sqstm1 MO Impaired touch-evoked
escape response(48 hpf)

Abnormal axonal branching
and outgrowth

Lattante et al.,
2015

Spinal muscular
atrophy (SMA):

Lower MN

SMN1,2 smn1 smn1 MO N/D Abnormal axonal outgrowth McWhorter et al.,
2003; Winkler

et al., 2005;
Gassman et al.,
2013; See et al.,

2014
smnG264D

smnY 262X

smnL265X

N/D Lack of pre- and
post-synaptic protein
co-localization/decrease in
SV2 protein at the NMJ

Boon et al., 2009

smn2 smnY 262−/− Impaired locomotion
(9 dpf)

Abnormal axonal branching
and outgrowth

Hao et al., 2011,
2012

CHODL chodl chodl MO N/D Abnormal axonal branching
and outgrowth/Reduced
myotome innervation

Zhong et al., 2012

chodl−/− Impaired touch-evoked
escape response (3 dpf)

Prolonged stalling of the
CaP axons at the
HM/Impaired
synaptogenesis

Oprişoreanu
et al., 2019, 2021

Peripheral nerve Charcot-Marie-
Tooth disease

(CMT2A)

MFN2 mfn2 mfn2 MO Impaired touch-evoked
escape response (48 hpf)

Abnormal axonal
outgrowth/U-shaped
somites and decreased
muscle width

Vettori et al.,
2011

mfn2L285X/L285X Impaired locomotion and
endurance (3 months)

NMJ defects (reduction in
pre- and post-synaptic area)

Chapman et al.,
2013

LRSAM1 lrsam1 lrsam1 MO Impaired touch-evoked
escape response (48 hpf)

N/D Weterman et al.,
2012

DNM2 dnm2 dnm2 MO and
mutant mRNA

Impaired touch-evoked
escape response (72 hpf)

MN loss/Abnormal axonal
branching/NMJ defects
(AchR clusters)/increases
muscle fiber diameter

Bragato et al.,
2016

dnm2G537C Impaired touch-evoked
escape response (48 hpf)

Muscle defects (structural,
diameter)

Zhao et al., 2019

Giant axonal
neuropathy

(GAN)

GAN gan gan MO and
gan−/−

Impaired touch-evoked
escape response (72 hpf)
and spontaneous
locomotion (5 dpf)

MN loss (specification
defect)/Abnormal axonal
branching and
outgrowth/NMJ
defects/Muscle deficits
(U-shape somites, structure)

Arribat et al.,
2019

Neuromuscular
junction

Congenital
myasthenic
syndrome

(CMS)

CHAT chata chatatk64 Impaired touch-evoked
escape response (48 hpf)

No phenotype Joshi et al., 2018

DOK7 dok7 dok7 MO Impaired touch-evoked
escape response (48 hpf)
and spontaneous
locomotion (5 dpf)

Abnormal axonal
outgrowth/NMJ defects
(abnormal AChR
prepatterning, reduction in
size)/disorganization of slow
muscle fiber

Müller et al.,
2010; McMacken

et al., 2018

SLC25A1 slc25a1 slc25a1 MO Impaired touch-evoked
escape response (48 hpf)

Abnormal axonal outgrowth Chaouch et al.,
2014

(Continued)
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TABLE 1 (Continued)

Disease Gene Zebrafish
model

Locomotor
phenotype

Cellular phenotype References

Human ZF
GFPT1 gfpt1 gfpt1 MO Impaired touch-evoked

escape response (48 hpf)
Abnormal axonal
banching/NMJ defect
(delayed
development)/Muscle
deficits (U-shape somites,
structure)

Senderek et al.,
2011

MYO9A myo9a myo9a MO Impaired touch-evoked
escape response (48 hpf)

Possible
abnormal axonal branching
and outgrowth/impaired
AChR clustering

O’Connor et al.,
2016, 2018

Muscle Duchenne
muscular
dystrophy

(DMD)

DMD
dmd

dmd MO N/D Disorganized sarcomeres Guyon et al.,
2003

sapje N/D Muscle defects (lesions, fiber
detachment and retraction,
structure, decreased active
force)

Bassett et al.,
2003; Bassett and

Currie, 2004;
Widrick et al.,

2016

dmdpc2 N/D Muscle defects (fiber
detachment and retraction,
degeneration)

Berger et al.,
2011;

Giacomotto et al.,
2013

sapcl100 N/D Muscle degeneration Guyon et al.,
2009

Congenital
muscular
dystrophy

ITGA7 itgα7 itgα7 MO N/D Muscle defect (detachment
and retraction of muscle
fibers, U-shape somite)

Postel et al., 2008

LAMA2 lama2 caf
lama2cl501/cl501

Impaired touch-evoked
escape response (72 hpf)

Muscle defects (fiber
detachment and retraction,
degeneration)

Hall et al., 2007;
Gupta et al., 2012

Bethlem
myopathy

COL6A1/COL6A3 col6a1/col6a3 col6a1 MO
col6a3 MO

Impaired touch-evoked
escape response (48 hpf)

Muscle defects (U-shaped
somites, structure,
degeneration)

Telfer et al., 2010;
Zulian et al.,
2014; Radev
et al., 2015

Limb-girdle
muscular
dystrophy
(LGMD)

and
Spinal and

bulbar muscular
atrophy (SBMA)

DNAJB6 dnajb6 dnajb6 MO
and mutant RNA

N/D Muscle defects (fiber
detachment, structure)

Sarparanta et al.,
2012; Xu et al.,

2022

DAG1 dag1 dag1 MO Impaired touch-evoked
escape response (48 hpf)

Muscle defects (U-shaped
somites, fiber detachment,
structure, degeneration)

Parsons et al.,
2002; Lin et al.,

2011; Goody
et al., 2012

dag1V567D/V567D Impaired spontaneous
locomotion (7 dpf)

Muscle defects (structure,
degeneration)

Gupta et al., 2011

POPDC3 popdc3 popdc3 MO N/D Muscle defect (fiber
detachment)

Vissing et al.,
2019

TCAP tcap tcap MO Impaired spontaneous
locomotion (5 dpf)

Muscle defects (U-shaped
somites, fiber detachment,
structure)

Zhang et al.,
2009; Lv et al.,

2022
SGCD sgcd sgcd MO N/D Muscle defects (U-shaped

somites, structure,
degeneration)

Guyon et al.,
2005; Cheng
et al., 2006

LGMD and
Miyoshi

myopathy (MM)

DYSF dysf dysf MO N/D Muscle defects (less-clear
V-shape somite, structure,
degeneration)

Kawahara et al.,
2011

Dystroglycano-
pathies

FKRP fkrp fkrp MO N/D Muscle defects (U-shaped
somites, fiber detachment,
structure, degeneration)

Thornhill et al.,
2008; Kawahara
et al., 2010; Lin

et al., 2011; Bailey
et al., 2019

fkrp1 13/1 13 Impaired spontaneous
locomotion (5 dpf)

Muscle defect
(degeneration)

Serafini et al.,
2018

(Continued)
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TABLE 1 (Continued)

Disease Gene Zebrafish
model

Locomotor
phenotype

Cellular phenotype References

Human ZF
FKTN fktn fktn MO

N/D
Muscle defects (U-shaped
somites, degeneration)

Lin et al., 2011

INPP5K inpp5k inpp5k MO Impaired touch-evoked
escape response (72 hpf)

NMJ defect (reduced
arborization)/Muscle defects
(structure, degeneration)

Osborn et al.,
2017

ISPD ispd ispd MO N/D Muscle defects (retracting
fibers, structure,
degeneration)

Roscioli et al.,
2012

B3GNT1 b3gnt b3gnt1 MO N/D Muscle defects (fiber
detachment, U-shaped
somites, structure,
degeneration)

Buysse et al.,
2013

GTDC2 gtdc2 gtdc2 MO N/A Possible muscle defect
(U-shaped somites)

Manzini et al.,
2012

Myotubular
myopathy

MTM1 mtm1 mtm1 MO Impaired touch-evoked
escape response (72 hpf)

Muscle defects (fiber
detachment, structure,
excitation-contraction
coupling abnormalities)

Dowling et al.,
2009

Centronuclear
myopathies

(CNMs)

MTMR14 mtmr14 mtmr14 MO Impaired touch-evoked
escape response (48 hpf)

Muscle defect
(excitation-contraction
coupling abnormalities)

Dowling et al.,
2010

DNM2 dnm2 dnm2 mutant
RNA

Impaired touch-evoked
escape response (72 hpf)

NMJ defects (defects in
AChR clustering)/Muscle
defects (structure)

Gibbs et al., 2013

Myofibrillar
myopathy

DESM desm desma MO
desmb MO

Impaired spontaneous
locomotion (4 dpf)

Muscle defects (fiber
detachment, structure,
decreased active force)

Li et al., 2013

FLNC flnc sot Mutant
flnca MO

flncW 2710X

N/D Muscle defects (fiber
disintegration, structure,
degeneration)

Ruparelia et al.,
2012, 2016

ZASP zasp cypher MO N/D Muscle defects (U-shaped
somites, structure,
degeneration)

van der Meer
et al., 2006

Congenital
myopathy

RYR1 ryr1b ryrmi340 Impaired touch-evoked
escape response (48 hpf)

Muscle defects (structure,
excitation-contraction
coupling abnormalities)

Hirata et al., 2007

Here we focus on neuromuscular phenotypes and excluded other phenotypes (cardiac, central nervous system alterations. . .) described in the articles. We also exclude specific form of
HSP (MARS, X-linked formed): see Naef et al. (2019) for complete review. ZF, zebrafish; MO, morpholino; N/D, not determined (or data not provided); HM, horizontal myoseptum;
mEPCs, miniature endplate currents; BTX, bungarotoxin.

of locomotor activity of larval zebrafish has emerged as a
potent tool for phenotypic assessment in the neurosciences and
toxicology fields (Basnet et al., 2019). Some commercial tools
are available to the community (e.g., Noldus, Viewpoint, or
Loligo R© Systems): they provide a means to measure different
properties of the swimming activity, including quantification
of kinetic parameters such as frequency, duration, speed,
and total distance traveled within a given time (Noldus
et al., 2001). Few academic laboratories developed locomotion-
based tracking systems with deeper analysis of the movement
patterns of larvae that are suitable for high-content analysis
(Colwill and Creton, 2011; Zhou et al., 2014). They were
instrumental in providing a better analysis of the sequencing
of swimming bouts (Reddy et al., 2022) and in discriminating
the great variability in the escape behaviors (Kohashi and Oda,
2008), by measuring the delay, amplitude, duration, frequency,
angle, and number of the tail-bending oscillations (Mirat
et al., 2013). Overall, the latter methodologies are extremely
attractive, translationally relevant, and easily adaptable to
high-throughput pharmacological screening strategies but

unfortunately still too rarely used by the general academic
community.

While important for the comprehension of the locomotor
network (Berg et al., 2018), behavioral tests are not
systematically used in disease models, as shown in Table 1. Still,
when performed, they are valuable to quantify the degree of
locomotor deficits: less frequent turning and swimming bouts
in the SMA zebrafish model (Hao et al., 2012), shorter traveled
distance in the ALS zebrafish model (Armstrong and Drapeau,
2013; Robinson et al., 2019), and severe reduction in both
total distance and net velocity (Zhao et al., 2019) in CMT and
GAN models (Arribat et al., 2019). Nevertheless, these tools
present limitations when it comes to grading the severity of
dysfunction between NMD types, or for distinct genes within
the same group of diseases. This challenge is mainly due to
high variability in the settings applied to the motility tests
(type, alternation of light/dark stimulation, duration of the
assay, etc.). For example, one can note that the great disparity
in the locomotor tests used to describe motor deficits in ALS
models, specifically in the SOD1 gene (see Table 1). This
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aspect has some importance when choice needs to be made to
select strong candidates for preclinical studies or discuss the
relative contribution of molecular players. Most importantly,
current behavioral tests have limited outcomes in defining the
functional origin (neuron, NMJ, or muscle) and the cellular
signature of individual gene or NMD.

Cellular defects: 2d level to provide
specificity

Due to their transparency, zebrafish embryos are
particularly suited for cellular imaging (see Pappalardo
et al., 2013; Babin et al., 2014; Patten et al., 2014 for review).
For the motor system, classic methods are the labeling of
the sub-compartments of the NMJ (Panzer et al., 2005) and
providing qualitative measures of the integrity and stability
of the NMJ. Some pieces of off-line, free, and open-source
image processing and analysis software have been used as
quantitative tools for the analysis of the NMJ such as axonal
length, AChR clustering, and the coefficient of co-localization
of NMJ markers (pre- and postsynaptic). Thus, from confocal
images, the authors use these methods to (1) measure axonal
length [e.g., NeuronJ plugin in ImageJ software (Boon et al.,
2009; Robinson et al., 2019; Campanari et al., 2021; Oprişoreanu
et al., 2021) or Lucia software (Lemmens et al., 2007)] or (2)
define the score for normal versus abnormal (McWhorter et al.,
2003; Boyd et al., 2017; Swinnen et al., 2018). Rare laboratories
have developed specific metrics for the quantification of motor
axon development, as in Smn-deficient zebrafish embryos
(Gassman et al., 2013). Overall, the existing analysis tools
permit the extraction of quantifiable data of only a limited
number (about six or seven) of axons per zebrafish sample.
Thus, one important limitation of the current cellular analysis is
the difficulty in extracting measurable data for the whole NMJ,
especially due to the overlap between pre- and postsynaptic
staining. Indeed, unlike other mammalian species such as the
mouse, the fish exhibits a spreaded distribution of the motor
nerve terminals and a great extent of postsynaptic folding
(Slater, 2017), thus particularly challenging to visualize in detail
and quantify.

Perspective in cellular imaging

Currently, most cellular studies in zebrafish are conducted
manually, using low-throughput imaging techniques. Still, there
is a need for standardized, quantitative, and high-resolution
techniques to gain in-depth knowledge of the neuromuscular
unit and to define specificity of alterations of NMJ (and
therefore mechanisms) across pathologies. Moreover, similar
to behavioral assays, developing automated tools, compatible

with high-throughput screening assays, would be essential to
identify and determine the effectiveness of potential drugs
in modulating or restoring the neuromuscular system in
health and disease. Recent advancements in imaging-based
high-content screening technologies for drug discovery and
toxicology have mostly found applications in 3D tissue culture
or 3D organoid models (Li et al., 2016). Although the
zebrafish has earned its place as an efficient model for high-
throughput drug screening, the current tools lack a standard
pipeline for imaging small organisms. Therefore, designing a
quantifiable and standardized methodology with robust assay
metrics to quantify parameters of the neuromuscular unit
would be critical for both fundamental biology and clinical
research.

Development of a novel
quantitative imaging methodology
to study and treat the
neuromuscular system

To address the challenge of standardization and
reproducibility of imaging tools in zebrafish, we developed
an automated, high-throughput, imaging pipeline in zebrafish,
integrating a quantitative analysis of the key parameters of
the neuromuscular system: axonal length, AChR clustering,
and NMJ synapse. Here, we mainly describe this novel
quantitative methodology and briefly illustrate its potency in
delineating the specific phenotype and identifying therapeutic
drugs in GAN disease.

Our method relies on automated high-resolution image
acquisition using multi-well plates (Opera PhenixTM high-
content imaging systems, Perkin Elmer) and involves the
development of an image processing sequence using Harmony
software (v4.9, Perkin Elmer) to prefilter whole-embryo images
and exclude regions with artifacts and high background. This
protocol allows to define the regions of interest (ROIs) within
the spinal cord and make them automatically detectable and
accessible to downstream analysis (Figure 2).

• Prerequisite: The first prerequisite concerns the
establishment of a model of the neuromuscular system
or pathology in the zebrafish, whose phenotype is at
least partially described in larval stages. It can include
a motor component, with a defect in locomotion with
a severity ideally similar to that observed in human
patients and/or a cellular defect of varying severity in the
neuromuscular system.

• Possible applications: The methodology presented here can
have a fundamental and/or therapeutic vocation. Indeed,
it allows to scrutinize the neuromuscular phenotypes in
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FIGURE 2

Novel methodology for high-throughput imaging of the neuromuscular system in the zebrafish. (A) Schematic overview of the setup of 48hpf
larvae in 96-well plates (i) for automated detection and image acquisition (ii), from object detection (5x) to stacked images (20x). (B) Outline of
the imaging and analytic protocol: representative images of NMJ staining (znp1 in green, α-bungarotoxin in red) within the spinal cord of
control larvae, from which several steps of ROI segmentation allow to define the different components of the NMJ. (C) Representative images
of the different filters resulting in the segmentation of AChR clusters from α-bungarotoxin staining and individual axon from the znp1 staining,
enabling the quantitative assessment of spot counting (1), axonal length (2), and NMJ overlapping compounds within the spinal cord (3). See the
Supplementary Figure 1 to assess for the quality of the processing tools for each filter: raw data compared to post-analysis pictures at high
magnification. (D) Validation of this methodology in the zebrafish model of giant axonal neuropathy (gan). Detailed coverage of NMJ defects in
the gan model and identification of hits restoring three parameters of the neuromuscular system, following a high-throughput screening.
α-bung, α-bungarotoxin; pMN, primary motor neuron; MN, motor neuron; NMJ, neuromuscular junction; AChR, acetylcholine receptors; MIP,
maximum intensity projections; ROI, region of interest; w/o, without; CNS, central nervous system.
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greater detail and to identify therapeutic molecules able to
restore them. In the latter, it is recommended to carefully
select a chemical library of interest (see Peterson and
Fishman, 2011 for review).

• Procedure/Methodology: In the next paragraph, we provide
a detailed description of the high-throughput imaging
approach, which offers high-resolution images of 3D
zebrafish larvae mounted in individual wells in 96-
well plates. Then, we detail the development of an
image analysis sequence, allowing first to define the
different ROIs by using maximum intensity projections
(MIP) and then to submit them to different analysis
filters to extract measurable neuromuscular parameters.
Noteworthy, our methodology on high-resolution images
allows the quantification of the NMJ, a challenge in
the zebrafish model due to dispersed sites of muscle
innervation.

Setting up of fish

Zebrafish embryos of desired aged (see “Advantages of the
method” section) are placed in 96-well plates and eventually
exposed to small-molecule libraries of compounds that can
elicit phenotypic alterations (Figure 2Ai). While three larvae
represent the most common settings (Rennekamp and Peterson,
2015), we determined that each well can house up to four
zebrafish larvae without compromising proper development.
On another note, it is recommended to use plates with a thin
and flat plastic or glass bottom. Since the interest here is to
image a lateral view of the spinal cord, we recommend cutting
the embryo at the anterior part of the yolk extension to enable
lateral positioning.

Axonal and neuromuscular junction
staining

Neuromuscular junctions can be visualized by light
microscopy following labeling of both the presynaptic
nerve terminal and the postsynaptic acetylcholine receptors
(Figure 2A). The most commonly used presynaptic antigens,
as in other vertebrate models, include anti-neurofilament
(e.g., 3A10), anti-synaptotagmin (e.g., znp-1), anti-neurolin
(e.g., zn8), and anti-synaptic vesicle glycoprotein 2 (SV2) to
fully label both the pre-synaptic axon and nerve terminal.
The fluorescently tagged α-bungarotoxin is the most
commonly used protein to label acetylcholine receptors in
the postsynaptic membranes of the NMJ. Here, we opted
to use the znp-1/α-bungarotoxin combination, which
ensures specific marking of the axons and NMJ with little
background. Primary antibodies are from the following

sources: mouse IgG2a anti-synaptotagmin (1:100, znp-1,
DSHB) and anti-α-bungarotoxin (1:50, B35451, Invitrogen).
We believe the same methodology can be applied to other
NMJ markers mentioned earlier. Indeed, the analysis
sequences permit the collection of a large number of
measurable parameters, as long as the immunostaining is
of required quality.

Image acquisition settings of
chemical-treated embryos

1. Pre-scan is performed at 5X magnification on the full
well surface (nine fields per well with 6% overlap) and
red channel only (561 nm) with the widefield mode
(Figure 2Aii).

2. Use the “In-the-fly image analysis” tool to create a mosaic
image and “Find Image Region” module to detect the
whole zebrafish.

3. Use the “Determine Well Layout” module to define a
20X re-scan magnification (with 6% overlap) covering
the entire object.

4. Re-scan at 20X magnification on whole fish larvae in the
confocal mode. Green (488 nm/znp-1) and red (561 nm/α-
bungarotoxin) channels are imaged, with a z-stack of
85 µm (5 µm interval).

Definition of regions of interest

5. First, acquire mosaic images (full fish larvae) with MIP
for each channel (Figure 2B).

6. To automatically identify the two ROI named axons and
muscle, we used the “Find Image Region” module in
green (488 nm/znp-1) and red (561 nm/α-bungarotoxin)
channels, respectively. The final ROI muscle was obtained
by subtracting seven pixels around the initial region to
restrict the analysis to the region of interest and to reduce
detection of artifacts.

7. The main challenge is to separate each axon into a different
entity. To do this, it is imperative to differentiate the
axons from the spinal cord. From the same mosaic images
with MIP, we applied smoothing with a median filter
of 20 px using the “Filter Image” module in the green
(488 nm/znp-1) channel. On this new image, we used
the “Find Image Region” module to find a new ROI:
central nervous system (CNS, spinal cord). Then, we used
“Calculate Morphology Properties” to measure the size and
the position of the CNS ROI.

8. Using the “Find Surrounding Region” module, the
CNS ROI was subtracted from the fish body area
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(ROI muscle), to create a new surrounding region:
body without CNS.

Image analysis settings

Acetylcholine receptors quantification
9. Acetylcholine receptors localization/quantification was

performed in the ROI muscle using the “Find Spots”
module on the α-bungarotoxin channel [Figure 2C(1)].
A total of two distinct methods were used to extract the
properties of the AChR spots: method C, more sensitive to
the detection of the exact number, and method D, more
sensitive to the detection of the area. It is also possible to
extract raw data on the number of AChR clusters (method
C) and their area (method D) in px2 or µm2, as well as their
average labeling intensity (see Supplementary Figure 1).

Axonal length
10. Using the “Find Image Region” module only in the

surrounding region (body without the CNS), we created
a new ROI: axons without the CNS, corresponding to
the axonal region without the spinal cord [Figure 2C(2)].
This is particularly important because the bright spinal
cord signal hampers the detection of weaker axonal
staining. With this restricted region, we applied a “Modify
Population” module with “Cluster by Distance” (2 px
distance and area > 300 px2) to individualize axons. An
axon selection step can be added to eliminate detection
problems with the “Selection Population” module (in case
some axons have not been properly individualized).

11. Finally, we used the “Calculate Morphology Properties”
module to measure individual axonal length. The data are
presented as length units (µm) for length and width and
µm2 for axonal area (see Supplementary Figure 1).

Overlap neuromuscular junction
12. To measure AChR/axon overlap, we used the “Calculate

Position Properties - Cross Population” module to obtain
the overlap percentage between the AChR total area and
axon ROI [Figure 2C(3)]. This calculation corresponds
to the percentage of the AChR cluster area included
in the axon ROI area compared to the total AChR
area. It is built on the raw data of the axon ROI area
(µm2) and the postsynaptic AChR area (µm2) calculated
using the method D (see Supplementary Figure 1). To
enable the reproducibility of data and use of the analysis
sequences obtained by the Harmony software (Perkin
Elmer), all the pre-prints are added in HTML format as
Supplementary Datasheet 1.

• Validation of this methodology (Figure 2D): We validated
this novel methodology with the zebrafish model of
giant axonal neuropathy. GAN is a fatal disease,
presenting a widespread phenotype which starts with
a peripheral neuropathy in infancy and extends to the
brain in young adults (Lescouzères and Bomont, 2020)
(Figure 1B and Table 1). Since we identified gigaxonin
as the defective protein in this disease (Bomont et al.,
2000), we have generated a robust zebrafish model of
the pathology by (1) transiently repressing gigaxonin
expression using morpholino antisense oligonucleotides
and (2) creating a knockout line. Both zebrafish models
reproduce the loss of motility described in GAN patients
(Arribat et al., 2019). Using our high-resolution and
quantitative imaging methodology, we refined the role of
gigaxonin in controlling (1) AChR clustering, (2) axonal
outgrowth/projection, and (3) stability of the NMJ. In
addition, the combination of this novel high-content
image analysis pipeline with high-throughput screening
allowed us to pinpoint drugs capable of restoring all
three parameters and develop a therapeutic scheme for
preclinical studies (Lescouzères et al., Submitted).

• Advantages of the method: One of the main advantages
of this approach is the generation of standardized
and quantifiable data for parameters that are usually
assessed with either qualitative measures or manual and
tedious quantitative tools. In particular, the intention
is to address the challenge of quantitative analysis of
the NMJ with high throughput. Here, the analysis is
automated and allows for robust characterization of a
novel phenotype and/or the testing of a large number
of compounds in drug screening. Moreover, since the
data are obtained from a large number of larvae, it
is possible to collect more robust statistics in different
populations (diseased/treated larvae, between different
genes, etc.). For diseased embryos with modest or less
penetrant phenotype, the statistical power of such analysis
is extremely high. In addition, our methodology enables
the establishment of thresholds from which a specific
NMJ-associated parameter is considered affected and/or
restored in the treated diseased embryos. Thus, this novel
imaging methodology designed for the neuromuscular
system presents various advantages that only require a
precise positioning of the zebrafish embryos in wells.
Noteworthy, the imaging methodology we propose has no
time limit and may, in principle, allow the observation
of early events of the neuromuscular contacts. To study
MN differentiation, (1) the first wave of primary motor
neurons at the end of gastrulation (9–10 hpf) or (2) the
second wave of secondary motor neurons (14–15 hpf)
can be imaged using islet staining (Eisen et al., 1986;
Westerfield et al., 1986). Prior to the establishment of
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motor nerve terminal contacts, postsynaptic muscle fibers
form primitive, dynamic, and non-synaptic AChR clusters
that are distributed on the membrane of the adaxial cells.
This step, called muscle pre-patterning (Panzer et al.,
2005; Wu et al., 2010), can be specifically investigated
with the α-bungarotoxin staining between 14 and 16 hpf.
In addition, axonal branching and outgrowth are studied
at more advanced stages, that is, 26–30 hpf for the
pMNs (CaP, MiP, and RoP) and 30–50 hpf for sMNs.
(Myers, 1985) using znp1 and zn8 staining, respectively.
Finally, this workflow for high-throughput image analysis
could be easily adapted to study other tissues, such as the
retina in the zebrafish. This adaptation would only require
the selection of sufficiently specific antibodies, to ensure
the reproducible detection thresholds from one embryo
to another.

Conclusion and future prospects

The zebrafish species shares great genetic similarities with
humans and is a model of choice for studying the physiology
of the neuromuscular system. On the one hand, in the
fundamental field, the access to all embryological stages and
the ease of use of the model (imaging and housing) allow
for the integration of the zebrafish in many comparative
studies and the identification of key molecular players in the
neuromuscular system. In the field of human genetics, the
zebrafish has proven its strength for diagnosis purpose, gene
identification, and modeling diseases of the motor neuron,
NMJ, and muscle. Taking advantage of the small size and
optic transparency of the embryo/larva, behavioral and cellular
methodologies uncovered fundamental and disease mechanisms
sustaining motor functions. Still, limitations lie in the strength
of the assays as one could argue that all NMDs or molecular
players look similar, with altered locomotion and decreased
axonal outgrowth. Increasing precision is not only necessary
to fully decipher the molecular pathways controlling the
neuromuscular unit but also mandatory to differentiate diseases
and offer the specificity required for personalized medicine.
While behavioral assays have been enriched to quantify various
parameters of motility in an automated manner, current imaging
protocols do not reach this level of development. Here, we
present a novel, standardized, automated, and quantitative
imaging pipeline for the key parameters of the neuromuscular
unit, including the so far challenging quantification of the
NMJ. As validated in our GAN disease model, we expect
our imaging and analysis tools to be broadly useful to
researchers interested in scrutinizing the motor system in
detail and executing high-throughput screening in zebrafish
models of NMDs.
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