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Abstract: The main source of mercury (Hg) exposure in the general population is fish. Another possible
source is dental amalgam. Here, we compare the levels of Hg and selenium (Se) in samples of maternal
and fetal origin collected shortly after childbirth of healthy postpartum women in the coastal (n = 96)
and continental (n = 185) areas of Croatia related to maternal seafood/fish consumption. We also
evaluated Hg concentrations and maternal serum metallothionein (MT2) concentrations in relation to
the number of dental amalgam fillings, and MT2A-5A/G (rs28366003) polymorphism. The levels of
Hg and Se in maternal hair and blood/serum, placenta and cord blood/serum increased in relation to
increasing fish consumption with the highest values in subjects from the coast. The concentrations
of each element and between elements correlated across the matrices. Increasing amalgam number
correlated linearly with increased Hg levels in maternal and cord serum and was not associated
with serum MT2. No association of MT2A-5A/G polymorphism and Hg or Se levels were found.
The results confirmed higher fish consumption in coastal vs. continental Croatia and increases of
both Hg and Se related to fish consumption in all analyzed samples. Increased blood Hg reflected
the predominant MeHg share from seafood, while increased serum Hg matched exposure from
dental amalgams.
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1. Introduction

Mercury (Hg) is a pervasive pollutant and toxicant of major concern for humans and wildlife. It is
released in the environment via both natural and anthropogenic sources, and primary anthropogenic
emissions (without re-emission processes) greatly exceed natural geogenic sources [1–11]. Mercury
toxicity remains a global health concern, especially in mother–infant pairs as a vulnerable population
group for the toxic effects of Hg, particularly as a risk for neurodevelopmental disabilities. Therefore,
appropriate biomarkers of Hg exposure and its perinatal effects are continuously being sought [12–17].

Virtually everyone is exposed to Hg and its different chemical forms. Three main forms and
sources of public concern are: exposure to MeHg by ingestion of fish, mercury vapor (Hg0) absorbed
by inhalation after release from dental amalgam fillings, and exposure to ethylmercury through
thiomersal-containing vaccines [3–5,16,18]. The general population is exposed to Hg mainly by seafood
consumption, including fish, which is a source of highly toxic MeHg that bioaccumulates in marine
organisms during the biogeochemical cycle of Hg. However, fish is also a highly nutritional staple
food and a rich source of the essential ultra-trace element selenium (Se) [8,19–22]. A fish-rich diet is
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part of the cultural tradition in coastal areas of Europe, including the Mediterranean region and the
Croatian Adriatic coast and islands, particularly in comparison to inland areas [23]. Similar geographic
differences in seafood (fish) consumption are also known in other parts of the world, such as the United
States, where the highest fish consumption was confirmed in coastal areas and the Northeast census
region [24].

Another important source of inorganic Hg exposure in the general population is dental amalgam,
which contains about 50% (43–54%) Hg0, 35% silver, 9% tin, 6% copper, and trace amounts of zinc.
The rate of released Hg0 depends on the number, surface area, and chemical characteristics of amalgam
fillings, personal eating habits, food texture, and personal physiological factors [5,18].

A major factor underlying the biochemical properties of Hg and its compounds, and causing their
biological effects and interactions in the body, is the great predilection of ionic species of Hg to bond
to reduced sulfur atoms, especially on small endogenous molecules containing a thiol (sulfhydryl,
–SH) group, such as glutathione, homocysteine, metallothionein (MT), and also albumin. Its binding
affinity to thiol-containing pharmacological agents is used for chelation therapy to remove Hg from
endogenous ligands by forming new –SH-Hg complexes. Different chemical forms of Hg also have
different toxicokinetics in the body, all of which induce toxic effects, depending on the form of Hg
present at the time of exposure, as well as the duration, level, and route of exposure. The primary
target for toxicity of inorganic Hg is the kidney where it is taken up, accumulated, and its toxicity
expressed. Although organic Hg compounds can also have nephrotoxic effects, they have more diffuse
systemic distribution and affect other organs, including the nervous, hematopoietic, cardiovascular,
immune, respiratory, gastrointestinal, and reproductive systems [1,2,14,18,25,26]. The developing
central nervous system is of the highest concern due to pronounced sensitivity to the toxic effects
of environmental pollutants including Hg. As a chemical with the potential to cause irreversible
neurodevelopmental disabilities, including autism and other cognitive impairments, Hg is a matter of
particular public health concern [6,27,28].

During pregnancy, maternal Hg is partially accumulated in the placenta, and MeHg and Hg0 are
predominantly transferred to the fetus who may already be affected in utero [28–33]. When assessing
exposure and Hg disposition across the maternal-placental-fetal unit, it is best to concomitantly
analyze maternal blood/serum, placenta and cord blood/serum together with the data on exposure
sources. Whenever possible, epigenetic markers and specific gene polymorphism(s) in candidate genes
should be determined, as they may modify the relationships of environmental exposure to Hg and
susceptibility of the host [34–36].

More epidemiological studies are needed to assess special features of Hg exposure during
pregnancy, especially by fish consumption, and to determine the potentially protective effects of
nutrients closely interrelated with MeHg, such as Se, together with individual genetic susceptibility to
Hg toxicity. The aim of this study, conducted as part of a broader cross-sectional population study in
healthy postpartum women in Croatia, is to determine Hg and Se concentrations in samples of maternal
and fetal origin (maternal hair and blood/serum, placenta and cord blood/serum) collected shortly after
childbirth, and to compare these biomarkers between study participants from the coastal and continental
areas with presumed different seafood/fish consumption and related Hg exposure. Irrespective of
the geographic area of residence, we evaluated Hg concentrations in relation to the number of dental
amalgam fillings as an additional source of Hg exposure, maternal serum metallothionein (MT2)
concentrations (in coastal area subjects only) and MT2A-5A/G (rs28366003) polymorphism.

2. Materials and Methods

2.1. Recruitment of the Study Participants

This study was carried out using personal data and selected biomarkers obtained in two cohorts
of mother–infant pairs recruited from two geographic areas of residence in Croatia (Figure 1):
continental—the Zagreb metropolitan area, located in the northwest inland area (n = 185 participants)
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and coastal—the city of Zadar and its surroundings in Zadar County located on the eastern Adriatic
coast (n = 96 participants). Inclusion criteria for this study, as part of a wider study conducted within a
national research project, were a term vaginal delivery (between 37 and 42 weeks of pregnancy) in
the maternity ward and absence of any chronic illness, major complication during pregnancy or twin
pregnancy. Study participants fulfilling these criteria were informed about the research scope, methods,
and biological samples to be collected and included in the study after the endorsement of informed
consent forms. The research protocol for studying exposure to the main toxic metals, cadmium (Cd),
lead (Pb), and Hg, and their effects in pregnancy and postnatal period within the entire research project
was reviewed and approved by the ethics committees of three collaborating institutions (between 2006
and 2008, prior to commencement of the study): Merkur University Hospital in Zagreb, Zadar County
General Hospital, and the Institute for Medical Research and Occupational Health in Zagreb where
the study was conducted. The ethical approvals and consent of study participants are still valid and
encompass all future analyses. Accordingly, in 2015 an addendum to the previous ethical approval was
obtained from the Institute for Medical Research and Occupational Health in Zagreb prior to starting
additional analyses of the specific single nucleotide gene polymorphism and metallothionein (MT2)
concentrations in previously collected biological samples of maternal origin within this research project.
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Figure 1. Location of the residence areas of recruited mother–infant pairs in Croatia.

Data on sociodemographic characteristics, medical history, mineral-vitamin supplement intake,
number of amalgam fillings, and dietary habits of postpartum women focused on seafood
consumption, were collected by a questionnaire as described elsewhere [37,38] and from clinical
records. The questionnaire was filled in with the help of an investigator in the research project
or the appointed collaborator (medical health professional) employed in the maternity ward of
the participating hospital. In this study, we used data collected by our previously created (not
standardized) questionnaire that included the following data: general personal data (age and place of
birth); professional history (education, position, and current employment); data on potential recent
environmental exposure (place of residence, moving in the last 24 months, vicinity of factory or
smelter, vicinity of highway/street/road/large cross-roads or bus terminal with heavy traffic); general
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health status (height, body weight at term, average weight before pregnancy, and body weight gain
during pregnancy); data on the last pregnancy and delivery (number of previous pregnancies—parity,
week of pregnancy at delivery, specific health problems during pregnancy, such as increased blood
pressure and blood glucose, peripheral edema or other major health problems, number of previous
abortions or miscarriages and twins); data on the newborn (sex, weight, length at birth, and APGAR
score at birth in 1st and 5th min, a vitality index (named after its creator in 1952, an anesthesiologist
Virginia Apgar) that provides an accepted and convenient method for reporting the clinical status
of the newborn infant immediately after birth based on a rating of 0, 1, or 2 for each of the five
characteristics: A—appearance (skin color), P—pulse (heart rate), G—grimace (response to stimulation
of the sole of the foot), A—activity (muscle tone), and R—respiration (respiratory effort), with 10 being
a perfect score); maternal dietary history (self-identification of the predominate diet type: mixed,
vegetarian, ovo-vegetarian, lacto-ovo-vegetarian, frequency of consuming fish, shellfish, tinned fish
per week or month); smoking habit (self-classification as active, passive or previous smoker; for active
smokers: number of cigarettes or packages per diem, age when started, smoking during last pregnancy;
for non-smokers: data on potential passive smoking; data on active smokers in the family and/or at
workplace with duration of exposure in hours to passive smoking per diem); and number of dental
amalgam fillings (irrespective of amalgam surface). For the purpose of this study, we focused on the
data on the self-reported frequency of seafood/fish consumption (expressed per week) and number of
amalgam fillings as the main sources of Hg exposure, and the related parameters.

Based on self-reported data on seafood consumption, including fresh/frozen and tinned fish and
shellfish, subjects were categorized into four subgroups: 0—no consumption; 1—consumption ≤1 per
week; 2—consumption >1–2 per week; 3—consumption >2 per week. Based on the number of amalgam
fillings, participants were categorized into four subgroups: 0—no amalgam fillings; 1–2—one or two
amalgam fillings; 3–4—three or four amalgams fillings; ≥5—five or more amalgam fillings. According
to MT2A-5A/G polymorphism, the participants were assigned into two subgroups: wild-type (AA
genotype) and G allele carriers (AG/GG genotype).

2.2. Collection and Preparation of the Samples and Element Analysis

Biological samples collected in the period between 2008 and 2010 in maternity wards included:
maternal blood and hair, placenta, and umbilical cord blood. Immediately after childbirth, maternal and
cord blood were sampled in two vacutainer tubes (BD Vacutainer® Trace Element, Becton Dickinson,
New Jersey, NJ, USA) with K2-EDTA anticoagulant (4 mL) and without anticoagulant (6 mL).
Whole placentas were placed in marked zip-lock polyethylene bags. Hair samples were collected by
cutting with clean scissors from the nape of the neck as close as possible to the root. Blood serum
was separated by centrifugation at +4 ◦C and 3000 rpm for 20 min (by Hettich Rotanta/R, type 3501,
Hettich-Zentrifugen, Tuttlingen, Denmark) and decanted into clean polyethylene tubes. All collected
samples were transported in cooler bags to the laboratories of the Institute of Medical Research and
Occupational Health in Zagreb where placentas were sampled, as described earlier [37,38], and all
samples of placenta, whole blood, and serum were stored in the freezer at −20 ◦C until analysis.
Hair samples were stored in paper envelopes at room temperature.

Blood and serum samples were diluted before analysis with a solution containing 0.7 mM NH3,
0.01 mM EDTA, and 0.07% (v/v) TX-100 [39]. Dilution factors for blood and serum were 80 and 20.
Placental samples were digested with purified concentrated nitric acid and ultrapure water (2:1) in
a microwave digestion system UltraCLAVE IV (Milestone, Sorisole, Italy) according to the program
outlined in the Supplementary Materials (Table S1). The sub-boiling distillation duoPUR system
(Milestone) was used to purify nitric acid (65% p. a., Merck, Darmstadt, Germany). After digestion,
samples were adjusted to 8 g with ultrapure water (GenPure, TKA System GmbH, Niederelbert,
Germany), stored at +4 ◦C, and additionally diluted 20-fold before analysis.

The number of hair samples available for element analysis was lower (n = 71) than originally
collected from the participants of the continental area because part of the samples was used for nicotine
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analysis related to maternal cigarette smoking and its association with Cd exposure biomarkers [40].
Each hair sample was cut to a length of 3 cm from the root, as this approximate length corresponds
to the third trimester of pregnancy and correlates with Hg in cord blood [41,42]. Samples (weighed
0.05–0.1 g) were placed into quartz tubes, washed by ultrasonic agitation in acetone for 10 min, soaked
in 0.2% TX-100 for 10 min, rinsed 3–4 times with ultrapure water, and ultimately soaked in acetone
for 10 min and dried at 75 ◦C for 3 h [43]. Washed hair samples were weighed, digested with 4 mL
of purified concentrated nitric acid and ultrapure water (1:1) in UltraCLAVE IV according to the
conditions presented in Table S1, adjusted with ultrapure water to 6 g, stored at +4 ◦C, and diluted
4-fold before element analysis.

Concentrations of Hg and Se in maternal hair, blood and serum, placenta and cord blood,
and serum were determined by inductively coupled plasma–mass spectrometer (ICP-MS) Agilent
7500cx (Agilent Technologies, Tokyo, Japan). The ICP-MS optimized working conditions are shown
in Table S2. Concentrations of Hg and Se in blood and serum samples were quantified by matrix
matched calibration. Calibration curve standards prepared in 1% HNO3 were used for quantification of
digested samples of hair and placenta. The samples were prepared and analyzed in a laboratory with
a heating, ventilating, and air conditioning (HVAC) system combined with high efficiency particulate
air (HEPA) filters.

The accuracy of measurements was checked by commercial available reference materials:
ClinChek® Whole Blood Controls (Level I, II, and III) and Serum Controls (Level I and II) (Recipe,
Munich, Germany), SeronormTM Trace Elements Whole Blood (Level I and II) and Serum (Level I and
II) (Sero AS, Billingstad, Norway), bovine liver BCR 185R, pig kidney BCR 186R, mussel tissue BCR
278R (IRMM, Geel, Belgium), human hair IAEA-086 (IAEA, Vienna, Austria), and human hair CRM 13
(NIES, Tsukuba, Japan) (details provided in Table S3).

2.3. Genotyping of MT2A-5A/G Polymorphism

DNA was isolated from maternal blood using the QIAamp DNA Blood Mini Kit (Qiagen, Hilden,
Germany), according to the method provided by the manufacturer, and stored at −20 ◦C until used.
BioSpec-nano (Shimadzu, Kyoto, Japan) was used to check the concentration and purity of the isolated
DNA. To amplify the signal of the fragment 241-bp polymerase chain reaction (PCR), GeneAmp PCR
System 2700 (Applied Biosistems, Waltham, MA, USA) was used with the following primers:

forward: 5´- CGC CTG GAG CCG CAA GTG AC;
reverse: 5´- TGG GCA TCC CCA GCC TCT TA.

Single nucleotide polymorphism (SNP) of MT2A-5A/G was genotyped by the method of restriction
fragment length polymorphism (RFLP) by incubation of the PCR products at 37 ◦C for 1 h and 45 min
with BsgI restriction enzyme (New England BioLabs, Hitchin, UK) as described in our previously
published paper [44]. Digested samples were separated by electrophoresis on 2% agarose gel with
ethidium bromide and visualized under an ultraviolet illuminator. The presence of 144-bp, 56-bp,
and 41-bp fragments were characteristic for the A allele, whereas 185-bp and 56-bp fragments defined the
G allele. The results of RFLP were confirmed by repeating the analysis in 30 randomly selected samples.

2.4. Metallothionein (MT2) Analysis in Maternal Serum

The levels of metallothionein (MT2) in serum were determined in a part of the study participants
(only subjects from the coast, n = 94) using enzyme-linked immunosorbent assay (ELISA) kit SEB868Hu
and the double-antibody sandwich method as recommended by the manufacturer (Cloud-Clone Corp,
Katy, TX, USA). TECAN Infinite F50 (TECAN Group Ltd., Männedorf, Switzerland) was used to
measure MT2 absorbance at 450 nm.
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2.5. Statistical Analysis

Data were expressed as the median (25–75% interquartile range) and/or mean with standard
deviation (SD). The values of elements’ concentration below the limit of detection (LOD)
were substituted with the LOD/2 value. Statistical significance was set at 5% (p < 0.05).
The Kolmogorov–Smirnov test was used to test the normality of variables and logarithmic (ln)
transformation was used to normalize variables before statistical analysis. Differences between the
groups were tested by Mann–Whitney U test or by one-way ANOVA with post hoc Bonferroni test
in the case of three or more subgroups (based on the frequency of seafood consumption and the
number of amalgam fillings). The relationships between Hg and Se in all measured samples, maternal
seafood consumption, amalgam fillings, and maternal serum MT2 were analyzed by Spearman’s rank
correlation. Forward stepwise multiple linear regression analysis was used to evaluate the effects of
maternal seafood consumption and amalgam fillings on Hg levels in maternal blood, serum and hair,
placenta and cord blood, and serum. The independent variables included in the regression models
were residence area, seafood consumption per week, maternal amalgam fillings (the four-level variable
was transformed to three new dummy coded dichotomous variables, using zero amalgam fillings as
the reference category), maternal age, education, parity, and maternal weight gain during pregnancy.
For the final model, only variables at p < 0.05 were included. The software package TIBCO Statistica™,
version 13.5.0.17 (TIBCO Software, Inc., Palo Alto, CA, USA) was used for statistical analysis and
GraphPad Prism 7 (GraphPad Software, Inc., San Diego, CA, USA) for graphic illustration of results.

3. Results

Table 1 shows the general characteristics of the participants included in this study, based on the
data collected in the questionnaire. General maternal data, seafood intake, and data on newborns and
placenta are presented for the cohorts from the continental (n = 185) and coastal area (n = 96), with the
available data on SNP MT2A-5A/G frequency (n = 268) and the number of dental amalgams (n = 208)
in participants from both study areas. Average maternal age was 29 years. The study participants
matched in parity, body weight and height before pregnancy, average weight gained during pregnancy,
gestation week at delivery, birth weight and length, median APGAR vitality scores in the 1st and
5th min, and trimmed fresh placental weight. Regarding seafood consumption, most self-declared
data actually referred to fresh and frozen marine fish, and only partially to tinned fish. There were
marked differences between the studied cohorts; in the continental area 54% of subjects self-reported
that they ate fish less than once a week and 11% ate no fish at all, whereas among subjects from the
coastal area more than 50% of participants reported fish consumption at least once or more than twice
a week. With regard to determined genotype frequencies of MT2A-5A/G polymorphism, among
268 participants, 94.4% subjects were typical homozygote (AA) and 5.6% subjects were G-allele carriers.
Among the latter, 5.2% subjects were heterozygote (AG) and 0.4% atypical homozygote (GG). The allele
frequencies were in accordance with the Hardy–Weinberg equilibrium (χ2 = 2.58, p = 0.108). Regarding
the presence of dental amalgam fillings, 18% of participants had no dental amalgams and 82% of
participants had at least one amalgam filling; specifically, 30% had one to two, 22% had three to four,
and 30% had five or more dental amalgams.
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Table 1. General characteristics of the participants from Croatia included in the study (n = 281).

Continental Area
n = 185

Coastal Area
n = 96

Maternal data

Age, years 29.4 ± 4.64 29.3 ± 4.76
Education, n (%)
Primary school 11 (6) 6 (6)

Secondary school 124 (67) 64 (67)
University degree 50 (27) 26 (27)

Parity 2 (1–5) 2 (1–5)
Body weight before pregnancy, kg 64.4 ± 11.47 64.3 ± 11.62

Body height, cm 168 ± 6.1 169 ± 5.7
Weight gain during pregnancy, kg 15.3 ± 4.85 14.9 ± 4.73
Gestation week of delivery, week 39.4 ± 1.32 39.6 ± 1.30

Newborn and placental data

Boys, n (%) 97 (52) 39 (41)
Girls, n (%) 88 (48) 57 (59)

Birth weight, g 3515 ± 442 3452 ± 433
Birth length, cm 51.4 ± 2.15 51.1 ± 1.91

APGAR 1st min, score 10 (7–10) 10 (8–10)
APGAR 5th min, score 10 (8–10) 10 (8–10)

Trimmed placental weight, g 296 ± 58.2 291 ± 57.8

Seafood (fish) consumption per week, n (%)

no consumption 20 (11) 4 (4)
≤1 101 (54) 40 (42)

>1–2 50 (27) 31 (32)
>2 14 (8) 21 (22)

Frequency of MT2A-5A/G polymorphism, n (%)

Wild-type (AA genotype) 253
(94.4)

G allele carriers (AG/GG
genotype)

15
(5.6)

Number of dental amalgams, n (%)

none 38 (18)
1–2 62 (30)
3–4 46 (22)
≥5 62 (30)

Results are presented as mean ± SD, median (min–max) or number (n) and percentage (%). APGAR score = vitality
index assigned to every newborn infant at one and five minutes after birth based on a rating of 0, 1, or 2 for each of
the five characteristics: A—appearance (skin color), P—pulse (heart rate), G—grimace (reflex irritability), A—activity
(muscle tone) and R—respiration (respiratory effort).

Significantly higher concentrations of both Hg and Se were found in all measured samples of the
maternal-placental-fetal unit in the coastal vs. continental areas. These increases in Hg concentrations
were 2.3 to 3.5-fold, while the ratio between Se concentrations in the two study groups was up to
1.2 (Table 2).
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Table 2. Concentrations of total mercury (Hg) and selenium (Se) in subjects from two geographic areas
of residence in Croatia.

n Continental Area n Coastal Area

Hg

Maternal hair (mg/kg) 71 § 0.20 (0.11–0.35)
0.26 ± 0.21 95 0.45 (0.22–1.06) *

0.88 ± 1.18

Maternal blood (µg/L) 185 0.96 (0.56–1.64)
1.29 ± 1.27 96 2.39 (1.06–4.71) *

3.54 ± 4.31

Maternal serum (µg/L) 185 0.26 (0.10–0.56)
0.44 ± 0.52 96 0.58 (0.31–0.94) *

0.78 ± 0.75

Placenta (µg/kg wet wt) 184 2.49 (1.34–4.48)
3.44 ± 3.40 92 7.00 (2.84–11.3) *

9.49 ± 11.2

Cord blood (µg/L) 184 1.06 (0.55–1.88)
1.64 ± 1.79 96 3.74 (1.27–7.89) *

5.85 ± 7.92

Cord serum (µg/L) 183 0.26 (0.16–0.44)
0.35 ± 0.27 96 0.40 (0.22–0.76) *

0.61 ± 0.66

Se

Maternal hair (mg/kg) 71 § 0.33 (0.30–0.41)
0.35 ± 0.08 95 0.39 (0.33–0.47) *

0.41 ± 0.11

Maternal blood (µg/L) 185 74.4 (68.2–84.1)
75.1 ± 15.1 96 83.8(74.7–95.5) *

85.8 ± 17.2

Maternal serum (µg/L) 185 54.9 (46.5–62.3)
53.9 ± 13.1 96 57.0 (49.4–67.6) *

59.0 ± 11.8

Placenta (µg/kg wet wt) 184 166 (144–191)
178 ± 54 92 192 (179–208) *

195 ± 22

Cord blood (µg/L) 184 73.0 (66.6–80.9)
73.5 ± 13.1 96 82.4 (75.8–93.1) *

85.0 ± 13.1

Cord serum (µg/L) 183 39.4 (35.4–43.9)
39.7 ± 6.7 96 42.4 (37.9–46.7) *

42.3 ± 6.3

Results are presented as median (25–75% interquartile range) and mean ± SD. n = number of measured samples
(§ previously used for other analysis). * Statistical differences (p < 0.05) between the study groups tested by
Mann–Whitney U test.

The concentrations of Hg in maternal hair and blood, placenta, and cord blood in the study
participants from the continental and coastal area with regard to the frequency of seafood (mainly fish)
consumption per week based on self-reporting are presented in Figure 2.

In both geographic areas of residence, all Hg biomarkers increased with increasing maternal
seafood consumption. In participants who consumed seafood at least once per week compared to
those who ate no seafood, Hg levels were 1.5-fold higher in maternal hair, 2-fold in maternal blood,
1.5-fold in the placenta, and 2–3-fold in cord blood. In subjects who consumed seafood twice per
week vs. subjects who ate no seafood, these differences were highly significant (p < 0.0001) with Hg
levels that were higher 3–7-fold in maternal hair, 7–8-fold in maternal blood, 4–6-fold in the placenta,
and >10-fold in cord blood.
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Figure 2. Concentrations of Hg in maternal hair and blood, placenta, and cord blood in study participants
from Croatia, continental (N) and coastal area (•), related to the frequency of seafood (fish) consumption
per week. Subgroups (number of participants is given in Table 1, except the number of analyzed
hair samples in the continental area indicated here in parentheses): 0—no consumption (n = 11);
1—consumption ≤1 per week (n = 34); 2—consumption >1–2 per week (n = 20); 3—consumption >2 per
week (n = 6). Data are presented as the median and interquartile range (25–75%). Statistically significant
differences (p < 0.05) between the subgroups tested by one-way ANOVA and post hoc Bonferroni test
are indicated by different letters.

The concentrations of Se in maternal hair and blood, placenta, and cord blood in the study
participants from the continental and coastal area with regard to the frequency of seafood (mainly fish)
consumption per week based on self-reporting are presented in Figure 3. As for Hg concentrations,
Se biomarkers in subjects from both geographic areas of residence increased with increasing maternal
seafood consumption, though to a lesser extent, with the exception of hair Se concentrations. In subjects
who consumed seafood more than twice per week vs. subjects who ate no seafood, the ratios in
maternal and cord blood Se concentrations were up to 1.3.
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Figure 3. Concentrations of Se in maternal hair and blood, placenta, and cord blood in the study
participants from Croatia, continental (N) and coastal area (•), related to the frequency of seafood (fish)
consumption per week. Subgroups (number of participants is given in Table 1, except the number
of analyzed hair samples in the continental area indicated here in parentheses): 0—no consumption
(n = 11); 1—consumption≤1 per week (n = 34); 2—consumption >1–2 per week (n = 20); 3—consumption
>2 per week (n = 6). Data are presented as the median and interquartile range (25–75%). Statistically
significant differences (p < 0.05) between the subgroups tested by one-way ANOVA and post hoc
Bonferroni test are indicated by different letters.

In all study participants from both geographic areas, no differences were found in the concentrations
of MT2 in maternal serum between the subgroups in relation to the frequency of seafood (fish)
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consumption (Figure 4). No differences were found in the concentrations of both Hg and Se in maternal
hair and blood, placenta, and cord blood with regard to the MT2A-5A/G polymorphism (Figure 5).
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Figure 4. Concentrations of metallothionein (MT2) in maternal serum in a part of the study participants
(only subjects from coastal Croatia, n = 94) related to the frequency of seafood (fish) consumption per
week. Subgroups: 0—no consumption (n = 4); 1—consumption ≤1 per week (n = 38); 2—consumption
>1–2 per week (n = 31); 3—consumption >2 per week (n = 21). Data are presented as the median and
interquartile range (25–75%).
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Figure 5. Concentrations of Hg and Se in maternal hair and blood, placenta, and umbilical cord blood
in the study participants from Croatia (n = 268) related to MT2A-5A/G polymorphism. Subgroups
are denoted by the genotype: AA: wild-type (n = 253); AG/GG: G allele carriers (n = 15). Data are
presented as the median and interquartile range (25–75%).
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In subjects with dental amalgams (one or more) compared to subjects without dental amalgams
(Table 3), Hg concentrations were 1.3-fold higher in maternal serum and 1.5-fold in cord serum,
whereas levels of Hg in maternal hair and blood, placenta, and cord blood did not differ.

Table 3. Concentrations of total mercury (Hg) in maternal hair and serum, placenta and cord serum
related to the presence of dental amalgam fillings.

N Without Dental Amalgams n With Dental Amalgams

Hg

Maternal hair (mg/kg) 30 0.30 (0.17–0.68)
0.47 ± 0.52 106 0.35 (0.18–0.83)

0.76 ± 1.13

Maternal blood (µg/L) 38 1.48 (0.68–2.82)
1.92 ± 1.63 170 1.43 (0.77–2.95)

2.52 ± 3.53

Maternal serum (µg/L) 38 0.32 (0.16–0.50)
0.41 ± 0.34 170 0.44 (0.23–0.78) *

0.65 ± 0.68

Placenta (µg/kg wet wt) 36 3.08 (1.99–6.84)
4.90 ± 4.33 168 3.99 (1.98–8.18)

6.78 ± 9.11

Cord blood (µg/L) 38 1.76 (0.64–4.28)
2.79 ± 2.66 169 1.60 (0.82–4.75)

3.95 ± 6.41

Cord serum (µg/L) 38 0.24 (0.125–0.39)
0.32 ± 0.25 169 0.36 (0.20–0.62) *

0.52 ± 0.55

Results are presented as median (25–75% interquartile range) and mean ± SD. n = number of measured samples.
* Statistical differences (p < 0.05) tested by Mann–Whitney U test.

We found no difference between the subgroups of study participants related to the number
of dental amalgams in either concentrations of Hg in maternal and cord serum (Figure 6) or MT2
concentrations in maternal serum (Figure 7).
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Spearman’s correlation coefficients (ρs) between maternal age, seafood (fish) consumption, number
of amalgam fillings, maternal serum MT2, and the concentrations of Hg and Se in the measured
samples are presented in Table 4. Maternal seafood intake positively correlated with virtually all the
determined element biomarkers, except maternal hair Se. Good or strong correlations (ρs = 0.62–0.86)
were found between Hg levels in all measured samples of maternal and fetal origin and for Se in
maternal blood and serum (ρs = 0.8), whereas correlations between Se levels in other measured
samples were weak (ρs = 0.18–0.55). In all analyzed samples, the levels of Hg and Se were significantly
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positively correlated (ρs = 0.19–0.52). MT2 concentration was inversely correlated with Se in maternal
blood (ρs = −0.28), while maternal amalgam number (as represented in Table 1) was correlated
with Hg in maternal and umbilical cord serum (ρs = 0.16). Maternal age correlated with seafood
intake, Hg in maternal and umbilical cord blood and serum, Hg in placenta, and Se in maternal
blood and serum (ρs = 0.12–0.2). These results, together with the significant correlations between
Hg biomarkers and residence area, education, parity, and weight gain (results not shown), suggest a
complex association among the variables. Each of these studied variables was therefore considered as
potentially explanatory/confounding in their influence on Hg levels.
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Figure 7. Concentrations of MT2 in maternal serum in the study participants from the coast (n = 94)
related to the number of amalgam fillings. Subgroups: 0—no amalgams (n = 27); 1–2—1 to 2 amalgams
(n = 29); 3–4—3 to 4 amalgams (n = 26); ≥5—5 or more amalgams (n = 12). Data are presented as
median and 25–75% interquartile range.

Table 5 shows the results of the forward stepwise multiple linear regression analyses to further
evaluate the influence of maternal seafood consumption and the number of amalgam fillings on Hg
concentrations in maternal hair, blood and serum, placenta, and umbilical cord blood and serum (using
ln transformed data). Confounding variables included in the model were area of residence, maternal
age, education, parity, and maternal weight gain during pregnancy. Seafood consumption (frequency
of seafood consumption per week) and geographic area of residence of the study participants were
significant predictors of increased Hg levels in all of the analyzed biological samples. The number
of amalgam fillings was a significant predictor of increased Hg concentrations in maternal and cord
serum and also in maternal blood, though to a lesser extent. There was a linear trend of increasing Hg
levels in maternal and cord serum with the number of amalgam fillings.
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Table 4. Spearman’s correlation coefficients (ρs) for relationships between the frequency of maternal seafood/fish consumption, number of dental amalgams, and
biomarkers of mercury (Hg) and selenium (Se) determined in the studied mother–infant pairs from Croatia (n = 94–281) *.

Parameter Seafood AmalgamsMT2 Hg-H HgB-M HgB-UC Hg-PL HgS-M HgS-UC Se-H SeB-M SeB-UC Se-PL SeS-M SeS-UC

Maternal age 0.163 −0.067 0.053 0.132 0.202 0.179 0.121 0.151 0.185 −0.068 0.134 0.073 0.059 0.123 0.087
Seafood −0.147 −0.067 0.535 0.501 0.527 0.415 0.326 0.391 0.122 0.276 0.291 0.270 0.137 0.159
Amalgams −0.109 0.094 0.041 −0.037 0.030 0.161 0.162 −0.097 −0.018 −0.052 −0.039 −0.019 −0.002
MT2 −0.116 0.025 −0.060 −0.066 0.030 −0.065 0.033 −0.276 −0.192 −0.026 −0.076 −0.076
Hg-H 0.820 0.853 0.800 0.625 0.761 0.270 0.375 0.425 0.271 0.221 0.229
HgB-M 0.844 0.856 0.822 0.783 0.228 0.485 0.423 0.277 0.292 0.289
HgB-UC 0.832 0.679 0.774 0.211 0.490 0.518 0.257 0.300 0.364
Hg-PL 0.783 0.783 0.218 0.431 0.454 0.255 0.269 0.268
HgS-M 0.778 0.121 0.453 0.385 0.187 0.313 0.293
HgS-UC 0.114 0.410 0.419 0.214 0.238 0.341
Se-H 0.276 0.206 0.288 0.286 0.051
SeB-M 0.523 0.266 0.796 0.264
SeB-UC 0.364 0.306 0.550
Se-PL 0.183 0.202
SeS-M 0.199

H—hair; B—blood; S—serum; M—maternal; PL—placenta; UC—umbilical cord. Significant correlations (p < 0.05) are marked in bold. * n depends on the number of available data:
n (MT2) = 94, n for other variables are shown in Tables 1 and 2.
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Table 5. Stepwise multiple linear regression results for relationship of Hg concentration in maternal
hair (n = 135), blood and serum, and umbilical cord blood and serum (n = 205).

Dependent Variable Equation (Respects the Sequence of Variables Entered in the Equation) R2 p

ln(Hg-H) = 0.51 Seafood consumption + 0.83 Residence area + 0.03 Weight gain + 0.04 Age
– 0.19 Parity + 2.33 0.45 <0.0001

ln(HgB-M) = 0.46 Seafood consumption + 0.77 Residence area + 0.40 Dental amalgams (≥5)
+ 0.16 Dental amalgams (3–4) – 1.5 0.35 <0.0001

ln(HgB-UC) = 0.61 Seafood consumption + 0.75 Residence area + 0.16 Education + 0.03
Weight gain – 1.95 0.39 <0.0001

ln(Hg-PL) = 0.38 Seafood consumption + 0.71 Residence area + 0.03 Weight gain + 0.15
Education – 0.86 0.31 <0.0001

ln(HgS-M) = 0.77 Residence area + 0.22 Seafood consumption + 0.84 Dental amalgams (≥5) +
0.42 Education + 0.56 Dental amalgams (3–4) + 0.47 Dental amalgams (1–2) – 3.04 0.29 <0.0001

ln(HgS-UC) = 0.37 Seafood consumption + 0.72 Dental amalgams (≥5) + 0.35 Residence area
+ 0.51 Dental amalgams (1–2) + 0.51 Dental amalgams (3–4) – 2.55 0.28 <0.0001

Regression model includes the following variables: residence area (1 = continental, 2 = coastal), maternal age (years),
education (1 = primary school, 2 = secondary school, 3 = university degree), parity, weight gain during pregnancy
(kg), frequency of seafood consumption per week, maternal dental amalgams (transformed to dichotomous variables
using zero amalgam fillings as the reference category). Only variables at p < 0.05 are included in the final model.
H—hair; B—blood; S—serum; M—maternal; PL—placenta; UC—umbilical cord.

4. Discussion

This paper presents data on Hg and Se levels measured in samples collected shortly after childbirth
that represent concentrations in three compartments of the maternal-placental-fetal unit, comprising
maternal hair, blood and serum, placental tissue, and umbilical cord blood and serum. The results were
partly already published [44] and here they are scrutinized further to elucidate the impact of seafood
consumption and amalgam fillings on Hg levels. We compared the cohorts of healthy postpartum
women from two geographic areas of residence, the Zagreb metropolitan area as a typical inland
area, and the city of Zadar and the surroundings in Zadar County of coastal Croatia, one of the most
important landing places for small pelagic species and demersal catches on the Croatian Adriatic
coast. Seafood/fish consumption was evaluated as the main source of Hg exposure. In addition,
the relationship between maternal dental amalgams and Hg serum levels in maternal and cord blood
was assessed irrespective of geographic area. Even though Croatia is a small country (56,594 km2

terrestrial and 31,710 km2 maritime area), it has a very diverse topography; from the Mediterranean to
Central European, mountainous to flat, coastal to continental. It ranks as one of the top five European
countries with regard to biodiversity [45]. There is also diversity in the regional cultural traditions,
including the consumption of fish that is higher in coastal than in continental areas. However, total
consumption of fish and fish products per capita in Croatia is generally significantly lower than in
other Mediterranean countries [46].

4.1. Hg in Maternal Hair and Blood, Cord Blood and the Placenta

During its formation, hair sequesters MeHg by binding to –SH groups in keratin, and after
exposure to MeHg, hair Hg consists of just over 80% MeHg. In group studies, hair specimens are
regarded as accurate measures for the evaluation of exposure to Hg, especially in the assessment of
MeHg exposure by fish consumption [5,14,16,47,48]. Inorganic Hg is poorly accumulated in hair and
total Hg concentration in hair reflects MeHg exposure, even in persons who do not eat fish [49].

Our results confirm an association of seafood/fish consumption and Hg concentration in maternal
hair [41,42,50,51]. Although the overall median Hg level in hair was 0.29 mg/kg (interquartile range
0.16–0.69 mg/kg), one participant (1.4%) in the continental and 25 participants (21%) in the coastal
area had Hg levels in hair >1.2 mg/kg (i.e., 10% of the estimated benchmark dose level recommended
by the National Research Council (NRC, USA) [28]). Participants residing in the coastal area had
2.3-fold higher hair Hg than in the continental area, which is in agreement with previous findings that
showed significantly higher Hg levels in postpartum women from coastal than continental Croatia,
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with medians of 0.471 mg/kg vs. 0.129 mg/kg, respectively [51]. Maternal hair Hg levels in coastal
Croatia were higher than in most Northern and Central European countries, reported in by the
European Union (EU) study CHOPES/DEMOCHOPES to be 0.225 mg/kg; this is in line with the levels
in pregnant women receiving a habitual diet in a randomized controlled trial in Norway (0.485 mg/kg),
but lower than in Mediterranean countries, namely, Portugal, Spain, and Greece (>1 mg/kg) [50,52–54].
Recently reported total Hg levels in hair of 0.9 mg/kg in Portuguese postpartum women, of which
38% exceeded the safety limits established by the United States Environmental Protection Agency (US
EPA), had no association with birth weight or length [55].

In comparison with population groups in North America having traditionally high seafood/fish
intake, participants from the coastal area in this study who consumed seafood more than twice
per week had three-fold lower Hg levels in hair compared to Hg levels in the maternal hair of,
for example, Northern Québec Inuit postpartum women in the third trimester [41]. However, in a
prospective cohort study evaluating the costs and benefits of fish consumption during pregnancy
for brain development carried out in eastern Massachusetts, a part of the United States with known
increased fish consumption [24], the mean Hg levels in maternal hair were 0.55 mg/kg (0.02–2.38 mg/kg)
and study participants consumed on average 1.2 fish meals per week, similar to the participants in
this study. It was concluded that a higher fish intake in pregnancy is associated with better cognitive
score in the offspring and higher Hg levels are associated with lower infant cognition, indicating that
during pregnancy women should eat fish, though preferably varieties with a lower Hg content [56].
In accordance with these results is an interesting finding reported in a preliminary study in Croatia
showing significantly smaller infant cerebellum length if Hg levels in maternal hair exceeded levels of
1 mg/kg [57].

As in hair, MeHg in blood is also the main contributor to total Hg levels and the concentrations
of Hg in blood show a direct relationship with hair Hg levels. The typical hair-to-blood ratio is
estimated at 250, corresponding to the overall average of values for individuals reported in published
studies from 140–370, although large variations exist, especially in persons with infrequent fish
consumption [1,5,8,12,16,28]. In our study participants, the ratios between Hg concentrations in hair
and maternal blood were 208 in the continental and 188 in the coastal area. For exposure assessment, it is
best to obtain both biomarkers, hair Hg and blood Hg (including cord blood), which provide accurate
and reliable biomarkers of MeHg exposure, along with dietary information on fish consumption and
other food [58]. Total Hg concentrations in the measured matrices showed differences between the
studied cohorts as seen in a previous study in Croatia for Hg in maternal hair and cord blood [51].
Blood Hg levels in participants residing in the coastal area were similar to previously published
values in mother–infant pairs from Croatia, with a reported concentration in maternal blood of
2 µg/kg and in cord blood of 2.9 µg/L [52], 2.9 µg/kg [51], and 3.41 µg/kg [59]. The values were also
similar to those reported for mother–infant pairs in the Italian part of the Adriatic coastal area (i.e.,
2.4 µg/kg in maternal blood and 3.9 µg/kg in cord blood [52]), but lower than values reported in other
Mediterranean countries such as Spain and Greece [60,61]. At the same time, maternal and fetal Hg
levels in participants from continental Croatia were similar to the values of 0.661 µg/L in cord blood
reported previously for the Croatian population [51], and also the values of maternal blood and cord
blood in Central European countries: 0.7 µg/L and 1.1 µg/L in Austria [62] and 0.63 µg/L and 0.8 µg/L
in Slovakia [63]. The differences found between geographic areas in Croatia in this study are due to the
higher frequency of fish consumption along the coast; data indicate that more than 55% of subjects in
the coastal area reported fish consumption at least once a week, as opposed to 55% of subjects in the
continental area who reported fish consumption of less than once a week or never.

Exposure to MeHg during prenatal life, especially during critical periods of central nervous system
development, may cause serious and irreversible impairments [64]. Organic forms of Hg easily pass
the placenta, most likely via neutral amino acid carriers [65]. Hg levels in umbilical cord blood may be
20–65% higher than the levels in maternal blood [32]. A similar transport mechanism of MeHg through
the blood–brain barrier includes MeHg-cysteine conjugate and methionine [66]. Concentration of Hg in
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cord blood better reflects fetal exposure than Hg in maternal hair [67]. We found differences (p < 0.02)
in the ratios of Hg concentrations in cord blood to maternal blood that were 1.6 in coastal and 1.2 in
continental mother–infant pairs. Based on the meta-analysis, the ratios between cord and maternal
blood concentrations of MeHg and inorganic Hg are estimated at 1.89 and 1.01 [68]; hence comparing
the ratios for total Hg concentrations in our study, we can assume that there were differences in
exposure sources to Hg between the two studied areas. With regard to the levels of concern accepted as
the current US EPA reference dose (RfD) for concentrations of total Hg of 6.4 µg/L and the equivalent
for MeHg of 5.8 µg/L [24,28,58], we determined these Hg levels in blood in 10% of postpartum women
and 31% of infants (cord blood) in the coastal area, compared to only <1% postpartum women and
3% infants in the continental area. The ratio of Hg concentrations in cord and maternal blood was
reportedly higher for infants in Croatia and Slovenia [52,69]; however, our ratio results are lower than
in Spain or other high-fish consuming countries, where >60% of Hg levels in infants exceeded the
RfD value (see [70]). Studies conducted in Spain showed that 90% of pregnant women consumed
seafood/fish ≥3 times per week, leading to high prenatal and early childhood exposure to Hg and
MeHg measured in cord blood and hair samples of infants and preschool children [70,71]. In our study,
only 7% of participants consumed seafood ≥3 times per week and we identified a gradual increase in
Hg concentrations in maternal and cord blood and placenta related to increased seafood consumption.

The strong positive correlation (ρ > 0.8) between Hg levels in maternal blood and cord blood is in
line with previous findings [29,63,72]. Furthermore, we found a positive correlation between Hg levels
and maternal age and education level, which is in agreement with several reports on the association of
fish consumption and age, level of education, and household income [24,55,73–75]. It is likely that
persons with higher education levels more frequently consume seafood/fish as they are familiar with
the health benefits of such a diet as a rich source of essential nutrients.

The literature data on Hg concentrations in the placenta are scarcer than on the concentrations
of two other main toxic metals, Cd and Pb. The reported Hg levels in the placenta under conditions
of low to moderate environmental exposure vary from 2 to 13 µg/kg with an average of 8 µg Hg/kg,
based on wet weight [30,31]. In this study, placental Hg levels were within this range with values about
three-fold higher in the coastal than in the continental areas of residence. Based on associations of
seafood intake frequency and Hg concentrations in the placenta, placental Hg levels can be considered
to be a valuable biomarker of exposure to Hg from moderate seafood consumption. A Portuguese
study reported the highest levels of Hg in the amniotic membrane, whereas Hg levels were similar in
the decidua basalis, chorionic plate, and umbilical cord, and the authors recommended further studies
on a larger sample size to better understood the role of the amniotic membrane in placental–fetal Hg
accumulation [55].

4.2. Hg and Dental Amalgams

Amalgam fillings have been used for dental restoration for over 150 years and they are still used
in many countries, including Croatia, due to their advantages, such as simple preparation, hardness,
effectiveness, duration, and low cost. Apart from an unattractive appearance, the major disadvantage
of dental amalgam is the potential risk of exposure to Hg0 released into the mouth and saliva during
chewing and placement and/or removal. The estimated daily absorbance of Hg from amalgam fillings
ranges from 3–17 µg [13], whereas daily absorbance from all forms of Hg from seafood/fish is estimated
at 2.31 µg, and about 0.3 µg Hg from other foods, air, and water [1]. The rate of released Hg0 depends
on the number, surface areas, and chemical characteristics of the amalgam filling(s), personal eating
habits, food texture, and personal physiological factors. To this end, amalgam fillings have been the
subject of an ongoing dispute for centuries, known as “amalgam wars”, due to concern of health effects
of released Hg [1,4,5,13,76–82]. The number of amalgam fillings is associated with Hg concentrations in
the adult brain and urine, and has a tendency to be associated with Hg in the fetal kidney (but not in the
fetal brain), amniotic fluid, cord blood/serum, and/or placenta [29,32,63,83–86], though no associations
have been found with fetal biometric measurements [77,78,87]. A recent Avon Longitudinal Study
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of Parents and Children (ALSPAC) study reported that women with four or more dental amalgams
at the beginning of pregnancy had higher Hg blood levels [88]. Although the European Food Safety
Authority (EFSA) reported that the tolerable weekly intake for inorganic Hg might be exceeded due to
the additional inhalation exposure in people with a large number of amalgam fillings, the evidence is
weak, and the data are mainly derived from model-based calculations [8]. Our results of higher Hg
levels in maternal and cord serum in participants with at least one dental amalgam filling compared to
those with no amalgams are in agreement with findings in Swedish adolescents showing that dental
amalgam is one of the determinants (in the multiple regression analysis) for serum Hg but not for whole
blood Hg concentrations [86]. We found no differences in Hg levels in either maternal or cord whole
blood between the groups with and without amalgam fillings, but the results of multiple regression
analysis showed that the number of dental amalgams, if >3, was a determinant of Hg levels in maternal
blood, while there was no influence on Hg in hair, placenta, and cord blood. Previous studies reported
a positive association between maternal dental amalgams and inorganic Hg in maternal blood [29],
cord blood [29,42], and the placenta [83], or no association between maternal amalgam fillings and Hg
levels in cord blood [59]. Our results on the association of Hg levels in maternal and cord serum with
the number of maternal amalgams are in line with the fact that inorganic Hg in blood is almost equally
distributed between red blood cells and plasma, whereas Hg found in blood and bound mostly to
hemoglobin in the red blood cells is approximately 90% in the form of MeHg and originates mainly
from the diet, especially seafood [12,47,86,89].

4.3. Metallothionein Polymorphisms and Hg Biomarkers

External factors that influence vulnerability to the toxic effects of Hg are gender, age, physiological
status, nutritional status, and the intake of other foods or nutrients that might influence the absorption,
uptake, distribution, and metabolism of MeHg [28,90]. Genetic polymorphisms in candidate genes
may explain variations in biomarkers of exposure and inter-individual differences in susceptibility
to Hg toxicity as they may affect delivery to the target organs or affect the response of the target
organs to Hg. Polymorphisms of several classes of genes have been reported to interact with Hg
toxicokinetics and toxicodynamics, such as genes that encode glutathione, selenoproteins, and the
metallothioneins’ superfamily, and certain main genetic variants have been found to be related to
Hg-induced neurotoxicity [36,82,91,92]. It was found that SNPs in MT1 and MT2 may influence Hg
concentrations at levels of exposure relevant to the general population [93]. To this end, our study
in mother–infant pairs in Croatia showed no significant interrelationship between maternal MT2
concentration, SNP MT2-5A/G (rs28366003), and concentrations of the main toxic metals (Cd, Pb,
and Hg) and selected essential elements (zinc (Zn), copper (Cu), and Se) in maternal blood, placenta,
and cord blood of non-smokers and smokers, with the exception of the impact on placental iron (Fe)
decrement in non-smoking postpartum women, as reported in our previous paper [44]. In the part
of the study presented here, focusing on Hg exposure related mainly to fish intake and amalgam
fillings as an additional Hg exposure source, we also found no interrelationship between Hg or Se
concentrations in the measured matrices of maternal and fetal origin and maternal SNP MT2-5A/G
(rs28366003).

We are well aware that both our research approach (cross-sectional study in mother–infant pairs)
and the study sample size (less than 300 participants) are far too small to draw any firm conclusions on
the influence of this particular MT2 polymorphism on Hg levels in the measured biological samples of
maternal and fetal origins related to the main sources of Hg exposure, seafood, and dental amalgams.
This, together with the broader assessment of MT2 levels in the measured matrices, is recognized as
the major weakness of this study.

4.4. Risk of Prenatal and Postnatal Hg Exposure

Women of child-bearing age should consume fish since a fish-rich diet is beneficial for the
health of both mother and developing offspring, and supplies nutrients including essential elements
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and omega-3 fatty acids. For example, docosahexaenoic acid (DHA) levels were found to decline
during pregnancy and lactation, but the higher the intake of seafood and eicosapentaenoic acid
(EPA)/DHA-supplements, the higher the DHA status in the maternal circulation [94]. However,
women should choose species with a smaller MeHg content, such as sardines, salmon or oysters,
and avoid large predatory fish such as tuna, shark or swordfish that have high MeHg content [56,95].
For decades, there has been concern that MeHg bioaccumulated in fish and consumed by pregnant
women could lead to neurodevelopmental disabilities of the offspring, as it is easily transferred
through the placenta to the fetus. Several wide-scale studies in populations predominantly consuming
seafood including fish, with a focus on prenatal exposure and Hg adverse effects on the developing
brain, failed to reach consistent data and firm evidence that lower levels of Hg exposure due to
maternal seafood consumption contribute to neurodevelopmental disabilities in the offspring [96,97].
A recent review summarizing the evidence of the effects of low-level MeHg exposure pointed to the
possibility of impaired fetal and infant growth among susceptible subgroups, though this requires
further investigation [67]. Although seafood is a source of dietary Hg, seafood appeared to explain a
relatively small proportion of the variation in whole blood total Hg levels in the ALSPAC birth cohort
study population in the UK, suggesting that limiting seafood intake during pregnancy may have a
limited impact on prenatal blood Hg levels [98].

The results reported here corroborate previous studies that showed no association between
birth weight or birth length and maternal seafood consumption [99–102] or the number of
dental amalgams [87,103]. Two controlled clinical trials examining the health effects of amalgam
conducted in children—the New England Children’s Amalgam Trial (NECAT) [104] and the Casa Pia
study [105]—reported no evidence of adverse psychosocial outcomes from Hg exposure in children.
Those and other data provide a good indication that Hg amalgam treatment is safe for the majority
of children and is not associated with a risk of neuropsychological deficits [106]. However, recent
studies suggest that the influence of genetic polymorphisms on the degree of individual susceptibility
to Hg internal exposure and consequent toxicity in children or adults cannot be ruled out. Most recent
expert opinions are that there is no current evidence to preclude the use of either amalgam or
alternative materials in dental restorative treatment, and that the choice of material should be based on
patient characteristics, including pregnancy. The need for further research is recognized, particularly
concerning the evaluation of potential neurotoxicity of Hg from dental amalgam in combination with
the influence of genetic polymorphisms on individual susceptibility to Hg toxic effects in youth and
adults. Knowledge on alternative dental restorative materials should also be expanded [80,81]. Thus,
genetic and epigenetic predispositions under conditions of specific Hg contamination will have an
impact on future safe limits for Hg with regard to its environmental toxicity.

4.5. Hg, Se, and Fish Consumption

Concentrations of Hg in commercial fish species, including European pilchard and hake,
as commonly consumed species by the Croatian population, are reported to range between
0.017–0.130 mg/kg wet weight of muscle fish tissue [23,107]. According to the threshold level of
Hg in seafood of 0.2 mg/kg wet weight tailored for Mediterranean coastal populations [108] and
considering a fish portion of 130 g and fish consumption of two times per week, the estimated Hg intake
in our study participants was in the range of 0.65–0.80 µg/kg body weight per week during pregnancy
(according to the data provided in Table 1). This corresponded to 50–62% of the tolerable weekly intake
(TWI) for MeHg of 1.3 µg/kg body weight as set by the EFSA Panel on Contaminants in the Food Chain
(CONTAM) [8]. From this, it can be concluded that such Hg exposure from fish consumption does not
pose a health risk. On the other hand, seafood, especially fish, is an important source of Se, an ultra-trace
bioelement that can act as a growth factor, powerful antioxidant, and anticancer agent and is essential
for thyroid hormone homeostasis and immunity, while its deficiency can be associated with metabolic
processes leading to pathological conditions and diseases [19,20]. Our preliminary results showed that
marine fish, especially small pelagic (oily) species, are a valuable dietary source of Se and other essential
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elements, including Fe, Zn and Cu, while also having low Hg concentrations [109,110]. A favorable
Se:Hg molar ratio in fish can balance the risk and benefits related to fish consumption [20,111,112].
We found Se levels of 0.66 to 1.1 mg/kg wet weight in European pilchard from the Adriatic Sea [109]
and that Se intake in one 130 g portion of this species contributes more than 122% of the dietary
reference value (DRV) of Se, which is 70 µg per day during pregnancy [113]. In healthy omnivores,
consumption of 3–4 fish servings per week, including during pregnancy, should be sufficient to ensure
the essential intake of omega-3 fatty acids and Se [114]; therefore, there is no need for additional Se
supplementation, especially in consumers of fish species low in Hg and high in Se.

A number of studies have reported that maternal serum concentrations of Se decrease with the
progress of pregnancy due to increased Se transfer to the developing fetus, especially during the third
trimester when Se is retained in the fetal liver [53,115,116]. In our study, fish consumption frequency
was low to moderate and concentrations of Se in maternal serum were 53.9 µg/L and 59.0 µg/L in the
continental and coastal group, respectively, which are in good agreement with reported Se serum
levels of 58.02 µg/L in a subgroup of Spanish women in the 24th week of pregnancy who consumed
fish one to two times per week [53]. These levels are slightly below the range of 60–140 µg Se/L in
serum/plasma generally recognized in the literature published during the last two decades as an
adequate or “optimal” Se status for beneficial health effects, including optimization of iodothyronine
deiodinases, glutathione peroxidase and selenoprotein P, protection from certain types of cancers,
and reduction in total mortality [117]. In our study, Se levels in the coastal area were 1.2-fold higher
than in the continental area for all measured biomarkers. The overall Se level in maternal blood
was 78.2 µg/L (interquartile range 69.2–86.5 µg/L), which is in agreement with previous studies in
Sweden [42,118,119] and Slovenia [120,121], while lower levels were reported in Italy [52], Canada [122],
and the Faroe Islands [22]. Differences in Se levels reported here and in other studies are likely due
to the different amounts and species of consumed fish containing different amounts of Se [123,124].
We found a significant correlation between seafood/fish consumption and all Hg and Se biomarkers,
as well as between these two elements in most of the measured samples, with the exception of Hg
in maternal and cord serum and Se in hair. These results are in agreement with a previous study
carried out in Croatian postpartum women that showed correlations between Hg and Se maternal and
cord blood levels and fish consumption as a source of intake of both elements [52]. As fish/seafood
is the main source of these elements, associations between Hg and Se in different biological samples
were also reported by other authors [41,42,83,125], whereas a study in Sweden with high maternal fish
consumption reported no such association between serum Se and blood MeHg [72]. In contrast to
our findings that Se levels in maternal and cord blood/serum and placenta were positively associated
with seafood consumption, a Swedish study reported no association between Se in cord blood and
fish consumption, which was explained by the fact that women included in the study had low fish
consumption and were taking Se supplements [42].

The complex relationship between Se intake, biomarkers of its status in the body, and risk of
disease has not yet been fully elucidated. Appropriate biomarkers, together with the impact of gender
and genotype, especially polymorphisms, should be studied further and considered when updating
the current dietary recommendations to aid preventive public health measures and therapeutic
clinical practice [117]. There is also conflicting and inconsistent evidence on the protective role of
micronutrients, such as Se in organic compounds (mostly selenomethionine and selenocysteine) in fish
eaters regarding the Hg exposure-related neurotoxic effects in humans. Mechanisms for the interaction
of Hg and Se were proposed [126–128] but are generally not yet fully understood; hence further studies
are required [22,58,129–132].

5. Conclusions

The study of mother–infant pair cohorts in continental and coastal areas of Croatia (a country
that geographically forms the Mediterranean front of Central Europe), that differ in traditional dietary
habits of fish consumption, shows that maternal seafood/fish consumption is associated with increased
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levels of Hg and Se in maternal hair and blood, umbilical cord blood, and also in placenta, as a
tissue sample generally underrepresented as a matrix with determined Hg concentrations. Coastal
participants with a cultural tradition of a fish-rich diet were observed to have higher levels of both
trace elements, toxic Hg and essential Se. New evidence is related to the lack of association between
either maternal serum MT2 and Hg exposure from dental amalgams or MT2A-5A/G (rs28366003)
polymorphism and the levels of Hg and Se in the measured matrices. These results confirm that Hg
levels in maternal hair and blood are associated with seafood consumption and mainly reflect MeHg
exposure, and this is additional evidence of the association of Hg levels in serum and the number
of dental amalgams, reflecting inorganic Hg exposure. The results of this study provide new and
original data on Hg exposure in the vulnerable population groups of mother–infant pairs in this part
of the world. Future studies of Hg and Se effects and their interactions related to fish consumption
should include a detailed seafood consumption questionnaire and collection of detailed data on intake
frequency, serving sizes, and consumed fish species, together with a larger number of study participants
(at least several hundreds or thousands) to assess the impact of the related gene polymorphism.
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