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Abstract: A high-fat diet (HFD) induces changes in gut microbiota leading to activation of
pro-inflammatory pathways, and obesity, as a consequence of overnutrition, exacerbates inflammation,
a known risk factor not only for cancer. However, experimental data showed that the composition of
dietary fat has a greater impact on the pathogenesis of cancer than the total fat content in isocaloric
diets. Similarly, human studies did not prove that a decrease in total fat intake is an effective strategy
to combat cancer. Saturated fat has long been considered as harmful, but the current consensus is
that moderate intake of saturated fatty acids (SFAs), including palmitic acid (PA), does not pose a
health risk within a balanced diet. In regard to monounsaturated fat, plant sources are recommended.
The consumption of plant monounsaturated fatty acids (MUFAs), particularly from olive oil, has been
associated with lower cancer risk. Similarly, the replacement of animal MUFAs with plant MUFAs
decreased cancer mortality. The impact of polyunsaturated fatty acids (PUFAs) on cancer risk depends
on the ratio between ω-6 and ω-3 PUFAs. In vivo data showed stimulatory effects of ω-6 PUFAs
on tumour growth whileω-3 PUFAs were protective, but the results of human studies were not as
promising as indicated in preclinical reports. As for trans FAs (TFAs), experimental data mostly
showed opposite effects of industrially produced and natural TFAs, with the latter being protective
against cancer progression, but human data are mixed, and no clear conclusion can be made. Further
studies are warranted to establish the role of FAs in the control of cell growth in order to find an
effective strategy for cancer prevention/treatment.

Keywords: high-fat diet; cancer; inflammation; oxidative stress; saturated fatty acids; unsaturated
fatty acids; trans fatty acids

1. Introduction

Traditionally, a high-fat diet (HFD) has been regarded as detrimental for health, but in many cases,
it is the obesity as a consequence of excess caloric intake that is in the background of various pathologies,
including diabetes, cardiovascular diseases, and cancer [1]. Excess of nutrients alters gut microbiota,
which leads to activation of pro-inflammatory pathways, an increase in intestinal permeability and
systemic inflammation [2–4]. An increase in reactive oxygen (ROS) and nitrogen species (RNS), which
come from aerobic metabolism, hypertrophied adipocytes and monocytes/macrophages, leads to
an overload of cellular antioxidant capacity and induction of oxidative stress, which exacerbates
inflammation [5–7]. When evaluating the effect of dietary fat, it is necessary to focus not only on
major classes of fatty acids (FAs) (saturated vs. unsaturated FAs) but also on different members of
these classes, as preclinical data show that they may differ in activity and effects [8,9]. However,
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the evaluation of isolated effects of individual FAs is not possible in human studies, and in addition,
the FAs spectrum in fats and oils varies, which complicates the analysis of the link to cancer and other
diseases. This review briefly summarises underlying mechanisms of the link between fat and cancer,
the role of dietary FAs in the signalling pathways involved in the regulation of cell proliferation and
associations between major classes of FAs and the risk of cancer in experimental and human reports.

Source of Data

We searched for papers in the PubMed and Scopus databases, using search terms, including
“high-fat diet”, “total fat”, “fatty acids”, “saturated”, “monounsaturated”, “polyunsaturated”,
“trans-fatty acids”, “cancer”, “obesity”, “inflammation”, “microbiota” and “dysbiosis”. Relevant
studies published almost exclusively in the English language were retrieved. References were selected
on the basis of relevance, importance, and novelty. Papers published in the past ten years were
preferentially treated.

2. The Connection Between Fat, Gut Microbiota, and Inflammatory Diseases

Dietary lipids alter the microbiome, which plays a considerable role in the pathogenesis of
many diseases, including cardiovascular disease, type-2 diabetes, and cancer [10,11]. Changes in
the microbial community may be either beneficial or harmful to the host, depending on the lipid
type. Whileω-3 polyunsaturated fatty acids (PUFAs) seem to exert beneficial effects, saturated FAs
(SFAs) were proved to promote dysbiosis. In mice fed with an HFD rich in saturated fat (lard) in
comparison with those fed with an HFD containingω-3 PUFAs (fish oil), the phylogenetic diversity
and the abundance of beneficial intestinal bacteria was lower [12]. Similar results were reported in
other murine studies [13,14]. HFD supplemented with palm oil, a source of SFAs, shifted the intestinal
microbiota population to one similar to that seen in an obese phenotype, while an HFD supplemented
with flaxseed/fish oil increased the intestinal levels of beneficial bifidobacteria [13]. A diet high in
saturated but not in ω-6 PUFAs increased gut permeability and induced colonic inflammation and
mesenteric fat inflammation in mice. On the other hand, the addition of ω-3 PUFAs to a diet rich
in saturated fat showed a tendency to increase transepithelial resistance of the colon in the same
study [14]. Changes of the gut microbiota induced by long-term administration of HFD to mice were
associated with increased intestinal ROS production and oxidative stress [15], which play a significant
role in cancer initiation and progression [16] (Figure 1).

Variations in gut microbiota also depend on host genetics, but according to an extensive study by
Carmody et al. [17], diet plays the dominant role. Carmody and his co-workers evaluated the effect of
an HFD and a high-sugar diet in five inbred mouse strains, four transgenic lines (mice deficient for
genes relevant to host-microbial interactions) and in outbred strains and found that gut microbiota
was reproducibly altered despite differences in host genotype. However, most changes to the gut
microbiota were reversible, as revealed by repeated dietary shifts [17].

The adverse effect of a saturated fat-rich diet on gut microbiota and the overall host metabolic
effect has been extensively studied, and the induction of chronic low-grade inflammation is presumed
as the underlying mechanism (reviewed in [18–20]) (Figure 1). An HFD increases the abundance of
Gram-negative bacteria [12,21,22], which contain lipopolysaccharides (LPS) on their outer membrane.
The lipid A component (or endotoxin) of LPS binds to toll-like receptor 4 (TLR-4) [23], leading to the
activation of nuclear factor kappa B (NF-κB) signalling and release of pro-inflammatory cytokines [24].
TLR-4 may also be stimulated directly by free FAs [25]. In addition, an HFD increases barrier-disrupting
cytokines (tumour necrosis factor alpha [TNFα], interleukin [IL] 1B, IL6, and interferon γ) and decreases
barrier-forming cytokines (IL10, IL17, and IL22) [26]. All this leads to an increase in gut permeability,
which promotes the passage of LPS, free FAs, and pro-inflammatory cytokines into the circulation.
As a result, systemic inflammation arises, which is a known risk factor for numerous diseases,
including cardiovascular diseases, type-2 diabetes, and cancer [2–4] (Figure 1). Loss of microbial
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diversity, followed by increased endotoxin levels and increased intestinal permeability caused by gut
inflammation, was also reported after high-glucose and high-fructose diets [27].

Figure 1. Interplay among disturbances induced by excess of nutrients. Abbreviations:
LPS—lipopolysaccharides; ROS—reactive oxygen species; SFAs—saturated fatty acids; TLR-4—toll-like
receptor 4.

HFD promotes a decrease in Bacteroidetes and an increase in Firmicutes and Proteobacteria,
the first two being the major bacterial phyla in the human intestine [4]. Increased consumption of
saturated fat from meat and other animal foods also increases the intake of choline and L-carnitine,
which are converted to trimethylamine (TMA) by intestinal bacteria. TMA-producing bacteria largely
belong to the Firmicutes and Proteobacteria phyla, the enzymes required for this conversion are
absent in Bacteroidetes. TMA is transported to the liver and metabolised into trimethylamine-N-oxide
(TMAO), which has been linked to cancer via inflammation induction; other suggested mechanisms
include oxidative stress, DNA damage, and disruption in protein folding. Plasma TMAO levels were
positively correlated with the risks of various cancers (reviewed in [28]). Thus, the shift in Firmicutes to
Bacteroidetes ratio in favour of Firmicutes, may result in increased TMAO production and contribute
to cancer risk.

Not all LPS act strictly as immunostimulants. A human report showed that the total LPS derived
from the gut microbiome of healthy adults inhibits TLR-4 signalling, and these immune silencing
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properties were attributed to the species of the order Bacteroidales [29]. Thus, the immunogenicity of
gut microbial communities is determined mostly by the composition of the microbiota and subsequent
LPS isoforms [30].

An increase in intestinal permeability and development of inflammation promotes obesity, which,
in turn, contributes to an oxidative stress and inflammatory state, via increased ROS production
in adipocytes [31] and “leaky gut” (Figure 1). A murine study showed that obesity increased the
expression of cell death and cell survival/proliferation genes, which were associated with an increase
in intestinal permeability, alterations in villi/crypt length, and decrease of tight junctions, and mucus
synthesis. However, the authors acknowledged it was not clear whether obesity or gut dysbiosis
contributed primarily to these changes [32]. In obese subjects, circulating levels of zonulin, a marker of
intestinal permeability, were increased proportionally to daily energy intake [33]. It seems, though, that
the type of body fat matters, as Gummesson et al. [34] reported that increased intestinal permeability
in normal to overweight women was associated with visceral adiposity but not total body fat or
subcutaneous fat [34].

Bacterial elements transported in the bloodstream activate TLRs and NF-κB signalling in the liver.
In turn, both immune and hepatic non-immune cells, such as hepatic stellate cells and endothelial cells,
release a set of pro-inflammatory cytokines, including TNFα, IL-6, and IL-1β [35,36]. As a consequence,
sterile inflammation results in disruption of the lobular architecture and nodular reorganization,
and subsequent fibrogenesis, the typical features of non-alcoholic and alcoholic liver disease [37,38].
Importantly, increased gut permeability and the consequent augmented presence of bacterial products
in the bloodstream triggers a response in the liver, increasing the portal pressure, with the latter
resulting in intestinal oedema, disruption of epithelial integrity, and more translocation from gut to the
blood, creating a vicious circle [39]. The disruption of the gut–liver axis by dietary fat thus plays an
important role in the development and progression of portal hypertension, chronic liver disease, and
cirrhosis, with the latter actually being a pre-cancer state [40] (Figure 1).

Both animal and human reports focus almost exclusively on the bacterial component of the
microbiome, but apart from the bacteria, the human microbiome also hosts viruses, fungi, and archaea
that can all be altered in disease states [41]. In a murine study, an HFD significantly altered six fungal
taxa abundances along with 16 bacterial taxa. These results suggest that the role of microbiome
components may be interconnected [42], which should be considered in an evaluation of the impact of
dietary fat on the pathogenesis of the human disease.

3. HFD, Oxidative Stress, and Inflammation

ROS (e.g., oxygen-free radicals, hydrogen peroxide and lipid peroxides) and RNS (e.g., nitric oxide,
peroxynitrite), are generated as a by-product of aerobic metabolism and are necessary for many
physiological processes, including cell differentiation, apoptosis, immunity and reproduction [43–45].
ROS/RNS may bind with membrane lipids, nucleic acids, proteins, enzymes, and other small molecules.
ROS/RNS are highly reactive and can damage cell structures and alter their functions, but aerobic
organisms possess both enzymatic and non-enzymatic antioxidant systems, which are usually effective
in blocking their harmful effects. However, overproduction of ROS/RNS in pathological conditions
may overwhelm these protective systems, which leads to the shift of the balance between oxidants
and antioxidants in favour of oxidants, referred to as oxidative stress [46]. Oxidative stress may
activate various transcription factors, including those that regulate the expression of genes involved in
inflammatory pathways [16,47] (Figure 1).

Lipid accumulation in adipocytes induced by HFD leads to their hypertrophy and to changes
in adipokine secretion. Hypertrophied adipocytes contribute to the production of ROS [48], which
induces the release of pro-inflammatory cytokines, including the monocyte chemoattractant protein-1
(MCP-1) [31], and, vice versa, pro-inflammatory cytokines promote an increase in ROS generation by
macrophages and monocytes [49]. It is presumed that the source of the ROS differs during the course of
obesity—in the early stage, ROS are generated by nicotinamide adenine dinucleotide phosphate oxidase
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(NOX) in adipocytes, followed by NOX-generation in macrophages and transiting to mitochondrial
production in late stages of obesity [50]. The accumulation of ROS is facilitated by decreased expression
of antioxidant enzymes [31,51]. The expression of pro-inflammatory cytokines is higher in visceral
fat in comparison with subcutaneous fat tissue and is further enhanced in obesity [52]. Enhanced
chemokine secretion, adipocyte death, hypoxia, and increased FAs flux, driven by hypertrophy, lead
to an initiation of macrophage infiltration [53]. Preferential macrophage infiltration into omental fat
vs. subcutaneous fat was reported in lean subjects and was exaggerated in obesity [54]. Obesity also
induces a phenotypic switch of macrophages from an M2 anti-inflammatory to an M1 pro-inflammatory
state [55], a crucial role in the regulation of the M1 phenotype is attributed to ROS [56]. As a result of
these events, a positive feedback-loop between inflammation and oxidative stress in obese adipose
tissue is established [5–7] (Figure 1).

Obesity can affect other tissues via the excess of free FAs, pro-inflammatory factors, and altered
adipokine production and may lead to the development of insulin resistance, dyslipidemia,
non-alcoholic fatty liver disease, and other metabolic disturbances [57]. Chronic low-grade systemic
inflammation associated with HFD and obesity is involved in the pathogenesis of many diseases,
including type-2 diabetes, cardiovascular diseases, intestinal diseases, chronic kidney diseases,
osteoporosis, central nervous system disorders, and cancer [2]. As visceral fat is more metabolically
active than subcutaneous fat, an increase in visceral adiposity poses a higher health risk compared to
excess subcutaneous fat. Apart from metabolic syndrome, excess visceral adiposity was also associated
with an increased risk of breast- [58], oesophageal- [59], and colorectal cancer [60], and chronic
inflammation and alterations in adipokine production present another risk factor for tumourigenesis [61].
Furthermore, the fat distribution pattern may have an impact on survival and therapeutic response in
several cancer types [62–66].

An HFD and obesity are associated with the activation of microglia [67,68] and astrocytes [67,69,70],
leading to an inflammatory state in the brain. In particular, oxidative stress and low-grade systemic
inflammation evoked by an HFD augments levels of TNF-α, IL-1β, IL-6, and inducible nitric oxide
synthase in the rostral ventral lateral medulla (RVLM; [71]). Neuroinflammation in the RVLM
promotes sympathetic nervous system activation and efferent transmission [71–73]. In neoplasms, the
sympathetic overstimulation potentially occurs in both tumour cells and various elements of their
microenvironment, i.e., lymphoid and myeloid immune cells, epithelial cells, adipocytes, fibroblasts,
vascular myocytes, pericytes, glial and neural cells, [74]. The sympathetic nervous system may
influence tumour β-adrenergic signalling both via circulating norepinephrine/epinephrine and via local
norepinephrine release from sympathetic nerve fibres. Sympathetic fibres surround or even enter the
tumour parenchyma in association with blood vessels. Such local release may provide neoplasm cells
with higher neurotransmitter concentrations than those achieved in the bloodstream [75]. Importantly,
the significant overexpression of adrenergic receptors has been reported in the variety of neoplasms,
particularly in lymphoid tissues, bone marrow, kidney, adrenal glands, liver, stomach, colon, brain,
lung, breast, ovary, prostate, skin and vasculature [74,76]. As the neoplastic process, regardless of
location, is marked by systemic inflammatory response [77], HFD, cancer, and sympathetic nervous
system may effectively create another vicious circle in neoplasm development [72,73,76,78]. Complex
interactions between neoplasm growth and sympathetic nervous system were reviewed elsewhere in
detail [75,79,80].

4. Xenobiotics in the Obesity-Cancer Link

An association between obesity and exposure to environmental contaminants, which can
disrupt the normal developmental and homeostatic control over adipogenesis and energy balance
and are referred to as obesogens, was suggested in 2006 [81]. Most of them are endocrine
disrupters, interfering with the normal function of the endocrine system, and displaying carcinogenic
properties [82]. For example, acrylamide, present in a wide range of heated foodstuffs, particularly
in carbohydrate-rich foods [83], was shown to upregulate adipogenesis in mice via the increased
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expression of CCAAT-enhancer-binding proteins, which are adipogenic transcription factors for
adipocyte differentiation. Acrylamide also induced phosphorylation of mitogen-activated protein
kinases (MAPKs) and adenosine monophosphate-activated protein kinase (AMPK)-acetyl-CoA
carboxylase, expression of adipocyte fatty acid-binding protein (aP2), lipoprotein lipase, sterol
regulatory element-binding protein (SREBP)-1c and fatty acid synthase [84]. In a human report,
acrylamide haemoglobin biomarkers in blood were associated with abdominal obesity as well as
overweight [85]. We refer readers to excellent reviews by Newbold [86] and Heindel and Blumberg [87]
for further information.

5. Mediterranean Diet and Cancer Risk

The Mediterranean diet, or rather the lifestyle, is considered a powerful method to combat
cancer. The positive effects of the Mediterranean diet have been widely reported [88], but there
is no precise definition regarding the quantity and quality of components. A general description
includes a high intake of monounsaturated FAs (MUFAs), from extra virgin oil, vegetables, fruits,
legumes, cereals, and nuts, cutting meat and dairy consumption, and limited intake of sweets [89].
A comprehensive meta-analysis of 83 studies (total 2,130,753 subjects) evaluated the association
between the Mediterranean diet and cancer risk and mortality. The highest adherence score to a
Mediterranean diet was inversely associated with a lower risk of cancer mortality (relative risk [RR]

cohort: 0.86, 95% confidence interval [CI] 0.81–0.91), colorectal cancer (RRobservational: 0.82, 95% CI
0.75–0.88), breast cancer (RR randomised controlled tria [RCT]: 0.43, 95% CI 0.21–0.88) (RRobservational: 0.92,
95% CI 0.87–0.96), gastric cancer (RRobservational: 0.72, 95% CI 0.60–0.86), liver cancer (RRobservational:
0.58, 95% CI 0.46–0.73), head and neck cancer (RRobservational: 0.49, 95% CI 0.37–0.66) and prostate
cancer (RRobservational: 0.96, 95% CI 0.92–1.00) [90]. The Mediterranean diet, however, did not alter the
risk of cancer mortality and recurrence among cancer survivors [90]. According to pooled analysis, the
protective effects may be attributable to a higher intake of fruits, vegetables, and whole grains. However,
as authors acknowledged, this report has some limitations, including varying dietary patterns, mixed
exposure to carcinogens, methodological flaws of some of the studies, and lopsided availability of
studies by type of cancer [90]. The recent analysis of 13 prospective cohort studies found an inverse
relationship between the Mediterranean diet and bladder cancer risk [91]. Cancer-preventive properties
of the Mediterranean diet may be attributed to several components. Antioxidants neutralise ROS/RNS,
leading to a decreased rate in DNA mutations and downregulation of phosphatidylinositol 3-kinase
(PI3K), MAPKs, and NF-κB proliferation pathways. Flavonoids contribute to antiproliferative effects
and also attenuate the carcinogenic potential of xenobiotics by inhibition of some cytochrome P450
enzymes involved in the activation of pro-carcinogens and by induction of phase II detoxification
enzymes. MUFAs and PUFAs downregulate NF-κB via peroxisome proliferator-activated receptor
(PPAR) and exert anti-inflammatory effects. Dietary fibre attenuates post-prandial ROS/RNS peak and
decreases the glycaemic index of foods, leading to a lower release of insulin and insulin-related growth
factors. In addition, metabolisation of fibre by intestinal microbiota produces short-chain FAs that
downregulate pro-inflammatory pathways, e.g., via G-protein-coupled receptor (GPR) family receptors
(reviewed in [92]). The benefits of red wine intake remain controversial, as ethanol is classified as a
human carcinogen [93], but on the other hand, red wine is a source of polyphenols and other beneficial
substances that may counteract the carcinogenic effects of ethanol. Further, well-designed studies need
to elucidate the potential of the Mediterranean diet in cancer prevention.

6. Dietary Fat and Cancer Risk

One of the earliest reports on tumour-promoting effects of fat in experimental cancer comes from
1930. Watson and Mellanby reported a higher incidence of tar-induced skin tumours in mice when
butter was added to the diet [94]. A multitude of ensuing in vivo experiments mostly carried out
in rodents, led to a general conclusion that HFD is positively associated with cancer risk. However,
further analysis revealed that tumour incidence (involving several tumour sites in mice) was positively
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associated with total caloric intake, regardless of the level of dietary fat [95]. In addition, in isocaloric
diets, it is the fat type that matters in tumour promotion, and progression [96–98], as the impact
of different FAs on signalling pathways involved in cell proliferation varies [99,100]. Furthermore,
interpolating animal data is tricky, in part because of differences in metabolism, in part due to factors
which, unlike in vivo studies, cannot be controlled in full in human studies (e.g., total caloric intake,
macronutrient, and micronutrient composition, lifestyle factors, etc.), at least not for a long time.

According to human studies, obesity, which is induced by both fat and carbohydrate-rich diet in
most cases, has a higher impact on cancer risk than dietary fat content. In 2012, excess body weight
accounted for almost 4% of all cancers globally and for 7–8% in some high-income Western countries
and in Middle Eastern and Northern African countries [101,102]. A positive association between body
mass index and cancer has been shown [103], but it appears that central adiposity is a stronger predictor
of all-cancer risk than body size [104]. No such association may be unambiguously attributed to the
total dietary fat [105]. Obesity is associated with redox and hormonal imbalances that promote tumour
progression [106,107]; therefore, it must be considered when evaluating the role of fat composition in
relation to cancer. The impact of different fats/FAs on tumourigenesis in preclinical and human studies
is discussed in the next sections. The results of relevant studies are summarised in Table 1; we focused
on data from the last 10 years.

6.1. Total Fat

The International Agency for Research on Cancer (IARC) in its European Code Against Cancer
recommends limiting foods high in fat, but this advice is related to calorie surplus leading to excess
body fat [108], which is linked to increased cancer risk at nine sites: oesophagus, colorectum, gall
bladder, pancreas, breast (postmenopausal), endometrium, ovary, kidney, and prostate (advanced
stage). It is estimated that 4–38% of these cancers (depending on site and gender) can be attributed
to overweight/obesity [109]. As previously mentioned, low-grade systemic inflammation caused by
excess adiposity, especially visceral adiposity, may be the underlying cause.

Epidemiological data do not support the hypothesis that a mere decrease in total fat intake would
be an effective way to prevent cancer [105,110–113] or decrease cancer-specific mortality [114]. On the
other hand, it is possible that increased dietary fat content may alter visceral fat even if the energy
intake is adequate. In animal reports, an HFD increased visceral adiposity in comparison with an
isocaloric low-fat diet [115,116]. Unluckily, human reports are scarce and contradictory. Isocaloric
substitution of 5% of total energy from carbohydrates with fat was positively associated with visceral
fat (and also hepatic fat but not subcutaneous fat) [117]. In another study, fat content in isocaloric
diets (very high-fat, low-carbohydrate: 73% of energy fat and 10% of energy carbohydrate vs. low-fat,
high-carbohydrate: 30% of energy fat and 53% of energy carbohydrate) did not alter visceral adiposity,
but this report included a smaller number of participants and a shorter intervention period [118].
Proper evaluation of the role of fat in isocaloric diets requires unified methodology, including the
definition of the FAs spectrum.

The impact of dietary fat depends not only on quality and quantity but also on a number of other
factors, including the host genetics and the gender [119]. General advice of nutritionists is to prefer
plant products and cut down on animal fat intake from meat, particularly red meat, and dairy products
due to the high content of saturated fat. However, animal products are also a source of essential
nutrients, so excluding them completely may not always be the best choice. As mentioned above, it is
the FAs spectrum that matters, as FAs differ in their biochemical properties and in their physiological
and metabolic effects. Experimental data showed that some FAs might promote cancer independently
of obesity, e.g., via the enhancement of progenitor cell stemness [120,121].

6.2. Saturated Fat

Promoting the effects of a diet high in saturated fats on tumourigenesis has been reported by many
in vivo studies. In addition, it was also shown that this diet might compromise the inhibitory effect
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of anticancer treatment [122]. These effects are generally attributed to the major component of diets
high in SFAs, palmitic acid (PA), which is discussed below. However, neither experimental nor human
reports are unambiguous regarding the tumour-promoting properties of saturated fat per se. Saturated
fat intake was associated with higher cancer mortality (highest vs. lowest quintile [Q5 vs. Q1]: HR: 1.26,
95% CI 1.20–1.32) in a prospective cohort study of 521,120 participants, with 16 years of follow-up [123].
High intake of saturated fat (but not total, monounsaturated or polyunsaturated fat intake) was
associated with increased risk of breast cancer (Q5 vs. Q1: hazard ratio [HR]: 1.13, 95% CI 1.00–1.27)
in a large European multicentre prospective study (519,978 participants) [103] and also in a recent
French prospective study (Q5 vs. Q1: HR: 1.98, 95% CI 1.24–3.17); the latter also linked the saturated
fat to increased overall cancer risk (Q5 vs. Q: HR: 1.44, 95% CI 1.10–1.87) [124]. Similarly, breast cancer
survival was negatively affected by saturated fat in a meta-analysis of cohort studies (highest vs. lowest
category of intake: HR: 1.51, 95% CI 1.09–2.09) [114]. SFAs intake was associated with an increased
risk of prostate cancer, too (HR: 1.19, 95% CI 1.07–1.32) [125]. However, a meta-analysis of prospective
cohort studies did not show an association between SFAs intake and colon cancer risk; the intake of
MUFAs, PUFAs, or total fat did not have any impact either [112]. No associations were observed in the
subgroup analyses of dietary SFAs, MUFAs, and PUFAs intake, and epithelial ovarian cancer risk [126].
Interestingly, several case-control studies reported statistically significant or borderline decreased risks
of pancreatic cancer with a higher saturated fat intake (summarised in [127]).

Research data showed that factors other than saturated fat content must be considered. For example,
the association between consumption of red and processed meat and the risk of colorectal cancer [128]
may be explained by the formation of carcinogenic heterocyclic amines and polycyclic aromatic
hydrocarbons during the cooking process. Another factor is the generation of lipid oxidation products
and nitroso compounds catalysed by haem-iron during digestion. The risk is also modulated by
the effect of food processing-borne xenobiotics on the gut microbiota [129–131]. According to IARC
and World Cancer Research Fund/American Institute for Cancer Research, red meat consumption
may increase the risk of lung, pancreatic, and prostate cancers [132]. The general recommendation
for reducing colon cancer and other cancers risk via a healthy diet is to cut the intake of red and
processed meat, refined grains, sweets, caloric drinks, juices, convenience food, and sauces and stick to
Mediterranean patterns of diet, preferring consumption of whole fruits, vegetables, legumes, olive oil,
nuts, and fish [133].

The association between saturated fat in dairy products and cancer risk is not clearly established,
due to methodologic limitations of most studies [134]. A large U.S. population-based cohort study and
meta-analysis found no link between total dairy consumption and risk of cancer or cancer mortality.
However, a recent meta-analysis of observational studies found that the risk of ovarian cancer was
increased in non-linear form for both saturated and monounsaturated fat from 25 g/day [135]. Fermented
dairy product consumption was inversely related with total mortality (RR: 0.97, 95% CI: 0.96–0.99)
but not cancer mortality [136]. A recent prospective study, however, found a positive association
between total intake of dairy products (highest vs. lowest tertile [T3 vs. T1]: HR: 1.85, 95% CI 1.19–2.88)
and intake of high-fat dairy products (HR: 1.81, 95% CI 1.19–2.76) and hepatocellular carcinoma risk.
Yogurt consumption showed a non-significant inverse association with hepatocarcinoma risk (HR: 0.72,
95% CI 0.49–1.05) [137]. It is necessary to remark that different outcomes of studies may be attributed
to not only differences in study design but also to the way animals are raised, as it has an impact on the
levels of various PUFAs and inflammatory factors in food products [138].

6.2.1. The Role of SFAs in Signalling Pathways Involved in Cancer

Palmitic Acid

Understanding the role of fat in carcinogenesis requires elucidation of the role of FAs in signalling
pathways involved in cell proliferation. The research in this area is ongoing, and, among SFAs, PA has
drawn great attention. Palm oil, which contains about 44% of PA [139], is, in general, the major source
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of PA in the human diet, but PA is also present in high quantities in other oils and fats, accounting for
approximately 28% in butter, 27% in lard, 27% in beef tallow, 13% in corn oil and, 10% in olive oil [140].
The estimated average daily intake is 20–30 g corresponding to 8–10 energy % (according to the Third
Italian National Food Consumption Survey [141]). PA is the most abundant SFA in the human body
and can be provided in the diet or synthesised endogenously from other FAs, carbohydrates, and
amino acids. PA accounts for 20–30% of total FAs in membrane phospholipids, adipose triacylglycerols
and breast milk [142].

There is increasing evidence that PA acts as an intracellular signalling molecule and is involved
in the pathogenesis of cancer and other diseases, including metabolic syndrome, cardiovascular and
neurodegenerative diseases, and inflammation [143]. PA participates in post-translational modifications
of proteins, a process called S-palmitoylation, when PA is linked to the proteins by a thioester bond,
catalysed by 23Asp-His-His-Cys (DHHC)-family palmitoyl S-acyltransferases, while the removal of
PA is catalysed by serine hydrolases, including acyl-protein thioesterases. Palmitoylation functions
as a switch regulating protein’s function. Palmitoylation regulates the functions of many proteins
involved in homeostasis, e.g., G-protein coupled receptor. The dysregulation of protein function
by palmitoylation contributes to metabolic disorders, neuronal diseases, and also cancer [143–145].
Palmitoylation is essential for the function of both oncogenes (e.g., HRAS, NRAS, and epidermal growth
factor receptor [EGFR]) and tumour suppressors (e.g., SCRIB, melanocortin 1 receptor) [145,146].

Preclinical data showed both stimulatory and inhibitory effects of PA on tumour growth.
PA increased the proliferation of colorectal cancer cells in a β2-adrenergic receptor (AR)-dependent
manner. The stimulatory effect of an HFD, which increases the levels of PA and stearic acid (SA),
or PA-rich diet on the growth of HCT116 colorectal cancer cells was abolished in mice bearing
β2-adrenergic receptor (AR)-knockout xenografts [8]. Ex vivo murine data showed an increase in
murine Lgr5+ intestinal stem-cells in a PPAR delta-dependent manner after PA treatment [121]. In
PNT1A and PC3 prostate cancer cell lines, PA promoted cell migration via vimentin expression and
increased the levels of activated extracellular signal-regulated kinase 1/2 (ERK1/2), leading to increased
proliferation, despite activation of AMPK [147]. PA upregulated the biosynthesis of palmitoyl-CoA
in PC-3 prostate cancer cells in vitro and in vivo. A diet high in PA enhanced the proliferation of
prostate cancer xenografts in comparison with a diet high in unsaturated fat. PA increased the level of
Src kinase and Src-mediated downstream signalling, including MAPK activation, and also enhanced
Src-dependent mitochondrial β-oxidation [98]. PA increased the invasiveness of AsPC-1 pancreatic
cancer cells via the TLR-4/ROS/NF-κB/matrix metalloproteinase-9 (MMP-9) signalling pathway [148]
and promoted metastasis in several human oral carcinoma cell lines expressing high levels of cluster of
differentiation 36 (CD36) [149]. The tumour promoting effect of PA via CD36 was reported in gastric
cancer cells too, and PA induced metastasis by phosphorylation of protein kinase B (AKT), leading
to activation of AKT/ glycogen synthase kinase-3 beta (GSK-3β)/β-catenin signalling pathway [150].
On the other hand, PA induced cell cycle delay and CCAAT-enhancer-binding protein homologous
protein (CHOP) dependent apoptosis and was also involved in activation of the endoplasmic reticulum
(ER) stress response network via X-box activating protein 1 (XBP1) and activating transcription factor
6 (ATF6) in HER2/neu-positive breast cancer cells [151]. PA also inhibited proliferation, impaired
cell invasiveness, and suppressed hepatocarcinoma growth in vitro and in mouse xenograft models,
inhibition of the mammalian target of rapamycin (mTOR) and signal transducer and activator of
transcription 3 (STAT3) pathway, decreased cell membrane fluidity, and impaired glucose metabolism
was demonstrated [152]. PA was also reported to stabilise oncogenic protein beta-catenin in prostate
cancer cells [153].

Results of human studies are not consistent, showing a positive association between dietary PA
and breast (Q5 vs. Q1 HR: 1.68, 95% CI 1.13–2.50) [154] and prostate cancer (Q5 vs. Q1 RR: 1.53, 95%
CI 1.07–2.20) or no association for both breast and prostate cancer risk [155]. Positive associations were
found between circulating levels of plasma phospholipids PA and risk of breast (Q5 vs. Q1 HR: 1.86,
95% CI 1.27–2.72) [155] and prostate cancer ([HRs (Q5–Q2 vs. Q1] were significantly elevated) [156].
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Elevated risk of prostate cancer for men with higher plasma levels of PA was found in another study
too (Q5 vs. Q1: 1.47, 95% CI 0.97–2.23) [157]. A meta-analysis of two European studies showed a
positive association of SFAs intake and epithelial ovarian cancer risk (highest vs. lowest quartile:
overall HR: 1.21, 95% CI 1.04–1.41) [158]. On the other hand, a negative association between PA intake
and pancreatic cancer risk was reported by Nkondjock (OR: 0.73, 95% CI 0.56–0.96) [127] (Table 1).

It must be emphasised that under physiological conditions, the changes in PA intake do not
significantly alter its tissue concentration, which is maintained by endogenous biosynthesis from
acetyl-CoA catalysed by acetyl-CoA carboxylase and fatty acid synthase. The homeostatic balance of
PA may be disrupted by positive energy balance, excessive intake of carbohydrates, and a sedentary
lifestyle, leading to overaccumulation of PA in tissues. This results in dyslipidaemia, hyperglycaemia,
increased ectopic fat accumulation and increased inflammatory tone, and imbalance of PA/PUFAs
ratio in the diet may contribute to these pathologies and promote cancer growth [142]. The current
understanding is that the consumption of palm oil within a balanced diet does not pose a health risk
(regarding cancer or cardiovascular disease) if SFA intake is kept under 10% of the total energy [159,160].

Stearic Acid

The isolated effect of other SFAs in tumourigenesis has been less studied. SA is found in large
quantities, especially in cocoa butter but also in beef tallow, butterfat, and lard [140]. SA inhibited
experimental breast cancer both in vitro and in vivo. SA inhibited the cell cycle at the G1 and G2 phases,
increased cell cycle inhibitor p21CIP1/WAF1 and p27KIP1 levels, and decreased cyclin-dependent kinase 2
(CDK2) phosphorylation in Hs578T human breast cancer cells. SA also inhibited Rho activation and
expression. These results were confirmed in vivo too, and dietary stearate decreased Rho expression in
rat mammary tumours induced by N-methyl-N-nitrosourea (NMU) [161].

SA reduced visceral adiposity in athymic nude mice by the promotion of apoptosis via increased
caspase-3 activity, decreased cellular inhibitor of apoptosis protein-2, and increased Bax expression in
preadipocytes, although it did not alter differentiation or the viability of mature adipocytes. On the
contrary, oleic acid (OA) and linoleic acid (LA) showed no apoptotic effects [162].

Human results are contradictory. A cohort study found a positive association between SA intake
and breast cancer risk (Q5 vs. Q1 HR: 1.65, 95% CI 1.12–2.43) [154]. On the contrary, SA intake was
associated with a decreased risk for pancreatic cancer (OR: 0.70, 95% CI 0.51–0.94) [127] (Table 1).

Interestingly, recent data indicate that SA may be useful in cancer treatment in a form other than the
dietary intervention. A sialic acid-SA conjugate nanocomplexes with encapsulated ibrutinib, which is
an inhibitor of Bruton’s tyrosine kinase, effectively targeted tumour-associated macrophages both
in vivo and in vitro, resulting in inhibition of tumourigenic cytokine release, reduction of angiogenesis
and growth suppression of S180 murine sarcoma [163]. This and other papers [164–166] indicate that
the use of SA and also other SFAs in lipid-based nanoparticles is a promising strategy for targeted
cancer therapy.

Lauric Acid (LaA)

LaA, the dominant SFA in coconut oil, showed antiproliferative and proapoptotic effects in
human SkBr3 breast and Ishikawa endometrial cancer cells by upregulation of p21Cip1/WAF1 in a
p53-independent manner [167]. LaA also induced apoptosis in human colon cancer cells HCT-15 [9]
and Caco-2 [168]; EGFR downregulation seemed to be an underlying mechanism [9]. LaA reduced
cell proliferation, mitochondrial volume, and lactate production and increased oxidative stress in
CT26 mouse colon cancer cells, particularly in low-glucose conditions, which indicates that it may
reprogram the energy metabolism of cancer cells during glucose starvation [169] (Table 1). LaA
improved sensitivity to cetuximab in KRAS/BRAF mutated colorectal cancer cells by induction of
miRNA-378 expression [170]. The oncostatic effect may be increased by encapsulation to protect LaA
from possible degradation in the extracellular environment [171]. LaA may also be used in a coating of
nanoparticles to improve intracellular retention and drug delivery [172–174].
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Myristic Acid (MA)

The major dietary source of MA is coconut oil and butter [140]. Myristoylation, an attachment of
a myristoyl group to proteins by N-myristoyltransferase, typically occurs cotranslationally but also
as a post-translational modification of proteins. Myristoylation, similar to palmitoylation, plays a
significant role in regulating cellular signalling pathways in several biological processes, including
carcinogenesis and immune function [175]. Myristoylation of Src kinase-mediated Src-induced and
HFD accelerated progression of PC-3 prostate cancer xenografts in mice [122].

A positive association with prostate cancer was reported for MA intake in a Japanese cohort
study (highest vs. lowest quartile RR: 1.62, 95% CI 1.15–2.29) [176], but plasma levels had no impact
on prostate cancer risk in another study [155] (Table 1). We found no other reports regarding MA in
human cancers.

Similar to other SFAs, MA has potential in cancer nanotherapy. Modification of DA7R peptide
with an MA enhanced blood-brain barrier traversing efficiency of doxorubicin-loaded MA-DA7R
liposomes, leading to high internalisation in glioma, tumour neovascular and brain capillary endothelial
cells. Improvement of the glioma microenvironment resulted in a prominent therapeutic outcome in
mice [177].

The Impact of Other SFAs on Carcinogenesis

There is limited data on the effects of SFAs that are only minor components of common fats
and oils. Capric, caprylic, and caproic acids, which are present in goat milk (the first two also in
coconut oil), reduced the viability of human HCT-116 colorectal, A-431 skin and MDA-MB-231 breast
cancer cells in vitro by down-regulating cell cycle regulatory genes and up-regulating genes involved
in apoptosis [178] (Table 1). Butyric acid, which is found in bovine milk but is also produced by
microbial fermentation of fibre in the colon, showed tumour suppressive effects on colon cancer cells
via histone deacetylase inhibitor (HDACi) activity. However, butyrate may also act independently
of histone deacetylase (HDAC) inhibition, through the GPR109A receptor involved in inhibition
of pro-inflammatory NF-κB signalling pathways. In addition, butyrate administration or dietary
supplementation with resistant starches and other fermentable fibres had anti-obesogenic effects in
rodents (reviewed in [179]). These results confirm the long-known beneficial effects of fibre in not only
cancer prevention.

6.3. Unsaturated Fat

6.3.1. MUFAs

Among MUFAs, OA is the most abundant representative in the human diet, accounting for
more than 20% of all FAs in most of the common fats and oils, with the highest content in olive oil
(approximately 78%) [140]. Preclinical data on OA effects on tumour promotion and progression are not
consistent. OA enhanced the proliferation of breast carcinoma MCF-7 cells [180]. On the other hand,
the treatment of human breast cancer cell lines BT-474 and SK-Br3 with OA suppressed HER-2/neu
expression [181]. In another study, OA suppressed cell growth and survival in both MCF-7 and low
metastatic gastric carcinoma cells SGC 7901, but this effect was restrained by pharmacological activation
of AMPK, which rescued cell viability by increased beta-oxidation of FAs resulting in maintenance
of ATP levels. In high-metastatic lines, HGC-27 and MDA-MB-231 treated with OA, AMPK was
upregulated, which promoted cancer growth and migration [182]. The addition of OA nullified the
inhibitory effects produced on MCF-7 and MDA-MB-231 cell migration by stearoyl-CoA desaturase-1
(SCD-1) depletion (pharmacological or siRNA-based) [183]. OA induced migration via free fatty acid
receptors 1 and 4, promoted invasion through the PI3K/Akt pathway and increased NF-κB -DNA
binding activity in MCF-7 and MDA-MB-231 cells [184]. The OA treatment enhanced the invasiveness
of gastric cancer cell lines MKN-45 and AGS via activation of the PI3K-Akt signalling pathway [185].
OA promoted the growth of colon cancer cell line Caco-2 [186] and increased the invasiveness of
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786-O renal cancer cells via an integrin-linked kinase pathway [187]. OA induced Src kinase and
downstream ERK1/2 pathway activation in a CD36-dependent manner in He-La cells. A high olive oil
diet aggravated growth and metastasising of He-La xenografts in mice; tumour progression correlated
with CD36 expression [188]. On the other hand, OA induced apoptosis and autophagy in CAL27 and
UM1 tongue squamous cell carcinomas by blocking the Akt/mTOR pathway [189].

Altogether, most of the experimental data show the growth-stimulatory effects of OA on cancer
cells. However, olive oil contains a number of bioactive substances, including polyphenols and
triterpenes, with anti-tumoural, anti-inflammatory, and antioxidant properties [190]. Cultivation of
colon cancer cells with hydroxytyrosol, oleuropein, pinoresinol, squalene and maslinic acid (0.1–10 µM)
reverted DNA synthesis, and Caco-2 cell growth induced by OA in a previously mentioned study [186].
Thus, the impact of OA on cell proliferation may be counteracted by these minor components, and the
results of human studies support this hypothesis.

A meta-analysis of case-control studies showed that olive oil consumption was associated with
lower odds of having any type of cancer (highest vs. lowest intake category; log odds ratio [OR] = −0.41,
95% CI −0.53 to −0.29). Moreover, olive oil consumption was associated with lower odds of developing
breast cancer (logOR = −0,45, 95% CI −0.78 to −0.12) and cancer of the digestive system (logOR = −0,36,
95% CI −0.50 to −0.21). As the authors acknowledged, it is not clear whether the beneficial effects of
olive oil may be attributed to MUFAs content or to antioxidant content [191]. MUFAs intake was also
inversely associated with a decreased risk of digestive cancers in another study (Q5 vs. Q1 HR: 0.41,
95% CI 0.18–0.95) [124]. A meta-analysis of observational studies found an inverse association between
MUFAs consumption and the risk of basal cell carcinoma (RR: 0.90, 95% CI 0.85–0.96) [113]. However,
an increased risk of prostate cancer with increasing intake of MUFAs was reported (HR per Q: 1.14,
95% CI 1.03–1.27) [125].

Isocaloric replacement of MUFAs from animal sources with MUFAs from plant sources decreased
cancer mortality in two prospective cohort studies (HR: 0.73, 95% CI 0.65–0.82) [192]. In another
prospective cohort study with 16 years of follow-up (521,120 individuals), isocaloric replacement of 5%
of the energy from SFA with plant MUFAs was associated with an 11% decrease in cancer mortality
(HR: 0.89, 95% CI 0.83–0.95) [123] (Table 1). These results point to the beneficial effects of MUFAs from
plant sources. The effect of individual sources of plant MUFAs was not analysed in these studies, but
nevertheless, according to a consensus report of the 3rd International Conference on Virgin Olive Oil
and Health held in Spain in 2018, substantial evidence supports the widespread opinion that extra
virgin olive oil should be the fat of choice when it comes to human health [193].

Nuts as another source of MUFAs may decrease cancer risk. Many nuts contain mostly MUFAs
(mainly OA), and Brazil nuts have similar proportions of MUFAs and PUFAs, whereas walnut contains
mainly PUFAs, both LA and alpha-linolenic acid (ALA). Moreover, the beneficial effects might be
attributed to antioxidants and other phytochemicals and the fibre [194]. An inverse association between
nut consumption and cancer was found for colorectal cancer for the ≥3 servings per week group
vs. none (for women: adjusted ORs: 0.30, 95% CI 0.15–0.60; for men: adjusted ORs: 0.28, 95% CI
0.17–0.47) [195]. Decreased rates associated with nut consumption, even if not significant, were reported
in relation to pancreatic cancer (highest intake vs. non-consumers: HR: 0.89, 95% CI 0.72–1.10) in the
European Prospective Investigation into Cancer and Nutrition (EPIC) study with 476,160 participants
and mean follow-up of 14 years [196]. These findings encourage the preference for plant sources of fat.

6.3.2. PUFAs

There are two main groups of biologically significant PUFAs: omega-6 PUFAs (ω-6 PUFAs) and
ω-3 PUFAs, classified according to the location of the first unsaturated bond. LA, aω-6 PUFA, is the
dominant PUFA in dietary fats and oils, except for flaxseed oil. The most common ω-3 PUFA is
ALA, which can be found in the highest quantities in flaxseed oil (approximately 55% of the total
FAs content) [197]; other dietary sources of PUFAs include soybean oil, canola oil and fish [140].
Both LA and ALA are essential FAs for humans, and they give rise to arachidonic acid (AA, ω−6),



Int. J. Mol. Sci. 2020, 21, 4114 13 of 47

eicosapentaenoic acid (EPA, ω−3) ], and docosahexaenoic acid (DHA, ω−3), which play key roles
in regulating body homeostasis [198]. In humans, DHA and EPA are predominantly acquired in the
diet (mainly from fish oil) because the efficacy of transforming ALA to longerω-3 PUFAs is low and
personally variable [199].

In general, AA is a precursor to pro-inflammatory eicosanoids, whereas EPA and DHA are
precursors to anti-inflammatory eicosanoids [200], but the interaction ofω-3 andω-6 FAs and their
lipid mediators in the context of inflammation is complex and yet not fully understood [201]. Still, the
maintaining of a lowω-6/ω-3 ratio has been considered crucial for reducing inflammation [202], which
is a known risk factor for the number of chronic diseases. Anω-6 to ω-3 ratio of 4:1 is recommended,
but in typical Western diets, the ratio is approximately 15:1 [203]. Differences in the dietaryω-6/ω-3
ratio may also be the reason for the increase in cancer rates, including breast and prostate cancer in
Asian immigrants to the United States [204–206];.

Ω-6 PUFAs

In vitro reports brought mixed results regarding the effects ofω-6 PUFAs on cancer cell growth.
AA inhibited the growth of T98G human glioblastoma cells [180]. AA and LA reduced cell proliferation
and viability of PC-3 and C4-2 prostatic cancer cells [207] and also, in another study, in PC-3 and
RWPE-1 prostate epithelial cells [208], but in this other study, the effect of LA was inhibitory only at high
concentrations; lower concentrations stimulated cell growth [208]. Similarly, high concentrations of LA
inhibited the growth of RKO and LOVO colon cancer cell lines, but the effect of low concentrations was
stimulatory; the authors attributed cytotoxic effects of LA to enhanced ROS generation and decreased
cellular antioxidant capacity [209]. The inhibition of cell proliferation and viability after exposure to
LA in a concentration-dependent manner in SW480 and SW620 colon cancer cells was reported in
another study too [210]. Inhibitory effects of LA on tumour growth were also reported in AGS human
gastric epithelial adenocarcinoma cells; LA downregulated prostaglandin E2 synthesis, and telomerase
activity [211]. On the contrary, LA promoted migration and invasion of MDA-MB-231 breast cancer cells;
the reported mechanisms involved upregulation of phospholipase D [212], fascin [213], and activation
of PI3K/Akt pathway [214]. LA promoted an epithelial-mesenchymal transition (EMT)-like process
in MCF10A human mammary epithelial cells via downregulation of E-cadherin and upregulation
of Snail1, Snail2, Twist1, Twist2, and Sip1, activation of focal adhesion kinase (FAK) and NF-κB and
activation of MMP-2 and -9 secretions [215].

In vivo data point to stimulatory effects ofω-6 PUFAs on tumour growth. A high dietaryω-6/ω-3
ratio (15:1) increased tumour burden of oral carcinoma induced by 9,10-dimethyl-1,2-benz[a]-anthracene
(DMBA) and betel quid extract in hamsters, with increased expressions of NF-κB, proliferating cell
nuclear antigen (PCNA) and cyclin D1 in a buccal pouch in comparison with a normal (6:1) and low
(2:1) ω-6/ω-3 ratio [216]. A high ω-6 fat diet induced earlier onset of pancreatic neoplasia in KRAS
transgenic mice [217]. Dietary LA stimulated invasion and metastasis of OCUM-2MD3 human gastric
cell carcinoma in mice through COX-catalysed metabolism and activation of ERK [218] and promoted
angiogenesis in the same line by suppression of angiostatin through plasminogen activator inhibitor
1 [219]. Feeding mice with anω-6 rich diet (44% energy from safflower oil containing 76% LA) led to
increased Cox-2 expression, epigenetic activation of Ptsg-2 coupled with silencing of tumour suppressor
Apc and accumulation of C-JUN and Ccnd1, thus contributing to colonic inflammation and cancer [220].

Ω-6 PUFAs may also modulate carcinogenesis via alteration of biotransformation. In DMBA-model
of breast cancer, a diet enriched with ω-6 PUFAs (corn oil) upregulated Phase I enzymes prior to
DMBA administration and raised the activity of CYP1s after induction while reducing the activity of
Phase II enzymes, mainly quinone oxidoreductase 1, resulting in the higher formation of DMBA-DNA
adducts in the mammary gland [221].

Human reports on the association between dietary PUFAs and cancer risk mostly focus onω-3
PUFAs or the impact ofω-6/ω-3 ratio. A meta-analysis of prospective cohort studies from 2016 did not
find an association between ω-6 PUFAs intake and breast cancer risk [110]; however, a recent analysis
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indicated that higher dietary intake ratio ofω-3/ω-6 is associated with a lower risk of breast cancer in
Asian countries rather than in Western countries [222]. Isocaloric replacement of 2% of the energy from
SFAs with LA was associated with an 8% decrease in cancer mortality (HR: 0.95, 95% CI 0.90–0.93) [123]
(Table 1).

Ω-3 PUFAs

Positive effects ofω-3 PUFAs have been confirmed in numerous cancer cell lines. Physiological
concentrations of ALA alone or combined with EPA and DHA reduced viability and expression of
microRNA-21 in the MCF-7 mammary cancer cell line [223]. Most reports, however, focused on DHA
because of its unique effect of altering membrane composition; DHA is considered as the majorω-3
PUFA involved in anticancer activity [224]. DHA treatment was associated with activation of caspase
1 and gasdermin D, increased IL-1β, and high mobility group box 1 protein (HMGB1) translocation
towards the cytoplasm, as well as an increase in pore formation in MDA-MB-231 cells, altogether
suggesting induction of pyroptosis [225]. Inhibition of proliferation by DHA in MCF-7 cells via pAKT
signalling was found in another study [226]. DHA decreased the viability of HT-29 and CaCo-2
colorectal cancer cells and enhanced the effect of irradiation; the underlying mechanism involved
the WNT/beta-catenin pathway [227]. Ω-3 PUFAs, particularly DHA, also modulated angiogenesis
via miR-126 methylation and VEGF expression in HCT-116 and Caco-2 cells [228]. The oncostatic
effects involved alterations of xenobiotic metabolism, downregulation and inhibition of CYP1 enzymes,
resulting in reduced genotoxicity of benzo[a]pyrene in HT-29 and HCT-116 cells after exposure to
EPA and DHA was reported [229]. Other mechanisms of colon carcinogenesis modulation by ω-3
PUFAs included the alteration of M2 macrophage polarisation during the inflammatory response [230].
DHA was also reported to enhance the oxaliplatin-induced decrease in cell viability and an increase in
autophagy via ER stress/Sesn2 pathway in colorectal cancer cell lines both in vitro and in vivo [231].
DHA induced apoptosis of PANC-1 pancreatic cancer cells by suppressing the STAT3/ NF-κB -cyclin
D1/survivin axis [232]. DHA inhibited proliferation and progression of A549 non-small cell lung
cancer cells through ROS-mediated inactivation of the PI3K/Akt pathway [233], and also through the
miR-138-5p/FOXC1 pathway in A549 and H1299 human lung cancer cell lines and LLC murine lung
cancer cells [234]. Both EPA and DHA inhibited pancreatic cancer cell (SW1990 and PANC-1) growth
in vitro and in vivo through downregulation of Wnt/beta-catenin signalling [235]. DHA reduced
proliferation of the MHCC97L human metastatic hepatocarcinoma line through the inhibition of
cyclin A/CDK2 [236]. EPA induced SKOV-3 ovarian cancer cells apoptosis via ERK1/2-mTOR- NF-κB
pathways [237]. DHA and ALA decreased viability of ovarian cancer cells (SKOV3, A2780, HO8910),
but only DHA also inhibited invasion and metastasis, via multiple molecular pathways [238]. Both
DHA and EPA triggered G0/G1 arrest and induced apoptosis in LA-N-1 neuroblastoma cells [239].
DHA induced cell death via apoptosis and autophagy in several glioblastoma cell lines, both in vitro
and in vivo [240].

Ω-3 PUFAs also showed anticancer effects in haematological malignancies. Both DHA and EPA
induced a dose-dependent decrease in cell viability in five acute myeloid leukaemia cell lines; cell death
was associated with the mitochondrial glycolytic switch and nuclear factor erythroid 2-related factor 2
(Nrf2) pathway activation [241]. DHA showed pro-apoptotic activity in Molt-4 acute lymphoblastic
leukaemia cells, which was associated with p53 accumulation, survivin downregulation, and caspase-3
activation [242].

Dietary ω-3 PUFAs were effective in vivo too. Ω-3 enriched diet decreased proliferation and
angiogenesis and increased apoptosis and tumour infiltration by immune cells in mice carrying
4T1 mammary tumour implants [243]. Increased dietary levels of ALA inhibited LM3 mammary
tumour growth and metastasis in mice; tumours showed increased apoptosis and higher T-lymphocyte
infiltration, with decreased expression of the oestrogen receptor α, while showing an opposite effect
on the oestrogen receptor β [244]. Dietary ω-3 content may even decrease mammary cancer risk in
offspring. Female offspring of mice fed with diet enriched with flaxseed oil or fish oil showed delayed
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puberty, and their mammary glands contained less terminal end buds, which are targets for malignant
transformation. The incidence of DMBA-induced mammary tumours was lower in this offspring,
and tumour cells showed reduced proliferation via inhibition of NF-κB and Jak-STAT pathways and
increased apoptosis [245]. Ω-3 inhibited chemically-induced colorectal cancer via the prevention of
the decrease of genomic DNA methylation in rats [246]. Fish-oil ω-3 PUFAs suppressed colorectal
carcinoma growth in ApcMin/+ Mice, which correlated with CB1 receptor upregulation. CB1 receptor
induction was associated with a concurrent inactivation of the Wnt/β-catenin pathway [247]. Ω-3
PUFAs enriched diet suppressed the growth of MC38 colorectal carcinoma in mice, and treatment
of tumours with epoxydocosapentaenoic acids, metabolites of ω-3 PUFAs, reduced expressions of
protooncogens C-myc, Axin2 and C-jun in tumour tissues [248]. Ω-3 enriched diet with fish oil
prevented pancreatic carcinoma in KRAS mice via AKT pathway inhibition [249]. A diet high in
ALA from flaxseed oil inhibited t prostate cancer growth in Pten-knockout mice [250]. Dietary ω-3
PUFAs inhibited endometrial cancer xenografts growth in mice; the involved mechanism included the
suppression of mTORC1/2 signalling [251,252].

In vitro and animal reports also showed that the incorporation of DHA in cell membranes
improves drug uptake, thus the enhancing anticancer activity of chemotherapeutics [224]. Ω-3 PUFAs
containing nanoparticles that are currently developed and tested showed multiple benefits for the
prevention and cure of cancer, e.g., protection from degradation, increased bioavailability and delivery
to target tissues, and thus, enhanced bioactivity [253].

The outcomes of human studies are not unambiguously positive. A possible reason may be that the
anticancer effects ofω-3 PUFAs are dose-dependent; preclinical studies often use high concentrations,
and the consumption ofω-3 PUFAs in most countries is too low for a positive outcome. In the case
of breast cancer, the decreased risk was mostly found when the highest ω-3 PUFA consumption
group was compared to the lowestω-3 group or the highestω-6 group, as the effect was counteracted
by ω-6 intake [254]. A recent meta-analysis, however, found an inverse relation between fish ω-3
PUFAs consumption and breast cancer risk in Asian patients (OR: 0.80, 95% CI 0.73–0.87) [255]. Data
from EPIC cohort study (521,324 participants, median follow-up 14.9 years) revealed an inverse
association between long-chainedω-3 PUFAs and colorectal cancer risk (Q5 vs. Q1 HR: 0.86, 95% CI
0.78–0.95) [256]. Long-chainω-3 PUFAs intake was associated with reduced endometrial cancer risk
only in women with normal body mass index (observational study, 87,360 participants; HR: 0.59;
95% CI 0.40–0.82) [257] (Table 1). Consumption ofω-3 PUFAs does not seem to alter prostate cancer
risk [258]. Nevertheless, ω-3 PUFA supplements are safe and were shown to improve the clinical
outcome and prognosis of cancer patients, so they are potential candidates for multi-targeted cancer
therapy [259] or, at least, for adjuvant therapy to ameliorate side effects of chemotherapeutics [260,261].

Trans Fatty Acids (TFAs)

TFAs are MUFAs or PUFAs with one or more double bonds in trans configuration. Naturally,
TFAs are produced by bacterial metabolism of PUFAs in the rumen and are present in all fats from
ruminants. However, industrially produced TFAs (iTFAs) are usually the major source of TFAs in the
human diet; these are made by partial hydrogenation of vegetable or fish oils, and are used in a variety
of food products. The most common representatives of ruminant TFAs (rTFAs) are conjugated linoleic
acid (CLA), an isomer of LA, and vaccenic acid (trans-11 18:1, VA), which is metabolised to cis-9,
trans-11 CLA in humans; the other rTFA is palmitoleic acid (t16:1n-7). Cis-9, trans-11-CLA (c9,t11-CLA)
is the principal dietary form of CLA, but lower levels of the other isomers (t10, c12-CLA; t9, t11-CLA;
and t10, t12-CLA) are also present in CLA food sources. Among iTFAs, elaidic acid (EA), the trans form
of OA, is the dominant representative [262–264], but EA was found in small quantities in ruminant fat,
too [265]. The concentration of rTFAs in ruminant fat is up to 6%, whereas the content of iTFAs in
partially hydrogenated fat may be as high as 60% [263]. According to the World Health Organization
recommendation, the total TFAs intake should not exceed 1% of the total energy intake [266]. A higher
intake of TFAs is a known cardiovascular risk factor and may also be related to cancer risk too, but



Int. J. Mol. Sci. 2020, 21, 4114 16 of 47

these effects are attributed to iTFAs [267]. Some rTFAs are beneficial, particularly CLA, which showed
anticancer properties and also positive effects on obesity and atherosclerosis, both in preclinical and
clinical studies [268]. The reported increased risk of some human cancers associated with rTFAs may
be linked to high saturated fat content [269] (Table 1).

6.3.3. iTFAs

Preclinical studies mostly showed stimulatory effects of the main iTFA, EA, on malignant
transformation. EA enhanced growth and metastasis of CT26 and HT29 cells both in vitro and in vivo
and also induced expressions of stemness factors CD133 and Oct14 [270] but did not stimulate DNA
synthesis and growth of Caco-2 cells in another study [186]. Increased expression of stem cell markers,
nucleostemin, and CD133, and the attenuation of anticancer effects of 5-fluorouracil after exposure to
EA were observed in CT26 murine colorectal cells, the CMT93 murine rectal carcinoma cell line, and the
LL2 murine lung cancer cell line too [271]. Oral administration of EA increased the metastasis of CT26
cells by upregulating stemness markers nucleostemin and CD133 [272]. Dietary EA increased DNA
synthesis in Ehrlich tumour-bearing CBA mice and decreased their survival rate [273]. On the other
hand, EA inhibited SH-SY5Y neuroblastoma cell growth and induced apoptosis by enhancing oxidative
stress and activating the ER stress/ unfolded protein response (UPR) signalling pathway and the
GRP78/ATF4/CHOP pathway [274] (Table 1). We found no reports on iTFAs effects on carcinogenesis
in vivo.

6.3.4. rTFAs

VA inhibited the proliferation of MCF-7 and SW480 cells, but the effect was dose-dependent
and likely mediated by VA desaturation to c9,t11-CLA via delta9-desaturase [275]; growth inhibition
was not reported in MCF-10A mammary cancer cells [276]. VA also suppressed the proliferation
and induced the apoptosis of 5-8F and CNE-2 human nasopharyngeal carcinoma cells through a
mitochondria-mediated apoptosis pathway [277].

The effects of CLA in tumourigenesis have been investigated by numerous studies, but not all
have specified the type of isomer they used. It was reported that CLA isomers differ in their metabolic
effects [262], and preclinical data show they may also exert different effects on cancer cell growth.
CLA inhibited the growth of MCF-7 and MDA-MB-231 cells via oestrogen receptor α and PI3K/Akt
pathway [278] and potentiated oncostatic activity of docetaxel in both lines [279]. C-9,t-11 CLA and
t-10,c-12 CLA inhibited SCD activity in MCF-7 and MDA-MB-231 cells [280]. The growth inhibitory
effect of three CLA isomers (c9,t11-CLA, t9,t11-CLA, and t10,c12-CLA) was investigated in MCF-7
breast cancer cells; among them, t9,t11-CLA was the most efficient isomer by decreasing MCF-7
proliferation, inhibiting migration, and inducing apoptosis [281]. In HCT-116 and HT-29 human
colorectal carcinoma cells, t10,c12-CLA repressed cell proliferation and induced apoptosis, whereas
c9,t11-CLA showed no effect on cell proliferation and apoptosis [282]. On the contrary, c9,t11-CLA, but
not t10,c12-CLA inhibited cell migration and MMP-9 activity in SW480 colon cancer cells. Both isomers,
though, suppressed metastasis of CT-29 xenografts in mice [283]. T10,c12 CLA suppressed proliferation
and migration of SKOV-3 and A2780 ovarian cancer cells by inducing ER stress, autophagy, and the
modulation of Src, while t9,c11 CLA did not attenuate the proliferation [284]. T-10,c-12 CLA inhibited
the G1-S progression via p21 upregulation in DU145 human prostate carcinoma cells [285]. C9, t11-
CLA induced apoptosis in RL 95-2 endometrial cancer cells independently of Akt [286].

CLA showed oncostatic effects in many animal reports, particularly in mammary cancer (reviewed
in [287,288]; a c9,t11 isomer was mostly studied, and a dietary level of 1% CLA seemed to be the
optimal dose for cancer inhibition in animal studies. However, the effect in gastrointestinal cancers
was not consistent with the possible impact of the type of used isomer, and the conclusions regarding
the impact on prostate cancer growth were contradictory (reviewed in [289,290]). A diet enriched
with CLA administered to female rats corresponded to a lower susceptibility to DMBA-induced
mammary tumours in their female offspring [291]. CLA also improved oncostatic efficacy of
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chemotherapeutics. A CLA-gemcitabine conjugate showed enhanced anti-tumour activity against
MCF-7 cells and in mice carrying MCF-7 xenografts in comparison with unmodified gemcitabine [292].
B16-F10 melanoma growth was inhibited both in vitro and in vivo after treatment with iRGD-modified
liposomes containing CLA and paclitaxel [293].

TFAs may alter carcinogenesis via inflammatory pathways too, but the reported data are
controversial. TFAs, particularly VA and palmitoleic acid, inhibited the expression of inflammatory
genes induced by TNF-α in human umbilical vein endothelial (HUVAC) cells and HepG2
hepatocarcinoma cells, independently of PPAR gamma activation. Interestingly, EA also decreased
inflammatory gene expression in HUVEC but not in HepG2 cells in the same study [294]. On the
contrary, promotion of pro-inflammatory signalling by trans isomers of EA, linoelaidic acid, and
VA but not their corresponding cis-isomers was reported in vitro [295], and dietary EA promoted
inflammation and oxidative stress in a mouse model of hyperlipidaemia [296].

Human reports brought mixed results. A recent meta-analysis did not find a link between CLA
intake or total TFAs intake and risk of breast cancer [297]. A positive association between trans-fat
intake and colon cancer was reported (highest quartiles of energy-adjusted TFAs consumption: RR:
1.45, 95% CI: 1.04–2.03, [298]; highest vs. lowest quartile OR: 1.37, 95% CI 1.10–1.71) [299]. However,
the use of medication must be considered. High intake of TFAs slightly increased colon cancer in older
subjects (≥ 67 years of age; OR: 1.4, 95% CI 0.9–2.1 for men; OR: 1.6, 95% CI 1.0–2.4 for women), but
the concomitant use of non-steroidal anti-inflammatory drugs and hormonal replacement therapy
decreased the risk [300]. A positive association between total TFA intake and prostate cancer was
reported in a US cohort study (HR per Q: 1.21, 95% CI 1.08–1.35) [125], but a Norwegian cohort study
found a negative association between vegetable TFA intake and pancreatic cancer in men (highest vs.
lowest intake HR: 0.52, 95% CI 0.31–0.87) and non-Hodgkin lymphoma in both genders (HR: 0.70, 95%
CI 0.50–0.98), and an inverse trend was observed for cancer of the central nervous system in women,
too (HR: 0.58, 95% CI 0.32–1.04) [269]. Intake of fish TFAs was associated with a decreased risk of
prostate cancer (HR: 0.82, 95% CI 0.69–0.96) and lung cancer in women (HR: 0.55, 95% CI 0.40–0.77);
an inverse trend was reported for bladder cancer (HR: 0.76, 95% CI 0.56–1.02). On the other hand,
fish TFAs increased the risk of rectal cancer (HR: 1.43, 95% CI 1.09–1.88) and multiple myeloma (HR:
2.02, 95% CI 1.24–3.28), and a positive trend was observed for stomach cancer, too (HR: 1.34, 95% CI
0.97–1.85). Ruminant TFAs were associated with a decreased risk of multiple myeloma (HR: 0.45, 95%
CI 0.24–0.84) and malignant melanoma in women (HR: 0.57, 95% CI 0.32–1.02) but increased risk of
non-Hodgkin lymphoma (HR: 1.47, 95% CI 1.06–2.04), non-melanoma skin cancer (HR: 1.54, 95% CI
1.02–2.33), cancer of mouth/pharynx (HR: 1.59, 95% CI 1.08–2.35) and post-menopausal breast cancer
(HR: 1.17, 95% CI 0.91–1.49). As the authors concluded, increased cancer rates linked with rTFAs
were possibly attributed to saturated fat intake [269]. A meta-analysis of prospective cohort studies
(approximately 900,000 participants in total) found a significant association between TFA intake and
the risk of ovarian cancer (overall RR: 1.25, 95% CI 1.08–1.44) [301]. Studies evaluating the serum levels
of TFAs found a positive association between iTFAs and oestrogen-receptor negative breast cancer (T3
vs. T1 OR: 2.01, 95% CI 1.03–3.90) [302] and pancreatic cancer risk among men (OR T3 vs. T1: 3.00,
95% CI 1.13–7.99) [303] in the European Prospective Investigation into Cancer and Nutrition cohort
(Table 1). These results indicate the different impacts of TFAs from different sources on cancer risk,
but further research is warranted to elucidate the role of TFAs in human cancers.
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Table 1. Summary of experimental and human data on relation between fat type and cancer.

In Vitro In Vivo Human Data

Cell Line, Fat
Specification Outcome Reference Model, Fat Specification Outcome Reference Cancer Type, Fat

Specification Outcome Reference

SATURATED FAT

All cancers

Positive association between
high SFAs intake and cancer

risk and mortality,
respectively

[123,124]

HER2/neu-positive breast
cancer cells, PA

Induction of cell cycle
delay and apoptosis [151]

Spontaneous mammary
tumours, C3H mice, diet
supplemented with PA,

SA, MA, and LaA,
respectively

No effect of diet
supplemented with PA,

MA or LaA, respectively
[304]

Breast cancer, high
SFAs intake Positive association [103,124]

Breast cancer, PA
and SA intake Positive association [154]

Hs578T human breast
cancer cells, SA

Growth suppression via
cell cycle inhibition [161]

Breast cancer, PA
intake

No association [155]

NMU-induced mammary
tumours,

Sprague-Dawley rats,
HFD rich in SA

Decreased tumour
incidence and increased

latency after SA
supplementation

[161]SkBr3 breast cancer cells,
LaA

Inhibition of
proliferation, apoptosis

stimulation
[167]

MDA-MB-231 breast
cancer cells, capric,

caprylic and caproic acids

Cell growth inhibition
and apoptosis

stimulation
[178]

MDA-MB-435 xenografts,
athymic mice, HFD rich

in SA

Decreased incidence and
multiplicity of tumours [305]

Spontaneous mammary
tumours, A/ST mice,

HFD rich in SA

Growth suppression,
increased tumour latency [306]

HCT-15 colon cancer
cells, LaA Apoptosis induction [9]

Azoxymethane-induced
colorectal cancer, F344
rats, HFD rich in SFAs

Increased incidence and
multiplicity of colon

tumours, induction of
colonic inflammation

[307] Colon cancer, SFAs
intake No association [112]

Caco-2 human colon
cancer cells, LaA

Suppression of
proliferation [168]

HCT116 colorectal cancer
xenografts, nude mice,

HFD rich in PA

Tumour growth
stimulation [8]

CT26 mouse colon cancer
cells, LaA

Suppression of
proliferation, increase

in oxidative stress
[169]

HCT-116 colorectal
cancer cells, capric,

caprylic and caproic acids

Cell growth inhibition,
apoptosis stimulation [178]
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Table 1. Cont.

In Vitro In Vivo Human Data

Cell Line, Fat
Specification Outcome Reference Model, Fat Specification Outcome Reference Cancer Type, Fat

Specification Outcome Reference

Hep3B, SW480, SW620,
AGS, BGC-823, HGC-27,

97H, and LM3
hepatocarcinoma cells, PA

Reduced cell
proliferation, impaired

cell invasiveness
[152]

LM3 hepatocarcinoma
xenografts, athymic mice,

PA (via gavage)

Tumour growth
suppression [152]

PNT1A and PC3 prostate
cancer cell lines, PA

Increased proliferation
and migration [147]

PC-3 prostate cancer
xenografts, SCID mice,

HFD rich in PA
Stimulated proliferation [98]

Prostate cancer,
SFAs intake Positive association [125]

Prostate cancer, PA
intake Positive association [154]

Prostate cancer, PA
intake No association [155]

Prostate cancer, MA
intake Positive association [176]

AsPC-1 pancreatic cancer
cells, PA Increased invasiveness [148] Nude mice, HPAF

pancreatic cancer
xenografts, HFD rich in

SFAs

Increased tumour
viability [308]

Pancreatic cancer,
SFAs intake, PA and

SA intake
Negative association [127]MIA PaCa-2, PANC-1 and

CFPAC pancreatic cancer
cells, PA, SA, LaA

Growth inhibition [309]

Gastric cancer cell lines, PA Promotion of metastasis [150]

Oral carcinoma cell
lines PA Increased metastasis [149]

Ovarian cancer,
SFAs intake

Positive association [158]

No association [126]

Ischikawa endometrial
cancer cells, LaA

Inhibition of
proliferation, apoptosis

stimulation
[167]

A-431 skin cancer cells,
capric, caprylic and caproic

acids

Cell growth inhibition,
apoptosis stimulation [178]
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Table 1. Cont.

In Vitro In Vivo Human Data

Cell Line, Fat
Specification Outcome Reference Model, Fat Specification Outcome Reference Cancer Type, Fat

Specification Outcome Reference

UNSATURATED FAT

MUFAs

Isocaloric
replacement of SFAs
with plant MUFAs

Decreased cancer mortality

[123]

Isocaloric
replacement of

animal MUFAs with
plant MUFAs

[192]

MCF-7 breast cancer cells,
OA

Stimulation of
proliferation [180]

Breast cancer, olive oil
consumption, highest

vs lowest intake
Decreased risk [191]

Suppressed growth and
survival [182]

Increased invasiveness [184]

MDA-MB-231, OA
Stimulation of growth

and migration [182]

Increased invasiveness [184]

BT-474 and SK-Br3 breast
cancer cells, OA

Inhibition of Her-2/neu
expression [181]

Caco-2 colon cancer cell
line, OA Growth promotion [186] Colon cancer, MUFAs

intake No association [112]

SGC 7901gastric
carcinoma cells, OA

Suppressed growth and
survival [182] GIT cancer, MUFAs

intake

Decreased risk

[124]

HGC-27 gastric
carcinoma line, OA

Stimulation of growth
and migration [182] GIT cancer, olive oil

consumption, highest
vs lowest intake

[191]
MKN-45 and AGS gastric

cancer cell lines, OA Increased invasiveness [185]

Prostate cancer,
MUFAs intake Positive association [125]

Ovarian cancer,
MUFAs intake No association [126]

HeLa cervical cancer
xenografts, BALB/c mice,

diet high in OA

Increased growth and
metastasis [188]
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Table 1. Cont.

In Vitro In Vivo Human Data

Cell Line, Fat
Specification Outcome Reference Model, Fat Specification Outcome Reference Cancer Type, Fat

Specification Outcome Reference

Basal cell carcinoma,
MUFAs intake

Inverse association between
intake and risk [113]

786-O renal cancer cells,
OA Increased invasiveness [187]

CAL27 and UM1 tongue
squamous cell

carcinomas, OA

Induction of apoptosis
and autophagy [189]

PUFAs

ω-6 PUFAs

Isocaloric
replacement of SFAs

with LA
Decrease in cancer mortality [123]

Colon cancer, PUFAs
intake No association [112]

MDA-MB-231 breast
cancer cells, LA

Promotion of migration
and invasion

[212]

DMBA-induced
mammary tumours,

Sprague-Dawley rats,
diet high in LA

Stimulation of
DMBA-DNA adducts

formation in mammary
gland

[221]

Breast cancer,ω-6
PUFAs intake No association [110]

Breast cancer, higher
dietaryω-3 PUFAs /
ω-6 PUFAs ratio

Lower risk in Asian countries [222]

RKO and LOVO colon
cancer cell lines, LA

Growth stimulation by
low concentrations,

grow inhibition by high
concentrations

[209]
C57BL/6J mice, diet high

in LA

Epigenetic alterations
associated with colonic

inflammation and cancer
[220]

SW480 and SW620 colon
cancer cells, LA

Decreased cell
proliferation and

viability
[210]

AGS gastric
adenocarcinoma cells, LA Growth inhibition [211]

CUM-2MD3 gastric
carcinoma transplants,
NCr-nu/nu mice, HFD

rich in LA

Stimulation of invasion
and metastasis [218]

OCUM-2MD3 gastric
carcinoma transplants,

athymic nude mice, HFD
rich in LA

Enhanced tumour growth
and angiogenesis [219]
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Table 1. Cont.

In Vitro In Vivo Human Data

Cell Line, Fat
Specification Outcome Reference Model, Fat Specification Outcome Reference Cancer Type, Fat

Specification Outcome Reference

Oral carcinomas induced
by DMBA and betel quid

extract, hamsters, high
dietaryω-6 PUFAs /ω-3

PUFAs ratio

Tumour growth
promotion [216]

MIA PaCa-2, PANC-1
and CFPAC pancreatic

cancer cells, LA
Growth inhibition [309]

HPAF pancreatic cancer
xenografts, nude mice,

HFD rich inω-6 PUFAs

Increased tumour
viability, stimulation of

liver metastasis
[308]

Pancreatic neoplasia,
KRAS transgenic mice,
diet high inω-6 PUFAs

Shortened tumour
latency [217]

PC-3 and C4-2 prostatic
cancer cells, AA and LA

Reduced cell
proliferation and

viability
[207]

T98G glioblastoma cells,
AA Growth inhibition [180]

ω-3 PUFAs

MCF-7 mammary cancer
cells, ALA or ALA

combined with EPA and
DHA

Decreased viability [223] 4T1 mammary tumour
transplants, BALB/c mice,
ω-3 PUFAs enriched diet

Decrease in proliferation
and angiogenesis,

stimulation of apoptosis

[243]

Breast cancer, highest
ω-3 PUFAs intake vs

lowestω-3 PUFAs
intake / highω-6

PUFAs intake

Decreased risk [254]

MCF-7 cells, DHA Reduced proliferation [226]
LM3 mammary

transplants, BALB/c mice,
ALA enriched diet

Inhibition of tumour
growth and metastasis [244]

Breast cancer, fishω-3
PUFAs intake

Decreased risk in Asian
patients [255]

MDA-MB-231 cells DHA Pyroptosis induction [225]

DMBA-induced
mammary tumours in

offspring of rats fed with
diet enriched with ALA

or DHA and EPA,
respectively, C57BL/6J

mice

Tumour growth
inhibition, reduced
proliferation and

stimulation of apoptosis

[245]



Int. J. Mol. Sci. 2020, 21, 4114 23 of 47

Table 1. Cont.

In Vitro In Vivo Human Data

Cell Line, Fat
Specification Outcome Reference Model, Fat Specification Outcome Reference Cancer Type, Fat

Specification Outcome Reference

HT-29 and CaCo-2
colorectal cancer cells,

DHA
Decreased viability [227] Azoxymethane-induced

colorectal cancer, F344
rats, HFD rich inω-3

PUFAs

Decreased incidence and
multiplicity of colon

tumours in comparison
with HFD rich in SFAs

[307]

Colorectal cancer,
long-chainedω-3

PUFAs

Inverse association between
intake and risk

[256]

HCT-116 and Caco-2 cells,
DHA

Anti-angiogenic
activity [228]

HCT-116, HT-29, SW620,
DLD-1 colorectal cancer

cells, DHA

Decreased proliferation,
enhancement of

autophagy induced by
oxaliplatin

[231]

HCT116 xenografts,
BALB/c mice, DHA (i.p.)

Enhancement of
autophagy induced by

oxaliplatin
[231]

N-methyl phosphite
nitrourea-induced

colorectal cancer, rats,
ω-3 PUFAs enriched diet

Tumour growth
inhibition [246]

Colorectal neoplasia,
transgenic Apc Min/+mice,

dietary fish-oilω-3
PUFAs

Decreased colorectal
carcinoma growth [247]

MC38 colorectal
carcinoma, C57BL/6 mice,
ω-3 PUFAs enriched diet

Tumour growth
suppression [248]

MIA PaCa-2, PANC-1
and CFPAC pancreatic

cancer cells, ALA, DHA,
EPA

Growth inhibition [308]

HPAF pancreatic cancer
xenografts, nude mice,

HFD rich inω-3 PUFAs

Decreased tumour
viability [309]

Pancreatic carcinoma,
KRAS mice, fish oilω-3

PUFAs enriched diet

Tumour growth
inhibition, reduced

proliferation

[249]
PANC-1 pancreatic
cancer cells, DHA Apoptosis induction [232]

SW1990, PANC-1
pancreatic cancer cells,

EPA, DHA
Growth inhibition [235] PANC02 transplants, fat-1

transgenic mice

Tumour growth
inhibition, apoptosis

induction
[235]

MHCC 97-L metastatic
hepatocarcinoma line

Decreased proliferation,
DHA [236]
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Table 1. Cont.

In Vitro In Vivo Human Data

Cell Line, Fat
Specification Outcome Reference Model, Fat Specification Outcome Reference Cancer Type, Fat

Specification Outcome Reference

Prostate carcinoma,
Pten-knockout mice, diet

enriched with ALA

Tumour growth
inhibition [250] Prostate cancer risk,

ω-3 PUFAs intake No effect [258]

Endometrial cancer
xenografts, BALB/c mice,

dietaryω-3 PUFAs

Tumour growth
inhibition [251,252]

Breast cancer,
long-chainω-3
PUFAs intake

Decreased risk in women
with normal BMI [257]

SKOV-3 ovarian cancer
line, EPA Apoptosis induction [237]

Ovarian cancer,
PUFAs intake

No association [126]SKOV3, A2780, HO8910
ovarian cancer cells, ALA,

DHA

Decreased viability by
ALA and DHA,

inhibition of invasion
and metastasis by DHA

[238]

A549 non-small lung
cancer cells, DHA

Inhibition of
proliferation

[233,234]

LLC murine lung cancer
cells, DHA [234]

LA-N-1 neuroblastoma
cells, DHA, EPA

Cell cycle arrest and
induction of apoptosis [239] GL261 glioma

transplants, fat-1
transgenic mice

Induction of apoptosis
and autophagy [240]D54MG, U87MG and

U251MG glioblastoma
cells, DHA

Induction of apoptosis
and autophagy [240]

G1a, ML-2, HL-60, THP-1,
U937 and MOLM-13

acute myeloid leukaemia
cell lines, DHA and EPA

Decrease in cell
viability [241]

Molt-4 acute
lymphoblastic leukaemia

cells, DHA
Apoptosis induction [242]

TFAs

iTFAs

Ehrlich tumour, CBA
mice, dietary EA

Tumour growth
promotion, decreased

survival
[273]

Oestrogen-receptor
negative breast cancer

risk, serum level of
iTFAs

Positive association [302]
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Table 1. Cont.

In Vitro In Vivo Human Data

Cell Line, Fat
Specification Outcome Reference Model, Fat Specification Outcome Reference Cancer Type, Fat

Specification Outcome Reference

CT-26 and HT-29
colorectal cancer cells, EA

Enhanced growth and
metastasis [270,271] Colon cancer risk,

TFAs intake Positive association [298,299]

Attenuation of
5-fluorouracil
cytotoxicity

[271]

CT26 and HT29
transplants, BALB/c mice,

dietary EA

Increased tumour growth
and metastasis

[270,272] Rectal cancer risk, fish
TFAs intake

Positive association [269]
Caco-2 colorectal cancer

cells, EA No effect on growth [186]

CMT93 murine rectal
carcinoma cell line, EA

Increased stemness,
attenuation of
5-fluorouracil
cytotoxicity

[271]

Stomach cancer risk,
fish TFAs intake Positive association [269]

Prostate cancer risk,
total TFAs intake Positive association [125]

Prostate cancer risk,
fish TFAs intake Negative association [269]

Pancreatic cancer risk,
vegetable TFAs intake Negative association in men [269]

Pancreatic risk, serum
level of iTFAs Positive association in men [303]

Ovarian cancer risk,
TFAs intake Positive association [301]

SH-SY5Y neuroblastoma
cells, EA

Growth inhibition,
apoptosis induction [274] CNS cancer risk Negative association in

women [269]

LL2 murine lung cancer
cell line, EA

Increased stemness,
attenuation of
5-fluorouracil
cytotoxicity

[271] Lung cancer risk Negative association in
women [269]

Non-Hodgkin
lymphoma risk,

vegetable TFAs intake
Negative association

[269]

Multiple myeloma,
fish TFAs intake Positive association

Bladder cancer risk,
fish TFAs intake Negative association [269]
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Table 1. Cont.

In Vitro In Vivo Human Data

Cell Line, Fat
Specification Outcome Reference Model, Fat Specification Outcome Reference Cancer Type, Fat

Specification Outcome Reference

rTFAs

MCF-7 mammary
carcinoma, VA

Inhibition of
proliferation [275] Mammary tumour

growth Growth inhibition Reviewed in
[287]

Breast cancer risk,
CLA intake No association [297]

MCF-10A mammary
cancer cells, VA No effect [276] DMBA-induced

mammary tumours in
Sprague-Dawley rat

offspring, maternal diet
enriched with CLA

Decreased susceptibility
to tumour induction

[291]

Post-menopausal
breast cancer, rTFAs

intake
Positive association [269]

MCF-7 and MDA-MB-231
cells, CLA

Growth inhibition [278,281]

Potentiation of
docetaxel effect [279]

MCF-7 cells,
CLA-gemcitabine

conjugate
Growth inhibition [292]

MCF-7 xenografts,
BALB/c mice,

CLA-gemcitabine
conjugate

Suppression of tumour
growth [292]

SW480 colon carcinoma,
VA

Inhibition of
proliferation [275]

CT29 xenografts, BALB/c
mice, dietary CLA Metastasis inhibition [283]

HCT-116 and HT-29
colorectal carcinoma,

CLA

Isomer-dependent
inhibition of

proliferation, induction
of apoptosis,

[282]

1,2-dimethylhydrazine-
induced colon cancer,
Sprague-Dawley rats,

dietary CLA

Apoptosis induction [310]

SW480 colon cancer cells,
CLA

Isomer-dependent
effect on cell
invasiveness

[283]

Azoxymethane-induced
colon cancer,

Sprague-Dawley rats,
dietary CLA

Decrease in aberrant
crypt foci formation,
apoptosis induction

[311]

Azoxymethane and
dextransodium

sulfate-induced colorectal
cancer, 57BL/6 mice,

dietary CLA

Tumour growth
promotion [312]
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Table 1. Cont.

In Vitro In Vivo Human Data

Cell Line, Fat
Specification Outcome Reference Model, Fat Specification Outcome Reference Cancer Type, Fat

Specification Outcome Reference

Mouth/pharynx
cancer risk, rTFAs Positive association [269]

DU145 prostate
carcinoma cells, CLA

Cell cycle inhibition [285]

DU-145 transplants, SCID
mice, dietary CLA

Inhibition of tumour
growth and metastasis [313]

R-3327-AT-1 transplants,
Copenhagen rats, dietary

CLA

No effect on tumour
growth [314]

SKOV-3 and A2780
ovarian cancer cells, CLA

Isomer-dependent
suppression of

proliferation and
migration

[284]

RL 95-2 endometrial
cancer cells, CLA Apoptosis induction [286]

5-8F and CNE-2 human
nasopharyngeal

carcinoma

Inhibition of
proliferation, induction

of apoptosis
[277]

B16-F10 melanoma,
liposomes containing
CLA and paclitaxel

Growth inhibition [293]

B16-F10 melanoma
transplants, C57BL6/N

mice, liposomes
containing CLA and

paclitaxel (i.v.)

Tumour growth
inhibition

[293]

Malignant melanoma
risk, rTFAs intake

Negative association in
women [269]

Non-melanoma
cancer risk, rTFAs

intake
Positive association

Multiple myeloma
risk, rTFAs intake Negative association

[269]Non-Hodgkin’s
lymphoma risk,

rTFAs intake
Positive association

Abbreviations: AA—arachidonic acid; ALA—alpha-linolenic acid; CLA – conjugated linoleic acid; DHA—docosahexaenoic acid; DMBA—9,10-dimethyl-1,2-benz[a]anthracene;
EA—elaidic acid; EPA—eicosapentaenoic acid; GIT—gastrointestinal tract; HFD—high-fat diet; LaA—lauric acid; LA—linoleic acid; MA—myristic acid; NMU—N-methyl-N-nitrosourea;
MUFAs—monounsaturated fatty acids; OA—oleic acid; PA—palmitic acid; PUFAs—polyunsaturated fatty acids; SA—stearic acid; SFAs—saturated fatty acids; TFAs—trans fatty acids;
iTFAs—industrially produced trans fatty acids; rTFAs—ruminant trans fatty acids; VA – vaccenic acid.
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7. Targeting Lipid Metabolism in Cancer Treatment

Cancer cells display changes in nutrient uptake and metabolism to fulfil the demands of
proliferating cells, including de novo lipogenesis. Thus, FAs uptake, biosynthesis, and lipolysis
present promising targets for cancer intervention. In recent years, great attention has been given to a
transmembrane protein CD36/SR-B2, also known as a fatty acid translocase, which mediates FAs uptake
and utilisation [315]. CD36 was reported to be highly expressed in cancer cells and was associated with
enhanced proliferation and migratory activity [316–318]. For example, CD36 overexpression was linked
to increased invasiveness and metastasis of cervical cancer cells both in vitro and in vivo [188,318].
CD36 expression was also correlated with lower survival rates and overall poor prognosis of cancer
patients [188,319–321]. Transforming growth factor beta (TGF-β) downregulated E-cadherin and
upregulated CD36 and mesenchymal markers, which indicates the interaction between CD36 and
TGF-β in the promotion of EMT in cervical cancer [318]. On the other hand, the lower expression
of CD36 in comparison with normal tissue was found in samples of pancreatic adenocarcinoma,
but low CD36 expression was associated with large tumour size and poor survival prognosis [322].
These contradictions warrant further research.

Another interesting target is SCD, which catalyses the transformation of SFAs into MUFAs,
mainly OA [323]. Two isoforms, SCD1 and SCD5, have been identified in humans, with the one
aforementioned being the most prevalent [324]. The upregulation of SCD1 has been observed in a
wide range of cancer cells and was associated with cancer aggressiveness and poor outcomes for
patients [325–327]. So far, many SCD1 inhibitors have been tested and showed anticancer properties in
preclinical studies, but due to adverse effects observed in vivo, only a few have progressed to clinical
trials, and then almost exclusively as candidates for the treatment of type 2 diabetes [328].

There are other targets in lipid signalling pathways [329], and potential intervention may include
modulation of lipid droplets biogenesis and lipophagy [330], but the research on the mechanisms
involved in these pathways and their role in the genesis and progression of cancer is still ongoing.
Thus, the development of substances that would effectively disrupt lipid metabolism in cancer cells
without toxic effects in normal cells remains a great challenge for experimental oncologists.

8. Conclusions

Detrimental effects of an HFD on human health arise predominantly from excess adiposity,
particularly visceral adiposity and induction of inflammatory state. As the human data show, a mere
cut on fat intake does not have an impact on cancer risk; it is the FAs spectrum of dietary fat that
is significant. SFAs, particularly PA, have been long vilified for their detrimental health effects, but
the current consensus of nutritionists is that saturated fat does not pose a risk when consumed in
moderation within a well-balanced diet. The protective effects of ω-3 PUFAs against malignant
transformation in human studies were not as eminent as indicated in preclinical reports; one of the
reasons might be that the level of ω-3 PUFAs in human diets did not reach the doses effective in
animal models and that their beneficial effects might be counteracted byω-6 PUFAs. The role of iTFAs
in carcinogenesis is unclear; preclinical studies are scarce, and despite the general opinion on their
harmfulness, human studies are not consistent. Controversial results regarding the intake of rTFAs
and risk of cancer were reported too, but it appears that some isomers of rTFAs may be beneficial. In
general, human data on the link between different fat types and cancer risk show great heterogeneity,
which might be attributed to various factors, including host genetics, intake of medication, and possible
measurement error due to self-reported food consumption. Heterogenous results may also arise from
differences in the content of various food contaminants/constituents which act as carcinogens, e.g.,
heavy metals, polycyclic aromatic hydrocarbons, nitrosamines, or naturally occurring diacetyl, or, on
the other hand, from varying content of protective substances like polyphenols in fruits and vegetables.
Further studies with credible methodologies are needed.
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Abbreviations

AA Arachidonic acid
ALA Alpha-linolenic acid
AMPK Adenosine monophosphate-activated protein kinase
AR Adrenergic receptor
ATF Activating transcription factor
aP2 Adipocyte fatty acid-binding protein
CD36 Cluster of differentiation 36
CDK2 Cyclin-dependent kinase 2
CHOP C/EBP homologous protein, DNA damage-inducible transcript 3
CI Confidence interval
CLA Conjugated linoleic acid
DHA Docosahexaenoic acid
DMBA 9,10-dimethyl-1,2-benz[a]-anthracene
EA Elaidic acid
EGFR Epidermal growth factor receptor
EMT Epithelial-mesenchymal transition
EPA Eicosapentaenoic acid
EPIC European Prospective Investigation into Cancer and Nutrition
ER Endoplasmic reticulum
ERK1/2 Extracellular signal-regulated kinase 1/2
FAK Focal adhesion kinase
FAs Fatty acids
GIT Gastrointestinal tract
GPR G-protein-coupled receptor
GSK-3β Glycogen synthase kinase-3 beta
HDAC Histone deacetylase
HDACi Histone deacetylase inhibitor
HFD High-fat diet
HMGB1 High mobility group box 1 protein
HR Hazard ratio
IARC International Agency for Research on Cancer
IL Interleukin
iTFAs Industrially produced trans fatty acids
LaA Lauric acid
LA Linoleic acid
LPS Lipopolysaccharides
MA Myristic acid
MAPKs Mitogen-activated protein kinases
MCP-1 Monocyte chemoattractant protein-1
MMP Matrix metalloproteinase
mTOR Mammalian target of rapamycin
MUFAs Monounsaturated fatty acids
NF-κB Nuclear factor kappa B
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NMU N-methyl-N-nitrosourea
NOX Nicotinamide adenine dinucleotide phosphate oxidase
Nrf2 Nuclear factor erythroid 2-related factor 2
OA Oleic acid
OR Odds ratio
p21(CIP1/WAF1) Cyclin-dependent kinase inhibitor 1
p27 (KIP) Cyclin-dependent kinase inhibitor 1B
PA Palmitic acid
PCNA Proliferating cell nuclear antigen
PI3K Phosphatidylinositol 3-kinase
PPAR Peroxisome proliferator-activated receptor
PUFAs Polyunsaturated fatty acids
Q Quintile
RCT Randomised controlled trial
RNS Reactive nitrogen species
ROS Reactive oxygen species
RVLM Rostral ventral lateral medulla
RR Relative risk
rTFAs Ruminant trans fatty acids
SA Stearic acid
SREBP Sterol regulatory element-binding protein
SCD Stearoyl-CoA desaturase
SFAs Saturated fatty acids
STAT Signal transducer and activator of transcription
T Tertile
TFAs Trans fatty acids
TGF-β Transforming growth factor beta
TLR-4 Toll-like receptor 4
TMA Trimethylamine
TMAO Trimethylamine-N-oxide
TNFα Tumour necrosis factor alpha
UPR Unfolded protein response
VA Vaccenic acid
XBP1 X-box binding protein 1
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