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Abstract: In this paper, we investigated the effects of neonatal exposure to methoxychlor (MXC), a
synthetic organochlorine used as an insecticide with estrogenic, antiestrogenic, and antiandrogenic
activities on ovarian follicles of adult pigs. Piglets were injected with MXC (20 µg/kg body weight)
or corn oil (controls) from postnatal Day 1 to Day 10 (n = 5 per group). Then, mRNA expression,
protein abundance and immunolocalization of growth and differentiation factor 9 (GDF9), bone
morphogenetic protein 15 (BMP15), anti-Müllerian hormone (AMH) and cognate receptors (ACVR1,
BMPR1A, BMPR1B, TGFBR1, BMPR2, and AMHR2), as well as FSH receptor (FSHR) were examined
in preantral and small antral ovarian follicles of sexually mature gilts. The plasma AMH and
FSH levels were also assessed. In preantral follicles, neonatal exposure to MXC increased GDF9,
BMPR1B, TGFBR1, and BMPR2 mRNAs, while the levels of AMH and BMP15 mRNAs decreased.
In addition, MXC also decreased BMP15 and BMPR1B protein abundance. Regarding small antral
follicles, neonatal exposure to MXC upregulated mRNAs for BMPR1B, BMPR2, and AMHR2 and
downregulated mRNAs for AMH, BMPR1A, and FSHR. MXC decreased the protein abundance of
AMH, and all examined receptors in small antral follicles. GDF9 and BMP15 were immunolocalized
in oocytes and granulosa cells of preantral follicles of control and treated ovaries. All analyzed
receptors were detected in the oocytes and granulosa cells of preantral follicles, and in the granulosa
and theca cells of small antral follicles. The exception, however, was FSHR, which was detected only
in the granulosa cells of small antral follicles. In addition, MXC decreased the plasma AMH and FSH
concentrations. In conclusion, the present study may indicate long-term effects of neonatal MXC
exposure on GDF9, BMP15, AMH, and FSH signaling in ovaries of adult pigs. However, the MXC
effects varied at different stages of follicular development. It seems that neonatal MXC exposure
may result in accelerated initial recruitment of ovarian follicles and impaired cyclic recruitment of
antral follicles.

Keywords: oocyte-derived factors; AMH; FSH; methoxychlor; ovary; pig

1. Introduction

Methoxychlor (MXC) is a synthetic organochlorine pesticide that has replaced
dichlorodiphenyltrichloroethane (DDT), which is a highly toxic albeit a potent and di-
versely acting insecticide [1]. Owing to toxicity and negative effects on the endocrine
system, use of MXC is banned in many countries. MXC use, however, continues in de-
veloping countries [2]. Moreover, MXC tends to bioaccumulate in the environment and
measurable amounts of MXC along with its metabolites are detectable in soil, water, the
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atmosphere, plants, and in animals including human tissues, even in regions where this
chemical has not been used [3]. MXC and its metabolites can exert estrogenic, antiestrogenic,
and antiandrogenic activity [4], altering functions of the reproductive system in both males
and females [5,6]. MXC exposure during development has been shown to deleteriously
affect folliculogenesis in rats and lead to ovulation failures and reduced fertility [7].

Growth and development of ovarian follicles, which provides the microenviron-
ment for oocyte maturation, is under the regulation of bi-directional communications
between oocyte and granulosa cells, and between granulosa and theca cells. Intra- and
extra-follicular factors, such as steroids, gonadotropins, and growth factors regulate these
processes [8,9]. For example, members of the transforming growth factor β (TGFβ) super-
family, including bone morphogenetic protein 15 (BMP15), growth differentiation factor
(GDF9), and anti-Müllerian hormone (AMH), are essential in regulating oocyte devel-
opment, folliculogenesis, and ovulation [10]. On the one hand, GDF9 and BMP15 are
oocyte-derived factors which are implicated in the regulation of growth, differentiation and
function of granulosa and theca cells during folliculogenesis, along with steroidogenesis
and various processes essential for oocyte nourishment [10,11]. On the other hand, AMH,
produced by the granulosa cells of growing preantral and small antral follicles, inhibits
primordial follicle recruitment into the growing follicular pool, thus, preventing exhaustion
of the follicular reserve. Furthermore, it has been shown that AMH modulates cyclic
recruitment of small antral follicles by decreasing the responsiveness of growing follicles to
follicle-stimulating hormone (FSH) in mice [12–14]. Biological effects of GDF9, BMP15, and
AMH are the downstream consequences of binding of these factors to the serine/threonine
kinase receptors type II, which induces its formation of a hetero-oligomeric complex with
type I serine/threonine kinase receptors and subsequent activation of the SMAD transcrip-
tion factors [10]. GDF9 activates the Smad 2/3 pathway by binding to the BMP receptor
type II (BMPR2) and TGFβ receptor type I (TGFBR1) [15,16], while BMP15 activates Smad
1/5/8 signaling by binding to the BMP receptor type IB (BMPR1B) and BMPR2 [17]. AMH
acts via the AMH-specific type II receptor (AMHR2), which forms a complex with one of
three type I receptors, i.e., BMPR1A, BMPR1B, or activin A receptor type 1 (ACVR1), and
leads to activation of the downstream signaling molecules Smad 1/5/8 [18,19].

Our previous studies showed that neonatal exposure of piglets to agonists and antago-
nists of sex steroid receptors affected the expression of GDF9, BMP15, and AMH, along with
the expression of their receptors in ovarian follicles in adult life. Furthermore, plasma AMH
and FSH concentrations showed changes [20,21]. In pigs, the neonatal period is crucial for
the establishment of ovarian reserve and female reproductive potency, since formation of
the primordial follicle pool is completed around postpartum Day 25 [22]. Based on these
results, we hypothesize that neonatal exposure to an environmental compound with mixed
steroidal properties affect folliculogenesis in adulthood. Thus, the present study aimed
to characterize long-term alterations in ovarian follicles in gilts after neonatal exposure to
MXC. To achieve this goal, we examined the expression of oocyte-derived factors (GDF9
and BMP15), AMH, and cognate receptors, as well as FSH receptor (FSHR), in a population
of preantral and small antral ovarian follicles using real-time PCR, Western blotting, and
immunohistochemistry. Plasma AMH and FSH were quantified using enzyme-linked
immune sorbent assay (ELISA).

2. Results
2.1. Effect of Neonatal Exposure to MXC on GDF9 and BMP15 Expression in Preantral Follicles
of Gilts

The effects of MXC on mRNA expression and protein abundance of GDF9 and
BMP15 in preantral follicles of gilts were determined using quantitative real-time PCR
(Figure 1a,b) and Western blot analyses (Figure 1a’,b’). GDF9 mRNA expression increased
(Figure 1a, p < 0.05), while BMP15 mRNA expression decreased in preantral follicles
(Figure 1b, p < 0.05) of MXC-treated gilts as compared with those in the control group.
In both the control and MXC-treated pigs, GDF9 and BMP15 proteins were detected in pre-
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antral follicles as bands of approximately 45 kDa (GDF9) and 50 kDa (BMP15), as shown in
Figure 1a’,b’. Neonatal exposure to MXC resulted in significant downregulation of BMP15
protein abundance in the population of preantral follicles (Figure 1b’, p < 0.001), but no
changes in GDF9 protein abundance were observed (Figure 1a’). Positive cytoplasmic GDF9
and BMP15 staining (Figure 1d) was observed, in all sections in the oocytes of primordial,
primary, and secondary follicles, as well as in granulosa cells of primary and secondary
follicles. Notably, while, in the control group, GDF9 positive staining was observed exclu-
sively in the cytoplasm of granulosa cells, GDF9 was localized also in the nucleus in the
MXC-treated group. Replacement of the primary antibodies with non-immune rabbit IgG
was performed for the negative control sections (Figure 1d, insets).

2.2. Effect of Neonatal Exposure to MXC on BMPR2 Expression in Preantral and Small Antral
Follicles of Gilts

The effects of neonatal MXC exposure on mRNA expression and protein abundance
of BMPR2 in preantral and small antral follicles of adult pigs were demonstrated with
quantitative real-time PCR (Figure 1c) and Western blot analyses (Figure 1c’). In preantral
follicles and small antral follicles of both the control and MXC-treated pigs, BMPR2 was
detected as bands of approximately 115 kDa (Figure 1c’). BMPR2 mRNA expression
was upregulated in both preantral (p < 0.001) and small antral (p < 0.01) follicles of gilts
neonatally exposed to MXC as compared with those in the control group (Figure 1c).
BMPR2 protein abundance decreased in small antral follicles (Figure 1c’, p < 0.01), while
no changes were observed in preantral follicles after MXC exposure as compared with
that in the control group (Figure 1c’). BMPR2 was localized in the oocytes and granulosa
cells of preantral follicles, as well as in granulosa and theca cells of small antral follicles in
the control and MXC-treated gilts (Figure 1d). The negative control sections are shown as
insets in Figure 1d.

2.3. Effect of Neonatal Exposure to MXC on ACVR1, BMPR1A, BMPR1B, TGFBR1 Expression
in Preantral and Small Antral Follicles of Gilts

Effects of MXC on mRNA expression and protein abundance of ACVR1, BMPR1A,
BMPR1B, and TGFBR1 in preantral follicles and small antral follicles were examined using
quantitative real-time PCR (Figure 2a–d) and Western blot analyses (Figure 2a’–d’). In
both the control and MXC-treated pigs, examined proteins were detected in preantral
and small antral follicles, as shown in Figure 2a’–d’. Observed molecular weights of
the analyzed proteins were approximately 56 kDa (ACVR1), 60 kDa (BMPR1A), and
55 kDa (BMPR1B and TGFBR1). MXC decreased ACVR1 protein abundance in small
antral follicles as compared with that in the control group (Figure 2a’, p < 0.05), but no
significant changes were observed in mRNA expression in both preantral and small antral
follicles (Figure 2a), as well as in protein abundance in preantral follicles (Figure 2a’).
BMPR1A mRNA expression and protein abundance were significantly lower (p < 0.05 and
p < 0.01, respectively) in small antral follicles of MXC-treated gilts as compared with those
in the control group (Figure 2b,b’), but no changes were observed in preantral follicles
(Figure 2b,b’). BMPR1B mRNA expression was markedly higher in preantral and small
antral follicles of MXC-treated pigs, as compared with those in the control group (Figure 2c,
p < 0.001), while the protein abundance was lower (Figure 2c’, p < 0.05 and p < 0.001,
respectively) as compared with that in the control group. MXC increased TGFBR1 mRNA
expression in preantral follicles as compared with that in the control group (Figure 2d,
p < 0.01), but no significant changes were observed in protein abundance (Figure 2d’). MXC
decreased TGFBR1 protein abundance in small antral follicles as compared with that in the
control group (Figure 2d’, p < 0.01), but no significant changes were observed in mRNA
expression (Figure 2d).
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Figure 1. The mRNA expression and protein abundance of GDF9 (a,a’), BMP15 (b,b’) in preantral 
follicles, as well as BMPR2 (c,c’) in preantral and small antral follicles obtained from the control Figure 1. The mRNA expression and protein abundance of GDF9 (a,a’), BMP15 (b,b’) in preantral

follicles, as well as BMPR2 (c,c’) in preantral and small antral follicles obtained from the control (CTR)
and methoxychlor (MXC-) treated gilts. The mRNA expression (quantitative real-time PCR) is presented
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relative to GAPDH as mean ± SEM (a–c). Relative protein abundance was measured by the densito-
metric method and expressed as the ratio relative to β-actin abundance (mean ± SEM; a’–c’). The
fragment of membranes with bands corresponding to predicted molecular weights is shown in the
above graphs. Asterisks on the graphs denote significant differences between the CTR and MXC-
treated animals (for preantral follicles pool n = 5, for small antral follicle n = 15, * p < 0.05, ** p < 0.01,
*** p < 0.001, Mann–Whitney U test). (d) Localization of GDF9 and BMP15 in preantral (primordial,
primary, and secondary follicle) as well as localization of BMPR2 in preantral and small antral follicles
of the CTR and MXC-treated pigs. GDF9-, BMP15-, and BMPR2-positive staining was observed in
oocytes (asterisks) and granulosa cells (arrows) in primordial, primary, and secondary follicles, while
in small antral follicles, BMPR2-positive staining was detected in granulosa cells (arrows) and theca
cells (arrowheads) in both examined groups. All sections were counterstained with hematoxylin
QS. No positive staining was observed in the negative control sections (d, insets). Prim—primordial
follicles; PF—primary follicles; SF—secondary follicles; AF—antral follicles. Bars = 50 µm.

Positive immunostaining of ACVR1, BMPR1A, BMPR1B, and TGFBR1 was found in
all analyzed sections. In primordial, primary, and secondary follicles ACVR1, BMPR1A,
BMPR1B, and TGFBR1 were localized in oocytes and granulosa cells (Figure 3a). In small
antral follicles of the control and MXC-treated groups, ACVR1, BMPR1A, BMPR1B, and
TGFBR1 were observed in both granulosa and theca cells (Figure 3a). The negative control
sections are shown as insets in Figure 3a,b.

2.4. Effect of Neonatal Exposure to MXC on Plasma AMH Concentration and the Expression of
AMHR2 in Preantral and Small Antral Follicles of Gilts

The plasma AMH concentration was lower in adult pigs after neonatal exposure to
MXC (p < 0.01) as compared with that in the control group (Figure 4a). The effects of
MXC on mRNA expression and protein abundance of AMH and AMHR2 in preantral
follicles and small antral follicles were examined by quantitative real-time PCR (Figure 4b,d,
respectively) and Western blot analyses (Figure 4c,e, respectively). In both the control and
MXC-treated pigs, examined proteins were detected in preantral and small antral follicles
(Figure 4c,e). The approximately observed molecular weights were: 55 kDa (AMHR2) and
61 kDa (AMH). AMH mRNA expression markedly decreased in both preantral and small
antral follicles (Figure 4b, p < 0.01) of MXC-treated gilts as compared with those in the
control group. AMH protein abundance decreased only in small antral follicles (Figure 4c,
p < 0.01) as compared with that in the control group.

MXC increased AMHR2 mRNA expression in small antral follicles as compared with
that in the control group (Figure 4d, p < 0.001), but protein abundance decreased (Figure 4e,
p < 0.01). No significant changes were observed in AMHR2 expression in preantral follicles
(Figure 4d,e).

Positive cytoplasmic AMHR2 immunostaining (Figure 4f) was found, in all examined
sections. AMHR2 was observed in oocytes and granulosa cells of preantral follicles, and
both granulosa and theca cells of small antral follicles. The negative control section is
shown as an inset in Figure 4f.
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Figure 2. ACVR1 (a,a’), BMPR1A (b,b’), BMPR1B (c,c’), and TGFBR1 (d,d’) mRNA and protein abun-
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from the control (CTR) and methoxychlor (MXC-) treated gilts. The mRNA expression (quantitative 
real-time PCR) is presented relative to GAPDH as mean ± SEM (a–d). Relative protein abundance 

Figure 2. ACVR1 (a,a’), BMPR1A (b,b’), BMPR1B (c,c’), and TGFBR1 (d,d’) mRNA and protein
abundance in preantral (primordial, primary, and secondary follicles) and small antral follicles
obtained from the control (CTR) and methoxychlor (MXC-) treated gilts. The mRNA expression
(quantitative real-time PCR) is presented relative to GAPDH as mean ± SEM (a–d). Relative protein
abundance was measured by the densitometric method and expressed as the ratio relative to β-actin
abundance (mean± SEM, a’–d’). The fragment of membranes with bands corresponding to predicted
molecular weights is shown above graphs. Asterisks denote significant differences between the
CTR and treated animals (for preantral follicles pool n = 5, for small antral follicle n = 15, * p < 0.05,
** p < 0.01, *** p < 0.001, Mann–Whitney U test).
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ychlor (MXC-) treated gilts. ACVR1, BMPR1A, BMPR1B, and TGFBR1 positive staining was ob-
served in oocytes (asterisks) and granulosa cells (arrows) of preantral follicles, as well as granulosa 
(arrows) and theca cells (arrowheads) of small antral follicles, in both examined groups. All sections 
were counterstained with hematoxylin QS. There was no positive staining observed in the negative 
control sections (a,b, insets). Prim—primordial follicles; SF—secondary follicles; AF—antral folli-
cles. Bars = 50 μm. 

  

Figure 3. Immunolocalization of ACVR1, BMPR1A, BMPR1B, and TGFBR1 in preantral (primordial,
primary, and secondary follicle) (a) and small antral (b) follicles of the control (CTR) and methoxychlor
(MXC-) treated gilts. ACVR1, BMPR1A, BMPR1B, and TGFBR1 positive staining was observed in
oocytes (asterisks) and granulosa cells (arrows) of preantral follicles, as well as granulosa (arrows)
and theca cells (arrowheads) of small antral follicles, in both examined groups. All sections were
counterstained with hematoxylin QS. There was no positive staining observed in the negative
control sections (a,b, insets). Prim—primordial follicles; SF—secondary follicles; AF—antral follicles.
Bars = 50 µm.
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Figure 4. Plasma anti-Müllerian hormone (AMH) concentration in the control (CTR) and methox-
ychlor (MXC-) treated adult pigs (a) (n = 5 per each group). AMH (b,c) and AMHR2 (d,e) mRNA Figure 4. Plasma anti-Müllerian hormone (AMH) concentration in the control (CTR) and methoxy-

chlor (MXC-) treated adult pigs (a) (n = 5 per each group). AMH (b,c) and AMHR2 (d,e) mRNA and
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protein abundance in preantral (primordial, primary, and secondary follicles) and small antral follicles
obtained from the CTR and MXC-treated pigs (for preantral follicles pool n = 5, for small antral
follicle n = 15). The mRNA expression (quantitative real-time PCR) is presented relative to GAPDH
(b,c). Relative protein abundance was measured by the densitometric method and expressed as
the ratio relative to β-actin abundance (d,e). Fragments of membranes with bands corresponding
to predicted molecular weights are shown above graphs. Data are expressed as the mean ± SEM.
Asterisks on graphs denote significant differences between the CTR and MXC-treated animals
(** p < 0.01, *** p < 0.001, Mann–Whitney U test). (f) Localization of AMHR2 in preantral (primordial,
primary, and secondary follicle) and small antral follicles of the CTR and MXC-treated pigs. AMHR2
immunopositivity was observed in oocytes (asterisks) and granulosa cells (arrows) of preantral
follicles, as well as granulosa (arrows) and theca cells (arrowheads) of small antral follicles, in both
examined groups. All sections were counterstained with hematoxylin QS. There was no positive
staining observed in the negative control section (f, inset). Prim—primordial follicles; SF—secondary
follicles; AF—antral follicles. Bars = 50 µm.

2.5. Effect of Neonatal Exposure to MXC on Plasma FSH Concentration and the Expression of
FSHR in Preantral and Small Antral Follicles of Gilts

The plasma FSH concentration decreased following neonatal exposure to MXC (p < 0.05)
as compared with that in the control group (Figure 5a). The effects of MXC on mRNA
expression and protein abundance of FSHR in preantral follicles and small antral folli-
cles were examined by quantitative real-time PCR (Figure 5b) and Western blot analyses
(Figure 5c). In both the control and MXC-treated pigs, examined proteins were detected in
preantral and small antral follicles, as shown in Figure 5c. The observed FSHR molecular
weight was approximately 78 kDa. No statistically significant changes in FSHR mRNAs
(Figure 5b) and protein abundance (Figure 5c) were observed in the population of preantral
follicles as compared with those in the control group. FSHR mRNA expression (Figure 5b)
and protein abundance (Figure 5c) were downregulated in small antral follicles (p < 0.001)
of MXC-treated gilts as compared with those in the control group. Positive FSHR immunos-
taining (Figure 5d) was observed in the oocytes and granulosa cells of preantral and small
antral follicles, in all examined sections. The negative control section is shown as an inset
in Figure 5d.
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Figure 5. Plasma follicle-stimulating hormone (FSH) concentration in the control (CTR) and methoxy-
chlor (MXC-) treated adult pigs (a) (n = 5 per each group). FSHR (b,c) mRNA and protein abundance
in preantral (primordial, primary, and secondary follicles), as well as small antral follicles obtained
from the CTR and MXC-treated gilts (for preantral follicles pool n = 5, for small antral follicle n = 15).
The mRNA expression (quantitative real-time PCR) is presented relative to GAPDH (b). Relative
protein abundance was measured by the densitometric method and expressed as the ratio relative
to β-actin abundance (c). Membrane fragments with bands corresponding to predicted molecular
weights are shown above graphs. Data are expressed as the mean ± SEM. Asterisks on graphs
denote significant differences between the CTR and MXC-treated animals (* p < 0.05, *** p < 0.001,
Mann–Whitney U test). (d) Localization of FSHR in preantral (primordial, primary, and secondary
follicle) and small antral follicles of the CTR and MXC-treated pigs. FSHR immunopositivity was
observed in oocytes (asterisks) and granulosa cells (arrows) of preantral follicles, as well as granulosa
cells (arrows) of small antral follicles, in both examined groups. Hematoxylin QS was used for
counterstaining sections. There was no positive staining observed in the negative control section
(d, insets). Prim—primordial follicles; PF—primary follicles; SF—secondary follicles; AF—antral
follicles. Bars = 50 µm.
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3. Discussion

Recently, we have reported long-term effects of neonatal MXC exposure on the tran-
scriptome of luteal tissue in gilts. Our data suggest an earlier onset of structural luteolysis
and a crucial role of steroid milieu in ovarian development during the neonatal window [23].
We have also found that neonatal exposure of piglets to agonists or antagonists of sex steroid
receptors, including environmental estrogen 4-tert-octylphenol, influenced the action of
intra-ovarian factors including BMP15, GDF9, and AMH, which suggested impaired initial
ovarian follicle recruitment [20,21]. To extend this line of research, in the present study, we
investigated the long-term effects of MXC on the expression of oocyte-derived factors and
their receptors, as well as on AMH and FSH signaling in ovarian follicles of adult pigs.

Oocyte-derived GDF9 and BMP15 are essential in the initial recruitment of follicles
and in their development to the preantral stage [16,24]. The results of the current study
show that neonatal exposure to MXC elevated GDF9 mRNAs, while reducing BMP15
mRNAs and protein abundance in preantral follicles of gilts. In vivo or in vitro studies in
rats and buffalo have shown that GDF9 treatment enhanced progression of primordial and
primary follicles into small preantral follicles [25,26]. Our previous research demonstrated
increased GDF9 expression in preantral follicles of gilts exposed neonatally to androgen or
antiandrogen [20]. Therefore, it seems that elevated GDF9 mRNAs in preantral follicles of
gilts exposed neonatally to MXC is due to its antiandrogenic property which may accelerate
initial follicle recruitment. However, no changes in GDF9 protein abundance were observed.
In addition, depletion of BMP15 has been shown to disrupt ovarian function and female
fertility [27]. Since BMP15 is also responsible for early follicle development [24], diminished
BMP15 expression in preantral follicles of MXC-treated gilts, observed herein, may be an
additional factor responsible for disrupted folliculogenesis.

Synergistic cooperation of GDF9 and BMP15 heterodimers and homodimers within
ovarian follicles has been reported [10]. GDF9 and BMP15 act via the same type II receptor,
i.e., BMPR2, but different type I receptors. TGFBR1 is a type I receptor for GDF9 [15,16],
while BMPR1B is associated with BMP15 action [17]. In the current study, expressions of
TGFBR1, BMPR1B, and BMPR2 were upregulated in preantral follicles of gilts after neonatal
MXC exposure, but only at the mRNA level. Changes at the protein level were observed
only for BMPR1B, for which protein abundance was lower in preantral follicles of MXC-
treated gilts. It is noteworthy that no correlations between gene and protein expression
levels were observed, not only for GDF9 and BMP15 receptors. These findings are not
surprising in light of studies by others that demonstrated low correlation between protein
and mRNA concentrations in multicellular organisms [28,29]. Moreover, it was shown that
the correlations are particularly poor for genes of signal transduction and transcriptional
regulation [28]. It may be due to various biological factors, including processes regulated
by post-transcriptional, translational, and protein degradation mechanisms [29]. The
impact of MXC may involve post-transcriptional gene regulation such as via microRNA
(miRNA) action, since we have observed changes in the expression of specific miRNAs
in luteal tissue in response to neonatal MXC exposure. These results suggested miRNAs
as the potential mediators of the long-term MXC effect on luteal function [23]. Notably,
Yi et al. [30] reported that defective BMPR1B led to irregular estrous cycles and defects
in cumulus expansion, which made fertilization impossible. Since BMPR1B is a type I
BMP15 receptor, it is likely that follicle maturation and fertility in adult pigs are affected
by diminished protein abundance of both BMP15 and BMPR1B in preantral follicles after
neonatal MXC exposure.

AMH, which is expressed in granulosa cells of growing follicles, is another regulator of
initial follicle recruitment owing to its inhibition of primordial follicle recruitment into the
growing pool [31]. Uzumcu et al. [32] demonstrated that, in rats, neonatal MXC exposure
inhibited ovarian follicle development along with a reduction in antral follicles number.
Indeed, our previous study on neonatal ovary showed that MXC treatment decreased
the percentage of developing follicles in piglets [33]. In the present study, we observed
reduced plasma AMH and AMH mRNAs in preantral follicles of gilts exposed to MXC in
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neonatal life. AMH exerts its biological function by binding to AMHR2 which dimerizes
with ACVR1, BMPR1A, or BMPR1B [18,19]. We observed no changes in the expressions
of ACVR1, BMPR1A, and AMHR2 in preantral follicles in response to neonatal treatment
with MXC; only BMPR1B protein abundance was downregulated, as previously mentioned.
Considering that BMPR1B is a type I receptor for both BMP15 and AMH, downregulation
of BMPR1B and BMP15 in preantral follicles of gilts and diminished plasma AMH upon
neonatal MXC exposure may alter AMH and BMP15 signaling. This, in turn, would disrupt
maturation of ovarian follicles and accelerate initial follicle recruitment, thereby, causing
premature depletion of ovarian follicles.

Although initial recruitment and development of preantral follicles is gonadotropin
independent, FSH can accelerate the onset of primordial follicle growth [31]. Studies in
mice have shown that secondary follicles need sufficient FSH to develop and survive [34],
and AMH reduced preantral follicles responsiveness to FSH, thereby, inhibiting follicle
growth [35]. Furthermore, reduced plasma FSH has been observed in MXC-treated rats
and mice [36,37]. In our current study with gilts, neonatal exposure to MXC decreased
plasma FSH, which may lead to impaired development and survival of secondary follicles.
Our previous study showed that neonatal treatment with androgenic and antiandrogenic
compounds diminished plasma AMH and FSH [21]. Therefore, it appears that, as in
the case for GDF9, MXC’s long-term effects on AMH and FSH levels may be due to its
antiandrogenic property, which may have the greatest impact on preantral follicles growth
in the adult pig. Indeed, androgens are more important than estrogens at early stages of
folliculogenesis [38].

However, estrogens are crucial for the FSH-dependent maturation of follicles beyond
the preantral stage [39]. Therefore, with its mixed steroidal properties, i.e., estrogenic,
antiestrogenic, and/or antiandrogenic, MXC may have detrimental effects not only on
preantral follicle development but also on the development and maturation of antral
follicles. GDF9 and BMP15 have been shown to control the maturation and function
of granulosa and theca cells, which are crucial for steroidogenesis, oocyte maturation,
ovulation, and luteolysis [10]. Jayawardana et al. [40], suggested that GDF9 was linked
to a process of antral follicle selection. In addition, estradiol was found to upregulate
TGFBR1 and BMPR2 mRNAs in bovine granulosa cells. Our recent study in the gilt model
showed that neonatal exposure to an estrogenic compound increased TGFBR1 and BMPR2
expression and decreased BMPR1B expression, while antiandrogen exposure upregulated
BMPR1B and BMPR2 and downregulated TGFBR1 in small antral follicles [20]. In the
present study, neonatal MXC exposure resulted in higher BMPR2 and BMPR1B mRNAs,
but lower protein abundance for BMPR2, BMPR1B, and TGFBR1 in small antral follicles.
These findings confirm that hormonally active compounds may affect GDF9 and BMP15
signaling in antral follicles and suggest that neonatal MXC exposure may have a long-term
effect on the development and function of small antral follicles in adult pigs.

Survival and differentiation of early antral follicles depend on FSH, which is involved
in follicular growth, maturation, and selection of dominant follicles and also, in estradiol
production [41]. Moreover, upon stimulated by FSH, AMH inhibits estradiol production
and diminishes antral follicles responsiveness to FSH [42]. In the current study, neona-
tal treatment with MXC decreased AMH, BMPR1A, and FSHR mRNAs, and increased
AMHR2 and BMPR1B mRNAs in small antral follicles of adult pigs. However, the protein
abundance of AMH, BMPR1s, AMHR2, and FSHR decreased after neonatal exposure to
MXC. Moreover, as mentioned above, AMH and FSH plasma concentrations were lower in
adult pigs exposed neonatally to MXC. These findings suggest that MXC has an impact on
the cyclic recruitment of ovarian follicles, and it may impair estradiol synthesis. Similar
results were observed in our previous study, where neonatal exposure to antiandrogenic,
estrogenic, or antiestrogenic compounds altered the AMH and FSH signaling in small
antral follicles of adult pigs, which possibly could lead to disruption in the maturation of
ovarian follicles [21]. Early-life exposure to environmental toxicants may result in ovar-
ian reprogramming with consequences that could be observed in adulthood [43]. Thus,



Int. J. Mol. Sci. 2022, 23, 2780 13 of 18

our results confirm that neonatal exposure to the environmental toxicant MXC may have
long-term detrimental effects not only on small antral follicle development, but also on the
pituitary-ovarian axis.

In the current study, we show that GDF9 and BMP15, their cognate receptors, as well
as AMH and FSH receptors are localized in oocytes and granulosa cells of preantral follicles
in the control and MXC-treated gilts. This is consistent with the data in the literature and
our earlier research [20,21,44]. Notably, in the control group, GDF9 is localized only in
the cytoplasm of granulosa cells, while in follicles of pigs exposed neonatally to MXC,
GDF9 is localized both in the cytoplasm and nuclei of granulosa cells of primary and
secondary follicles. A similar pattern of staining was observed in our previous study, where
neonatal treatment with an agonist or antagonist of androgen and estrogen receptors also
changed localization of GDF9 in preantral follicles of adult pigs [20]. Although GDF9
nuclear expression has been observed in normal and cancerous human renal tubular
epithelial cells suggesting that intracellular redistribution of GDF9 may be involved in
cancer progression [45,46], data concerning nuclear GDF9 expression are limited, and it
needs further research. Moreover, in small antral follicles obtained from the control and
MXC-treated groups, receptors for GDF9, BMP15, and AMH were detected in granulosa and
theca cells, while FSHR was detected only in granulosa cells. Our findings are consistent
with the data in the literature that show localization of these receptors in the porcine
ovary [20,21,44,47]. Our results show that neonatal exposure to MXC has no impact on the
localization of examined proteins in preantral and small antral follicles of adult pigs.

4. Materials and Methods
4.1. Animals and Tissue Preparation

The animal care and experiments were consistent with national guidelines and were
followed by the guidelines of the Local Ethics Committee at the Jagiellonian University
in Krakow, Poland (permit numbers 150/2013 and 123/2014). Ten sexually mature gilts
at 10–11 months of age (Large White × Polish Landrace) were used. During the neonatal
period, piglets were randomly divided into two groups and injected with MXC (Sigma-
Aldrich, St. Louis, MO, USA) at 20 µg/kg body weight (n = 5) or vehicle only (corn oil)
(CTR, n = 5). Animals received daily subcutaneous injections from postnatal Day 1 to Day
10. The dose of MXC was based on data in the literature [7]. Animals were maintained
until sexual maturity and, following two estrous cycles, animals were slaughtered at a
local abattoir for ovaries collection between Day 9 and Day 10 of the estrous cycle. Before
slaughtering, blood was collected from the jugular vein, and then plasma fraction was
centrifugated at 2000× g for 10 min at 4 ◦C. Following excision, the ovaries were transported
to the laboratory in ice-cold phosphate-buffered saline ((PBS) pH 7.4, PAA The Cell Culture
Company, Piscataway, NJ, USA) containing antibiotic/antimycotic solution (AAS 10 µl/mL,
PAA The Cell Culture Company, Piscataway, NJ, USA). Small antral follicles (2–4 mm) were
dissected from the ovary, fixed in Bouin’s solution for immunohistochemistry or bisected,
and snap-frozen in liquid nitrogen for RNA or protein isolation (n = 15 per each group,
3 small antral follicles per each animal). The population of preantral follicles (primordial,
primary, and early secondary) were enzymatically digested from the ovarian cortex, as
previously described [20]. Concisely, each ovary was cut longitudinally in halves and
the medulla was removed. After rinsing of ovarian cortexes in Dulbecco’s PBS medium
(PAA The Cell Culture Company, Piscataway, NJ, USA) uniform-sized pieces measuring
1 × 1 × 1 mm were obtained using a tissue slicer (Tissue Slicer Coronal, World Precision
Instruments, Sarasota, FL, USA). Next, the fragments were placed in digestion medium:
10 mL of PBS, enriched with 0.08 mg/mL Liberase TH (Thermolysin High, Sigma-Aldrich,
St. Louis, MO, USA) and 0.2 mg/mL DNase (Sigma-Aldrich, St. Louis, MO, USA), and
incubated at 37 ◦C with gentle agitation for 120 min and additional manual pipetting every
30 min to release the follicles from the stroma. Enzymatic digestion was stopped by the
addition of an equal volume of cold (4 ◦C) PBS supplemented with 10% fetal bovine serum
(Sigma-Aldrich, St. Louis, MO, USA). Afterward, the digested ovarian cortex was filtered
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through nylon filters (Greiner Bio-One GmbH, Frickenhausen, Germany) with a filter of
pore size of 70 µm, and then 40 µm. The flow-through was centrifuged at 5000× g for
10 min at 4 ◦C. The pellet was snap-frozen in liquid nitrogen for RNA or protein isolation
(n = 5 per each group). Sections of the cortex from each ovary were fixed in Bouin’s solution
for immunohistochemistry.

4.2. Hormone Assays

The plasma AMH and FSH concentrations (n = 5 per each group) were measured by
ELISA using a pig Mullerian-inhibiting factor ELISA kit (cat. no. E0228p Wuhan EIAab
Science Co., Ltd., Wuhan, China) and a pig follitropin subunit beta ELISA kit (cat. no.
E0830p, Wuhan EIAab Science Co., Ltd.), following the manufacturer’s instructions. The
assay sensitivity was 0.091 ng/mL for AMH and 0.39 mIU/ml for FSH. The intra-assay
CV was ≤5.6% and 7.2% and the inter-assay CV was ≤7.8% and 10.1% for AMH and FSH,
respectively. All samples were assayed in duplicate, and mean values were used for further
evaluations.

4.3. Real-Time PCR

Total RNA was isolated from the population of preantral follicles (n = 5 per each group)
and small antral follicles (n = 15, 3 small antral follicles per each animal) using TRI Reagent
solution (Ambion, Austin, TX, USA), in accordance with the protocol of the manufacturer.
The concentration and quality of extracted RNAs were determined using a NanoDrop
ND2000 Spectrophotometer (Thermo Scientific, Wilmington, DE, USA). One microgram of
total RNA was reverse transcribed to cDNA using a high-capacity cDNA reverse transcrip-
tion kit (Applied Biosystems, Foster City, CA, USA). Real-time quantitative PCR (qPCR) of
cDNAs was performed using TaqMan Gene Expression Master Mix (Applied Biosystems)
and porcine-specific TaqMan Gene Expression Assay (Applied Biosystems) for: AMH (assay
ID: Ss03383931_m1), AMHR2 (assay ID: Ss04321772_m1), BMP15 (assay ID: Ss04248749_s1),
BMPR1A (assay ID: Ss04248558_m1), BMPR1B (assay ID: Ss03380019_u1), BMPR2 (assay
ID: Ss04248598_m1), FSHR (assay ID: Ss03384581_u1), GDF9 (assay ID: Ss03391680_m1),
TGFBR1 (assay ID: Ss03392139_m1), and glyceraldehyde-3-phosphate dehydrogenase
((GAPDH) assay ID: Ss03373286_u1) as endogenous control, following the manufacturers’
instructions. PCR amplifications were run on a StepOne Real-Time PCR System (Applied
Biosystems). ACVR1 mRNA expression was measured using primers established based
on the gene sequences found in the Ensembl database utilizing the Primer3 software (http:
//bioinfo.ut.ee/primer3/, accessed on 8 February 2022) and the analysis was conducted
with SYBR Green master mix (Applied Biosystems). Amplifications were implemented us-
ing the StepOne Real-Time PCR System, according to the cycling conditions recommended
by the manufacturer, including post-amplification melting curve analysis (ramp +0.5 ◦C)
to confirm the absence of primer dimmers. Primers used were as follows: forward, 5′-
CATCAGCTTAGCCAGAGAGGTT-3′ and reverse, 5′-AGGTGGATTGCTTCGATTCTTA-3′

for ACVR1; forward, 5′-TGCTGTAGCCAAATTCATTGTC-3′ and reverse,
5′-GATGACATCAAGAAGGTGGTGA-3′, for GAPDH. Genomic DNA amplification con-
tamination was checked by control experiments based on omitting reverse transcriptase
during the reverse transcription step. Each sample was run in duplicate together with a
non-template control. Relative mRNA quantification was done using the real-time PCR
Miner algorithm [48] and GAPDH for normalization.

4.4. Western Blot

Extraction of proteins from the population of preantral follicles (n = 5 per each group)
and small antral follicles (n = 15, 3 small antral follicles per each animal) and Western
blot analysis were carried out as before [20]. Briefly, equal amounts of isolated proteins
(20 µg) were resolved by electrophoresis under reducing conditions on 12% sodium do-
decyl sulfate-polyacrylamide gel [49] and electroblotted onto poly(vinylidene fluoride)
(PVDF) membranes. Blotted membranes were blocked for non-specific binding sites upon
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incubation with Tris-buffered saline (0.05 M Tris-HCl, pH 7.4) + 0.2% Tween 20 (TBST)
containing 5% (v/v) non-fat dry milk for 1 h (room temperature, with shaking), followed
by overnight incubation at 4 ◦C with primary antibodies (the antibodies and their suitable
dilutions are listed in Table 1). Next, the membranes were incubated for 1 h at room
temperature with secondary anti-rabbit (in the case of AMH, AMHR2, BMP15, BMPR1A,
BMPR1B, BMPR2, FSHR, GDF9, and TGFBR1) or anti-goat (for ACVR1) antibodies linked
to horseradish peroxidase (Jackson ImmunoResearch, Cambridge, UK) at 1:10000 antibody
dilution. The antibody–antigen binding sites were detected with chemiluminescence by
Western Bright Quantum substrate (Advansta, Menlo Park, CA, USA) and visualized
using ChemiDoc XRS + System (Bio-Rad Labs, GmbH, Munchen, Germany). Afterward,
each membrane was stripped and reprobed with monoclonal mouse anti-β-actin anti-
body (1:3000, Sigma-Aldrich) followed by horseradish peroxidase-conjugated anti-mouse
IgG (1:10000, Jackson ImmunoResearch). Bands were quantitated by the densitometric
method using the ImageJ software (National Institutes of Health, Bethesda, MD, USA) and
normalized to corresponding β-actin protein abundance.

Table 1. List of primary antibodies used for Western blot and immunohistochemistry.

Antibody
Dilution Used for

Species Supplier
WB IHC

Anti-ACVR1 1:1000 1:200 goat polyclonal Acris Antibodies GmbH, Herford,
Germany (AP22507PU-N, Lot no. 19042)

Anti-AMH 1:1000 - rabbit polyclonal Acris Antibodies GmbH, Herford,
Germany (TA336233, Lot no. OC22813)

Anti-AMHR2 1:1000 1:100 rabbit polyclonal LifeSpan BioSciences Inc., Seattle, WA,
USA (LS-B11943, Lot no. 44994)

Anti-BMP15 1:500 1:50 rabbit polyclonal Biorbyt Ltd., Cambridge, UK (orb377952, Lot no.
CQ2185)

Anti-BMPR1A 1:1000 1:100 rabbit polyclonal
Kindly provided by Prof. C. H. Heldin
(Ludwig Institute for Cancer Research

Ltd., Uppsala, Sweden)

Anti-BMPR1B 1:1000 1:100 rabbit polyclonal Kindly provided by Prof. C. H. Heldin (Ludwig
Institute for Cancer Research Ltd., Uppsala, Sweden)

Anti-BMPR2 1:1000 1:100 rabbit polyclonal
Kindly provided by Prof. C. H.

Heldin (Ludwig Institute for Cancer Research Ltd.,
Uppsala, Sweden)

Anti-FSHR 1:1000 1:100 rabbit polyclonal Bioss Antibodies, Woburn, MA, USA
(BS-0895R, Lot no. AF12207065)

Anti-GDF9 1:1000 1:500 rabbit polyclonal Abcam Cambridge, UK (ab93892, Lot no.
GR269496-1)

Anti-TGFBR1 1:1000 1:50 rabbit polyclonal Abgent San Diego, CA, USA (AP7822c, Lot no.
SA110808BQ)

Abbreviations: ACVR1—activin A receptor type 1; AMH—anti-Müllerian hormone; AMHR2—anti-Müllerian
hormone type II receptor; BMP15—bone morphogenetic protein 15; BMPR1A—bone morphogenetic protein
receptor type 1A; BMPR1B—bone morphogenetic protein receptor type 1B; BMPR2—bone morphogenetic protein
receptor type 2; FSHR—follicle-stimulating hormone receptor; GDF9—growth differentiation factor 9; TGFBR1—
transforming growth factor beta receptor 1; IHC—immunohistochemistry; WB—Western blot.

4.5. Immunohistochemistry

Immunohistochemistry was conducted as before [20,21]. The blocking step prior to
incubation with primary antibodies was performed with either 5% (v/v) normal goat serum
(in case of AMHR2, BMP15, BMPR1A, BMPR1B, BMPR2, FSHR, GDF9, and TGFBR1) or
5% (v/v) horse serum (for ACVR1). Following overnight incubation at 4 ◦C with primary
antibodies (the antibodies and their suitable dilutions are listed in Table 1), the sections were
incubated with respective biotinylated secondary antibodies (anti-rabbit or anti-goat IgGs,
Vector Laboratories, Burlingame, CA, USA) at 1:300 dilution for 1.5 h at room temperature.
Next, sections were incubated with avidin-biotinylated horseradish peroxidase complex
(ABC/HRP, Dako, Glostrup, Denmark) at 1:100 dilution for 40 min at room temperature.
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The antigen–antibody complex was visualized with 3,3´-diaminobenzidine (DAB, Sigma-
Aldrich, St. Louis, MO, USA) as a chromogen staining substrate. The sections were
counterstained with hematoxylin QS (Vector Laboratories, Burlingame, CA, USA). All
negative control sections were obtained by performing a parallel staining by replacing the
primary with non-immune rabbit or goat IgG to ensure the absence of non-specific staining.
Tissue sections (n = 5 per each group) were analyzed under light microscopy (Nikon Eclipse
Ni-U microscope) and photographed with a Nikon Digital DS-Fi1-U3 camera (Nikon,
Tokyo, Japan) with the corresponding software.

4.6. Statistical Analysis

Statistical analysis was performed using the Statistica v.13.1 program (StatSoft, Inc.,
Tulsa, OK, USA). The data are all shown as the mean ± SEM. Due to lack of normal
distribution, the nonparametric Mann–Whitney U test was used to determine significant
differences between the control and MXC-treated groups. Differences were considered
statistically significant at p < 0.05.

5. Conclusions

The current study confirms that proper ovarian function in adulthood is programmed
during the neonatal window. Neonatal exposure to MXC affected GDF9 and BMP15
signaling in adult porcine ovaries. However, the MXC effects varied among different stages
of follicular development, showing more prominent changes for BMP15 signaling in small
antral follicles. Our findings suggest that neonatal MXC exposure renders long-term effects
that may result in accelerated initial recruitment of ovarian follicles leading to premature
ovarian failure. Moreover, neonatal MXC treatment in gilts reduced plasma AMH and FSH
levels, which further indicated a possibly accelerated primordial follicle recruitment and
impaired cyclic recruitment of antral follicles. It seems that the mixed steroidal activity of
MXC is the primary cause of its detrimental effects on the development of both preantral
and small antral follicle. Since environmental pollutants with endocrine disruptive effects
are extensively used in modern living, their long-term effects on female reproduction and
fertility should be thoroughly investigated.

Author Contributions: Conceptualization, P.W. and K.K.-S.; methodology, P.W., M.S. and K.K.-S.;
resources, M.K.; investigation, P.W. and M.G.; formal analysis, P.W. and K.K.-S.; visualization, P.W.;
writing, P.W. and K.K.-S.; supervision, K.K.-S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by the Ministry of Sciences and Higher Education for Jagiel-
lonian University in Krakow, subvention number N18/DBS/000006. The open-access publication of
this article was funded by the program “Excellence Initiative—Research University” at the Jagiel-
lonian University in Kraków, Poland.

Institutional Review Board Statement: The study was conducted in accordance with national
guidelines and was approved by the Local Ethics Committee at the Jagiellonian University in Kraków,
Poland (permit numbers 150/2013 and 123/2014).

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available from the corresponding author on reasonable request.

Acknowledgments: The authors would like to thank C. H. Heldin (Ludwig Institute for Cancer
Research Ltd., Uppsala, Sweden) for providing the BMPR1A, BMPR1B, and BMPR2 antibodies and
to M. Duda (Jagiellonian University in Krakow) for technical support in preantral follicle isolation.
The authors are very grateful to Bandana Chatterjee (University of Texas Health San Antonio) for the
English language review.

Conflicts of Interest: The authors declare no conflict of interest.



Int. J. Mol. Sci. 2022, 23, 2780 17 of 18

References
1. Hwang, K.-A.; Choi, K.-C. Endocrine-disrupting chemicals with estrogenicity posing the risk of cancer progression in estrogen-

responsive organs. Adv. Mol. Toxicol. 2015, 9, 1–33.
2. WHO (World Health Organization). Global Insecticide Use for Vector-Borne Disease Control: A 10-Year Assessment, 2000–2009, 5th ed.;

WHO/HTM/NTD/VEM/WHOPES/2011; WHO (World Health Organization): Geneva, Switzerland, 2011; Available online:
http://whqlibdoc.who.int/publications/2011/9789241502153_eng.pdf (accessed on 10 January 2012).

3. Persistent Organic Pollutants Review Committee. Methoxychlor: Draft Risk Profile. Available online: https://echa.europa.eu/
documents/10162/b65a738e-b50f-64e5-cbb0-f2711d49c25e (accessed on 31 August 2021).

4. Gaido, K.W.; Maness, S.C.; McDonnell, D.P.; Dehal, S.S.; Kupfer, D.; Safe, S. Interaction of methoxychlor and related compounds
with estrogen receptor alpha and beta, and androgen receptor: Structure-activity studies. Mol. Pharmacol. 2000, 58, 852–858.
[CrossRef] [PubMed]

5. Amstislavsky, S.Y.; Amstislavskaya, T.G.; Amstislavsky, V.S.; Tibeikina, M.A.; Osipov, K.V.; Eroschenko, V.P. Reproductive
abnormalities in adult male mice following preimplantation exposures to estradiol or pesticide methoxychlor. Reprod. Toxicol.
2006, 21, 154–159. [CrossRef]

6. Patel, S.; Zhou, C.; Rattan, S.; Flaws, J.A. Effects of endocrine-disrupting chemicals on the Ovary. Biol. Reprod. 2015, 93, 20.
[CrossRef] [PubMed]

7. Armenti, A.E.; Zama, A.M.; Passantino, L.; Uzumcu, M. Developmental methoxychlor exposure affects multiple reproductive
parameters and ovarian folliculogenesis and gene expression in adult rats. Toxicol. Appl. Pharmacol. 2008, 233, 286–296. [CrossRef]
[PubMed]

8. Eppig, J.J. Oocyte control of ovarian follicular development and function in mammals. Reproduction 2001, 122, 829–838. [CrossRef]
9. Kidder, G.M.; Vanderhyden, B.C. Bidirectional communication between oocytes and follicle cells: Ensuring oocyte developmental

competence. Can. J. Physiol. Pharmacol. 2010, 88, 399–413. [CrossRef]
10. Sanfins, A.; Rodrigues, P.; Albertini, D.F. GDF-9 and BMP-15 direct the follicle symphony. J. Assist. Reprod. Genet. 2018, 35,

1741–1750. [CrossRef]
11. De Castro, F.C.; Cruz, M.H.; Leal, C.L. Role of growth differentiation factor 9 and bone morphogenetic protein 15 in ovarian

function and their importance in mammalian female fertility—A review. Asian-Australas. J. Anim. Sci. 2016, 29, 1065–1074.
[CrossRef]

12. Durlinger, A.L.; Gruijters, M.J.; Kramer, P.; Karels, B.; Kumar, T.R.; Matzuk, M.M.; Rose, U.M.; de Jong, F.H.; Uilenbroek, J.T.;
Grootegoed, J.A.; et al. Anti-Müllerian hormone attenuates the effects of FSH on follicle development in the mouse ovary.
Endocrinology 2001, 142, 4891–4899. [CrossRef]

13. Durlinger, A.L.; Gruijters, M.J.; Kramer, P.; Karels, B.; Ingraham, H.A.; Nachtigal, M.W.; Uilenbroek, J.T.; Grootegoed, J.A.;
Themmen, A.P. Anti-Müllerian hormone inhibits initiation of primordial follicle growth in the mouse ovary. Endocrinology 2002,
143, 1076–1084. [CrossRef]

14. Salmon, N.A.; Handyside, A.H.; Joyce, I.M. Oocyte regulation of anti-Müllerian hormone expression in granulosa cells during
ovarian follicle development in mice. Dev. Biol. 2004, 266, 201–208. [CrossRef] [PubMed]

15. Vitt, U.A.; Mazerbourg, S.; Klein, C.; Hsueh, A.J. Bone morphogenetic protein receptor type II is a receptor for growth differentia-
tion factor-9. Biol. Reprod. 2002, 67, 473–480. [CrossRef] [PubMed]

16. Mazerbourg, S.; Klein, C.; Roh, J.; Kaivo-Oja, N.; Mottershead, D.G.; Korchynskyi, O.; Ritvos, O.; Hsueh, A.J. Growth differen-
tiation factor-9 signaling is mediated by the type I receptor, activin receptor-like kinase 5. Mol. Endocrinol. 2004, 18, 653–665.
[CrossRef] [PubMed]

17. Peng, J.; Li, Q.; Wigglesworth, K.; Rangarajan, A.; Kattamuri, C.; Peterson, R.T.; Eppig, J.J.; Thompson, T.B.; Matzuk, M.M. Growth
differentiation factor 9:bone morphogenetic protein 15 heterodimers are potent regulators of ovarian functions. Proc. Natl. Acad.
Sci. USA 2013, 110, E776–E785. [CrossRef] [PubMed]

18. Di Clemente, N.; Josso, N.; Gouédard, L.; Belville, C. Components of the anti-Müllerian hormone signaling pathway in gonads.
Mol. Cell. Endocrinol. 2003, 211, 9–14. [CrossRef]

19. Gruijters, M.J.; Visser, J.A.; Durlinger, A.L.; Themmen, A.P. Anti-Müllerian hormone and its role in ovarian function. Mol. Cell.
Endocrinol. 2003, 211, 85–90. [CrossRef]

20. Knapczyk-Stwora, K.; Grzesiak, M.; Witek, P.; Duda, M.; Koziorowski, M.; Slomczynska, M. Neonatal exposure to agonists and
antagonists of sex steroid receptors induces changes in the expression of oocyte-derived growth factors and their receptors in
ovarian follicles in gilts. Theriogenology 2019, 134, 42–52. [CrossRef] [PubMed]

21. Knapczyk-Stwora, K.; Grzesiak, M.; Witek, P.; Duda, M.; Koziorowski, M.; Slomczynska, M. Neonatal exposure to agonists and
antagonists of sex steroid receptors affects AMH and FSH plasma level and their receptors expression in the adult pig ovary.
Animals 2020, 10, 12. [CrossRef]

22. Monniaux, D.; Clément, F.; Dalbiès-Tran, R.; Estienne, A.; Fabre, S.; Mansanet, C.; Monget, P. The ovarian reserve of primordial
follicles and the dynamic reserve of antral growing follicles: What is the link? Biol. Reprod. 2014, 90, 85. [CrossRef]

23. Witek, P.; Enguita, F.J.; Grzesiak, M.; Costa, M.C.; Gabriel, A.; Koziorowski, M.; Slomczynska, M.; Knapczyk-Stwora, K. Effects of
neonatal exposure to methoxychlor on corpus luteum in gilts: A transcriptomic analysis. Mol. Reprod. Dev. 2021, 88, 238–248.
[CrossRef] [PubMed]

http://whqlibdoc.who.int/publications/2011/9789241502153_eng.pdf
https://echa.europa.eu/documents/10162/b65a738e-b50f-64e5-cbb0-f2711d49c25e
https://echa.europa.eu/documents/10162/b65a738e-b50f-64e5-cbb0-f2711d49c25e
http://doi.org/10.1124/mol.58.4.852
http://www.ncbi.nlm.nih.gov/pubmed/10999957
http://doi.org/10.1016/j.reprotox.2005.07.009
http://doi.org/10.1095/biolreprod.115.130336
http://www.ncbi.nlm.nih.gov/pubmed/26063868
http://doi.org/10.1016/j.taap.2008.09.010
http://www.ncbi.nlm.nih.gov/pubmed/18848953
http://doi.org/10.1530/rep.0.1220829
http://doi.org/10.1139/Y10-009
http://doi.org/10.1007/s10815-018-1268-4
http://doi.org/10.5713/ajas.15.0797
http://doi.org/10.1210/endo.142.11.8486
http://doi.org/10.1210/endo.143.3.8691
http://doi.org/10.1016/j.ydbio.2003.10.009
http://www.ncbi.nlm.nih.gov/pubmed/14729489
http://doi.org/10.1095/biolreprod67.2.473
http://www.ncbi.nlm.nih.gov/pubmed/12135884
http://doi.org/10.1210/me.2003-0393
http://www.ncbi.nlm.nih.gov/pubmed/14684852
http://doi.org/10.1073/pnas.1218020110
http://www.ncbi.nlm.nih.gov/pubmed/23382188
http://doi.org/10.1016/j.mce.2003.09.005
http://doi.org/10.1016/j.mce.2003.09.024
http://doi.org/10.1016/j.theriogenology.2019.05.018
http://www.ncbi.nlm.nih.gov/pubmed/31132720
http://doi.org/10.3390/ani10010012
http://doi.org/10.1095/biolreprod.113.117077
http://doi.org/10.1002/mrd.23463
http://www.ncbi.nlm.nih.gov/pubmed/33655673


Int. J. Mol. Sci. 2022, 23, 2780 18 of 18

24. Otsuka, F.; McTavish, K.J.; Shimasaki, S. Integral role of GDF-9 and BMP-15 in ovarian function. Mol. Reprod. Dev. 2011, 78, 9–21.
[CrossRef] [PubMed]

25. Vitt, U.A.; McGee, E.A.; Hayashi, M.; Hsueh, A.J. In vivo treatment with GDF-9 stimulates primordial and primary follicle
progression and theca cell marker CYP17 in ovaries of immature rats. Endocrinology 2000, 141, 3814–3820. [CrossRef]

26. Abdel-Ghani, M.A.; El-Sherry, T.M.; Abdelhafeez, H.H. Effect of growth differentiation factor-9 (GDF-9) on the progression of
buffalo follicles in vitrified-warmed ovarian tissues. Reprod. Domest. Anim. 2016, 51, 795–803. [CrossRef] [PubMed]

27. Patiño, L.C.; Walton, K.L.; Mueller, T.D.; Johnson, K.E.; Stocker, W.; Richani, D.; Agapiou, D.; Gilchrist, R.B.; Laissue, P.; Harrison,
C.A. BMP15 mutations associated with Primary Ovarian Insufficiency reduce expression, activity, or synergy with GDF9. J. Clin.
Endocrinol. Metab. 2017, 102, 1009–1019. [PubMed]

28. De Sousa Abreu, R.; Penalva, L.O.; Marcotte, E.M.; Vogel, C. Global signatures of protein and mRNA expression levels. Mol.
Biosyst. 2009, 5, 1512–1526. [CrossRef] [PubMed]

29. Vogel, C.; Marcotte, E.M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev.
Genet. 2012, 13, 227–232. [CrossRef] [PubMed]

30. Yi, S.E.; LaPolt, P.S.; Yoon, B.S.; Chen, J.Y.; Lu, J.K.; Lyons, K.M. The type I BMP receptor BmprIB is essential for female
reproductive function. Proc. Natl. Acad. Sci. USA 2001, 98, 7994–7999. [CrossRef] [PubMed]

31. Durlinger, A.L.; Kramer, P.; Karels, B.; de Jong, F.H.; Uilenbroek, J.T.; Grootegoed, J.A.; Themmen, A.P. Control of primordial
follicle recruitment by anti-Müllerian hormone in the mouse ovary. Endocrinology 1999, 140, 5789–5796. [CrossRef]

32. Uzumcu, M.; Kuhn, P.E.; Marano, J.E.; Armenti, A.E.; Passantino, L. Early postnatal methoxychlor exposure inhibits folliculogene-
sis and stimulates anti-Mullerian hormone production in the rat ovary. J. Endocrinol. 2006, 191, 549–558. [CrossRef]

33. Knapczyk-Stwora, K.; Grzesiak, M.; Ciereszko, R.E.; Czaja, E.; Koziorowski, M.; Slomczynska, M. The impact of sex steroid
agonists and antagonists on folliculogenesis in the neonatal porcine ovary via cell proliferation and apoptosis. Theriogenology
2018, 113, 19–26. [CrossRef]

34. Fujibe, Y.; Baba, T.; Nagao, S.; Adachi, S.; Ikeda, K.; Morishita, M.; Kuno, Y.; Suzuki, M.; Mizuuchi, M.; Honnma, H.; et al.
Androgen potentiates the expression of FSH receptor and supports preantral follicle development in mice. J. Ovarian. Res. 2019,
12, 31. [CrossRef] [PubMed]

35. Dewailly, D.; Robin, G.; Peigne, M.; Decanter, C.; Pigny, P.; Catteau-Jonard, S. Interactions between androgens, FSH, anti-Müllerian
hormone and estradiol during folliculogenesis in the human normal and polycystic ovary. Hum. Reprod. Update 2016, 22, 709–724.
[CrossRef] [PubMed]

36. Okazaki, K.; Okazaki, S.; Nishimura, S.; Nakamura, H.; Kitamura, Y.; Hatayama, K.; Nakamura, A.; Tsuda, T.; Katsumata, T.;
Nishikawa, A.; et al. A repeated 28-day oral dose toxicity study of methoxychlor in rats, based on the ‘enhanced OECD test
guideline 407’ for screening endocrine-disrupting chemicals. Arch. Toxicol. 2001, 75, 513–521. [CrossRef]

37. Tomic, D.; Frech, M.S.; Babus, J.K.; Gupta, R.K.; Furth, P.A.; Koos, R.D.; Flaws, J.A. Methoxychlor induces atresia of antral follicles
in ERalpha-overexpressing mice. Toxicol. Sci. 2006, 93, 196–204. [CrossRef] [PubMed]

38. Gervásio, C.G.; Bernuci, M.P.; Silva-de-Sá, M.F.; Rosa-E-Silva, A.C. The role of androgen hormones in early follicular development.
ISRN Obstet. Gynecol. 2014, 2014, 818010. [CrossRef] [PubMed]

39. Britt, K.L.; Findlay, J.K. Estrogen actions in the ovary revisited. J. Endocrinol. 2002, 175, 269–276. [CrossRef]
40. Jayawardana, B.C.; Shimizu, T.; Nishimoto, H.; Kaneko, E.; Tetsuka, M.; Miyamoto, A. Hormonal regulation of expression

of growth differentiation factor-9 receptor type I and II genes in the bovine ovarian follicle. Reproduction 2006, 131, 545–553.
[CrossRef]

41. Hunzicker-Dunn, M.; Maizels, E.T. FSH signaling pathways in immature granulosa cells that regulate target gene expression:
Branching out from protein kinase A. Cell. Signal. 2006, 18, 1351–1359. [CrossRef]

42. Almeida, F.R.C.L.; Costermans, N.G.J.; Soede, N.M.; Bunschoten, A.; Keijer, J.; Kemp, B.; Teerds, K.J. Presence of anti-Müllerian
hormone (AMH) during follicular development in the porcine ovary. PLoS ONE 2018, 13, e0197894. [CrossRef]

43. Abbott, D.H.; Padmanabhan, V.; Dumesic, D.A. Contributions of androgen and estrogen to fetal programming of ovarian
dysfunction. Reprod. Biol. Endocrinol. 2006, 4, 17. [CrossRef]

44. Quinn, R.L.; Shuttleworth, G.; Hunter, M.G. Immunohistochemical localization of the bone morphogenetic protein receptors in
the porcine ovary. J. Anat. 2004, 205, 15–23. [CrossRef] [PubMed]

45. Du, P.; Ye, L.; Li, H.; Ruge, F.; Yang, Y.; Jiang, W.G. Growth differentiation factor-9 expression is inversely correlated with an
aggressive behaviour in human bladder cancer cells. Int. J. Mol. Med. 2012, 29, 428–434. [PubMed]

46. Du, P.; Ye, L.; Yang, Y.; Jiang, W.G. Reduced expression of growth and differentiation factor-9 (GDF9) is associated with aggressive
behaviour of human clear-cell renal cell carcinoma and poor patient survival. Anticancer Res. 2014, 34, 6515–6520. [PubMed]

47. Durlej, M.; Knapczyk-Stwora, K.; Duda, M.; Galas, J.; Slomczynska, M. The expression of FSH receptor (FSHR) in the neonatal
porcine ovary and its regulation by flutamide. Reprod. Domest. Anim. 2011, 46, 377–384. [CrossRef]

48. Zhao, S.; Fernald, R.D. Comprehensive algorithm for quantitative real-time polymerase chain reaction. J. Comput. Biol. 2005, 12,
1047–1064. [CrossRef]

49. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685.
[CrossRef]

http://doi.org/10.1002/mrd.21265
http://www.ncbi.nlm.nih.gov/pubmed/21226076
http://doi.org/10.1210/endo.141.10.7732
http://doi.org/10.1111/rda.12753
http://www.ncbi.nlm.nih.gov/pubmed/27554536
http://www.ncbi.nlm.nih.gov/pubmed/28359091
http://doi.org/10.1039/b908315d
http://www.ncbi.nlm.nih.gov/pubmed/20023718
http://doi.org/10.1038/nrg3185
http://www.ncbi.nlm.nih.gov/pubmed/22411467
http://doi.org/10.1073/pnas.141002798
http://www.ncbi.nlm.nih.gov/pubmed/11416163
http://doi.org/10.1210/endo.140.12.7204
http://doi.org/10.1677/joe.1.06592
http://doi.org/10.1016/j.theriogenology.2018.02.008
http://doi.org/10.1186/s13048-019-0505-5
http://www.ncbi.nlm.nih.gov/pubmed/30947734
http://doi.org/10.1093/humupd/dmw027
http://www.ncbi.nlm.nih.gov/pubmed/27566840
http://doi.org/10.1007/s002040100273
http://doi.org/10.1093/toxsci/kfl040
http://www.ncbi.nlm.nih.gov/pubmed/16787999
http://doi.org/10.1155/2014/818010
http://www.ncbi.nlm.nih.gov/pubmed/25006485
http://doi.org/10.1677/joe.0.1750269
http://doi.org/10.1530/rep.1.00885
http://doi.org/10.1016/j.cellsig.2006.02.011
http://doi.org/10.1371/journal.pone.0197894
http://doi.org/10.1186/1477-7827-4-17
http://doi.org/10.1111/j.0021-8782.2004.00311.x
http://www.ncbi.nlm.nih.gov/pubmed/15255958
http://www.ncbi.nlm.nih.gov/pubmed/22159313
http://www.ncbi.nlm.nih.gov/pubmed/25368253
http://doi.org/10.1111/j.1439-0531.2010.01673.x
http://doi.org/10.1089/cmb.2005.12.1047
http://doi.org/10.1038/227680a0

	Introduction 
	Results 
	Effect of Neonatal Exposure to MXC on GDF9 and BMP15 Expression in Preantral Follicles of Gilts 
	Effect of Neonatal Exposure to MXC on BMPR2 Expression in Preantral and Small Antral Follicles of Gilts 
	Effect of Neonatal Exposure to MXC on ACVR1, BMPR1A, BMPR1B, TGFBR1 Expression in Preantral and Small Antral Follicles of Gilts 
	Effect of Neonatal Exposure to MXC on Plasma AMH Concentration and the Expression of AMHR2 in Preantral and Small Antral Follicles of Gilts 
	Effect of Neonatal Exposure to MXC on Plasma FSH Concentration and the Expression of FSHR in Preantral and Small Antral Follicles of Gilts 

	Discussion 
	Materials and Methods 
	Animals and Tissue Preparation 
	Hormone Assays 
	Real-Time PCR 
	Western Blot 
	Immunohistochemistry 
	Statistical Analysis 

	Conclusions 
	References

