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� Novel coronavirus disease 2019 (COVID-19) complicates sedation guidance.
� Limited frontotemporal encephalogram (EEG) guided sedation in COVID-19 patients.
� A quantitative EEG machine learning algorithm classified patients’ sedation depth.

a b s t r a c t

Objective: To study if limited frontotemporal electroencephalogram (EEG) can guide sedation changes in
highly infectious novel coronavirus disease 2019 (COVID-19) patients receiving neuromuscular blocking
agent.
Methods: 98 days of continuous frontotemporal EEG from 11 consecutive patients was evaluated daily by
an epileptologist to recommend reduction or maintenance of the sedative level. We evaluated the need to
increase sedation in the 6 h following this recommendation. Post-hoc analysis of the quantitative EEG
was correlated with the level of sedation using a machine learning algorithm.
Results: Eleven patients were studied for a total of ninety-eight sedation days. EEG was consistent with
excessive sedation on 57 (58%) and adequate sedation on 41 days (42%). Recommendations were fol-
lowed by the team on 59% (N = 58; 19 to reduce and 39 to keep the sedation level). In the 6 h following
reduction in sedation, increases of sedation were needed in 7 (12%). Automatized classification of EEG
sedation levels reached 80% (±17%) accuracy.
Conclusions: Visual inspection of a limited EEG helped sedation depth guidance. In a secondary analysis,
our data supported that this determination may be automated using quantitative EEG analysis.
Significance: Our results support the use of frontotemporal EEG for guiding sedation in patients with
COVID-19.

� 2021 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights
reserved.
1. Introduction

Every fifth patient that is hospitalized with novel coronavirus
disease 2019 (COVID-19) is critically ill and most of these patients
require mechanical ventilation for severe acute respiratory distress
syndrome (ARDS) (Cummings et al., 2020). Prolonged sedation and
neuromuscular blockade are two mainstays of treatment in severe
ARDS (Alhazzani et al., 2020; Berlin et al., 2020). COVID-19 ARDS
patients also have a particularly high rate of agitation and
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Table 1
Characteristics of the 11 Patients.

Demographics Value

Age – yr 60 (±9)
Female sex – no. (%) 4 (36)
Common comorbidities – no. (%)
Any 9 (82)
Hypertension 7 (64)
Diabetes 6 (55)
Lung Disease 3 (27)
Common complications during hospitalization – no. (%)
Shock (septic, cardiogenic, secondary to sedatives) 11 (100)
Superimposed pneumonia 7 (64)
AKI, with or without renal replacement therapy 7 (64)
Diabetic ketoacidosis 5 (46)
ICU interventions
Deep sedation with neuromuscular blockade – no. (%) 11 (100)
Underwent Prone positioning – no. (%) 9 (82)
Median APACHE II score per patient (IQR) – no. 29 (15–

33)
Median number of neuromuscular blockade days per patient

(IQR) – no.
11 (3–19)

Median number of prone trials patient (IQR) – no. 3 (2–4)
Median number of total ICU days per patient (IQR) – no. 25 (17–

41)
Outcome at end of hospitalization – no. (%)
Deceased 7 (64)
Inpatient rehabilitation 3 (27)
Home 1 (9)

Data reported as mean +/- standard deviation or n(%) as appropriate. AKI = acute
kidney injury; IQR = interquartile range
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encephalopathy which can necessitate prolonged use of sedatives
(Mao et al., 2019; Kotfis et al., 2020). Minimizing sedative use in
patients receiving neuromuscular blocking agents is paramount
as this may be associated with shorter times on mechanical venti-
lation, shorter stays in the intensive care unit (ICU) (Kress et al.,
2000), and potentially decreased mortality (Watson et al., 2008).
Reducing ICU length of stay and sedation usage may also be bene-
ficial in a pandemic surge situation resulting in medication short-
ages, as has been seen in the current pandemic (Mazer-Amirshahi
et al., 2020; Food and Drug Administration, 2020). However, min-
imizing healthcare provider contact when managing highly conta-
gious diseases such as COVID-19 (Waldman et al., 2020) creates
additional challenges in utilizing behavioral assessments to guide
sedation in these patients. EEG is widely available and offers a con-
tinuous assessment of the depth of sedation (Akeju et al., 2014;
Brown et al., 2010). However, connecting patients to EEG and
maintaining electrode integrity in COVID-19 patients is time-
consuming, resource intensive, and significantly increases staff
exposure (Gélisse et al., 2020).

Limited montage EEGs have been utilized for the rapid assess-
ment of patients in the ICU and have the benefit of a faster connec-
tion and less maintenance time (Tanner et al., 2014). It has been
demonstrated to reduce the total exposure time by nearly 50% in
COVID-19 patients (Haines et al., 2020) when compared to a stan-
dard EEG connection.

Here we describe a cohort of COVID-19 patients managed with
EEG guided sedation titration using a limited number of EEG elec-
trodes requiring minimal time to set up and perform lead mainte-
nance. Primarily we determined how often EEG guided sedation
reduction would require rebound dose adjustments in the follow-
ing 6 h. Secondarily, we analyzed quantitative features of the
recorded EEG signal that correlated with sedation levels and used
these to train a machine learning algorithm to classify sedation
levels.
2. Methods

2.1. Subjects

We studied all patients admitted to the neurological ICU at
Columbia University Medical Center between April 14th and May
5th that fulfilled the following inclusion criteria: (1) A positive
SARS-CoV-2 nasopharyngeal swab; (2) severe ARDS requiring inva-
sive mechanical ventilation, sedation, and neuromuscular blockade
to achieve ventilator synchrony, and (3) no known pre-existing
neurological condition. Data were collected as part of a prospective
observational cohort study approved by the local institutional
review board.

2.2. General management

Medical management was in accordance with the institutional
guidance on COVID-19 related ARDS, as well as recommendations
by the European Society of Intensive Care Medicine and the Society
of Critical Care Medicine (Alhazzani et al., 2020). Management
included endotracheal intubation, sedation and neuromuscular
blockade to allow ventilator synchrony, and prone positioning
(Table 1).

2.3. Behavioral assessments and outcomes

Neurological assessments were performed by nursing staff
throughout the day and documented in the medical record at least
twice daily. Assessments were done using the Richmond Agitation-
Sedation Scale (RASS) (Sessler et al., 2001), Glasgow Coma Scale
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(GCS) (Teasdale and Jennett, 1974), and Confusion Assessment
Method for the ICU (CAM-ICU) (Inouye et al., 1990; Ely et al.,
2001). Nursing staff also performed basic neurological examina-
tions several times per day, including assessments of the pupillary
size, pupillary light reflex (present or not for each eye), gag reflex,
and the best motor response.

2.4. Electrophysiological data collection

Electrode placement followed the international 10–20 system
but was limited to five frontotemporal EEG leads (Fp1, Fp2, F7,
F8, Fpz, using Fpz as the reference electrode) and a ground elec-
trode. EEG was recorded using a digital video EEG bedside monitor-
ing system (Xltek; Natus Medical, Oakville, ON, Canada; low-pass
filter = 70 Hz, high-pass filter = 1 Hz, sampling rate = 200 Hz)
(Claassen et al., 2016). Electrodes were routinely checked to keep
impedances <5 kX and to ensure high signal quality.

2.5. EEG interpretation

1–2 h of EEG were reviewed by an epileptologist each day and
an assessment of sedation status was categorized into either being
consistent with adequate sedation or consistent with a high level
of sedation. Sedation was deemed adequate if the EEG showed pre-
dominantly continuous background activity. If the EEG was mark-
edly attenuated or discontinuous (with periods of attenuation
lasting approximately three seconds or longer), it was considered
consistent with a high level of sedation.

2.6. Sedation adjustments

The sedative infusions used were fentanyl, midazolam, propo-
fol, and dexmedetomidine. Rocuronium was used for neuromuscu-
lar blockade. The decision to reduce sedation was guided by the
EEG assessment but implementation was left to the Critical Care
attending responsible for the care of the patient. All changes to
sedation or neuromuscular blocking agents within six hours of



Table 2
Behavioral assessment scores for commonly used intensive care unit tools for
available sedation days. If multiple assessments were present on one day, the
assessment closest to the time of the EEG read was used.

Behavioral
assessment

EEG consistent with
over-sedation

EEG consistent with
adequate sedation
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the EEG assessment were recorded. If sedation was decreased, any
subsequent increases in sedation within six hours of the decrease
were recorded. Each patient-day while on EEG was treated as a
separate trial but in the statistical modeling analyses were cor-
rected for repeated measures.

2.6.1. EEG preparation
For quantitative analysis, we sought to understand what mea-

sures on EEG correlated with adequate or inadequate sedation.
Based on visual screening, artifact-free 15-min-long EEG clips were
selected as close as possible to the time of the epileptologist’s
assessment. EEG analysis was carried out in MATLAB (MathWorks,
Natick, MA) using the Fieldtrip (Oostenveld et al, 2011), as well as
custom scripts. Then EEG clips were split into nonoverlapping
epochs of 10-s duration. All epochs were converted to Hjorth
Laplacian montage by subtracting the distance-weighted average
of up to three nearest neighbors from each channel (Goldfine
et al., 2011).

2.6.2. EEG acquisition and processing
Building on studies analyzing EEG correlates of consciousness in

disorders of consciousness as well as anesthesia models, we
selected Power Spectral Density (PSD) as a measure of interest.
PSD for frequencies from 1 to 50 Hz was calculated for each trial
using Welch’s power spectral density estimation. In line with pre-
vious studies, data were analyzed in frequency bands: delta (1–
4 Hz), theta (4–8 Hz), alpha (8–14 Hz), beta (14–24 Hz), and
gamma (26–50 Hz) (Claassen et al., 2016). The average across all
epochs for a given patient and day were used to train a machine-
learning algorithm (an ensemble of decision trees implementing
the random forest algorithm (Breiman, 1984)) to distinguish
between the EEG signal according to the level of sedation. We
applied a leave-one-out procedure to evaluate the quality of the
model. Training of the algorithm was performed on all subjects
minus one and then tested only on the subject that was left out.
This process was repeated for each subject prior to averaging
across all subjects.

2.7. Statistical analysis

Performance of the machine-learning algorithm was estimated
using classification accuracy. To evaluate the significance of the
classification accuracy, a one-tailed permutation test was per-
formed (training and evaluation of the classifier 1000 times after
random shuffling of the sedation level labels) (Noirhomme et al.,
2014; Good, 2005). The model was considered as successfully dis-
tinguishing the classes if it significantly outperformed the random
classifier. The influences of the predictor variables in the model at
predicting the sedation level was estimated (Breiman et al., 1984).
The scaled coordinates corresponding to the first two eigenvalues
were generated by the multidimensional scaling of the proximity
matrix of the random forest classifier (Seber, 1984). All EEG analy-
ses were performed with the use of MATLAB (MathWorks, Natick,
MA).
no. of patient days (%)
GCS = 3 or 4 52/55 (95) 39/40 (98)
GCS >= 5 3/55 (5) 1/40 (2)
RASS = �4 or �5 52/55 (95) 35/37 (95)*
RASS >= �3 3/55 (5) 2/37 (5)*
CAM-ICU

positive**
3/3 2/2

GCS = Glasgow Coma Scale; RASS = Richmond Agitation-Sedation Scale; CAM-
ICU = Confusion Assessment Method for the Intensive Care Unit.
*RASS scores were missing for 3 patients in the adequate sedation group.
** CAM-ICU is not assessable in patients with a RASS score of �4 or �5. Therefore,

the test is only reported for those patients with a RASS score of >= �3.
3. Results

3.1. Study cohort

Eleven patients were included in the study. The mean age of
patients was 60 years old, and all were critically ill, requiring pro-
longed ICU stays, deep sedation, neuromuscular blockade, and
prone positioning on several days. Seven (64%) patients died dur-
ing their hospitalization, and four (36%) survived to hospital dis-
charge, either to home or to a rehabilitation facility (Table 1). Of
732
the four who survived, one was extubated and three underwent
tracheostomy placement. Two were decannulated within two
months of their ICU stay and one remains ventilator-dependent.

3.2. Behavioral assessments

In >90% of days with available behavioral assessments, the GCS
score was 3 or 4 and RASS score was �4 or �5. This was true in
patients regardless of their EEG findings and epileptologist recom-
mendations. The CAM-ICU was not applicable to most patient days
as they scored a RASS of �4 or �5 and was positive in the five
patient days with a RASS >= �3 in both sedation classifications
(Table 2).

3.3. EEG sedation assessments

We recorded a total of 98 days of EEG guided sedation assess-
ments across 11 patients. The epileptologist’s assessment deemed
57 (58%) EEG recordings consistent with high levels of sedation,
and 41 (42%) were considered consistent with adequate sedation.
The primary team followed the recommendation to reduce or
maintain sedation 59% of the time (33% of the time for reduction
and 95% of the time for maintaining current sedation). In 12% of
the cases where the primary team followed the epileptologist’s
recommendation the sedation subsequently needed to be
increased (Fig. 1).

3.4. Quantitative EEG features

PSD was significantly different between the two classes in the
alpha, theta, and delta bands across leads F7, F8, Fp1, and Fp2. In
the beta band, F7 and F8 leads were significantly different (two-
sided Wilcoxon rank sum test, p < 0.01) (Fig. 2).

3.5. EEG-based classifier

Classification accuracy of 80% ± 17% was achieved using PSD
features, with a sensitivity and specificity of 68% ± 0.17 and 68%
± 0.21, respectively (area under the receiver operating characteris-
tic curve, AUC = 0.85 ± 0.19; Fig. 3). The result significantly outper-
formed the random classifier prediction, which had a classification
accuracy of 53% ± 6% and a sensitivity and specificity of 0.55 ± 0.1
and 0.48 ± 0.1, respectively (permutation test, p < 0.001). The influ-
ences of the predictor variables in the model at predicting the
sedation level are given in Fig. 4. The influence of a predictor
increases with the value of this measure. Fig. 5 represents the
scaled coordinates corresponding to the first two eigenvalues.



Fig. 1. Recommendations based on EEG and treatment/response algorithm.

Fig. 2. Layout of frontotemporal leads and corresponding power spectral density within the labeled bands, between the two groups. Red circles indicate significant.
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The scaled coordinates are generated by the multidimensional
scaling of the proximity matrix of the random forest classifier.
4. Discussion

In this study we showed that visual inspection of a limited EEG-
montage can be used to classify sedation depth and help with seda-
tion depth guidance. Secondarily, we were able to use quantitative
EEG to train a machine learning algorithm with good classification
accuracy, supporting the concept that the process could potentially
be automated. These methods may have applications in the man-
agement of patients with COVID-19 given the high sedation burden
and the need to minimize patient contact.
4.1. Severity of illness

The chosen cohort is not representative of most COVID-19
patients, and not even of the majority of COVID-19 patients in
733
the ICU, but represents the most challenging subset of critically
ill patients with COVID-19. The severity of their illness warranted
near-continuous attention from nurses and physicians. We found
that a limited frontotemporal EEG montage could be a useful
adjunct for guiding sedation changes in these patients. We showed
differences in qEEG based on depth of sedation and modeled a ran-
dom forest machine learning algorithm from quantitative data
using the PSD that had good classification accuracy.

4.2. Interpreting the raw EEG signal

The raw EEG interpretation used by epileptologists are in line
with existing literature about sedative effects on EEG (Chander
et al., 2014; Hight et al., 2019; Hesse et al., 2019). As deeper levels
of sedation are achieved, EEG power shifts from high- to low-
frequency bands. In states of very deep sedation a burst-
suppression pattern will appear (Hagihira, 2015). Burst-
suppression as a reflection of disease states may be encountered
in the context of brain injury or as a result of sedation



Fig. 3. Area under the receiver operating characteristic curve (AUC) for the random
forest classifier.

Fig. 4. Influence of predictor variables. Brighter color (more positive) represents
increased influence.
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(Fernandez and Claassen, 2012), and has been associated with
increased mortality in a general ICU population (Watson et al.,
2008). A number of EEG features have been incorporated into algo-
rithms to guide depth of sedation primarily in the operating room
context (Bennett et al., 2009; Sun et al., 2020). However, such sys-
tems may underestimate the amount of EEG suppression
(Muhlhofer et al., 2017) and lead to deeper levels of sedation than
intended. For this reason, interpreting the raw EEG may provide a
more accurate assessment of sedation.

4.3. Utilizing quantitative EEG parameters

The use of quantitative EEG (qEEG) has been explored in anes-
thetics (Sun et al., 2020) where it has been shown to discriminate
effectively between loss and recovery of consciousness (Purdon
et al., 2013). It has also been applied in the study of disorders of
consciousness in patients with brain injury, where it can properly
classify comatose and non-comatose patients (Claassen et al.,
2016). Although its main use is in the detection and monitoring
of primary neurological disorders, qEEG and its derivations may
see an expanding role in the monitoring of sedation levels in the
critically ill (Ramaswamy et al., 2019). While burst-suppression
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represents one pattern that can be detected by qEEG (Muhlhofer
et al., 2017), sedative medications have other influences on qEEG
dynamics as well. For example, sedation with both propofol and
dexmedetomidine result in slow (0.1–1 Hz) and delta oscillation
patterns, but the EEG of patients receiving propofol is character-
ized by a much larger slow oscillation power. Additionally, propo-
fol induces prominent frontal alpha oscillations, whereas
dexmedetomidine induces spindles which resemble natural sleep
(Akeju et al., 2014). These differences could be used to guide
proper sedative dosing in critically ill patients. In this study the
level of sedation as classified by the epileptologist could also be
discerned by using the PSD of the qEEG. Although we saw the pat-
tern of increased PSD of slow and delta frequencies at higher levels
of sedation, the distinct patterns associated with each sedative
were not seen. The reason for this is likely multifactorial but could
have been influenced by the patients’ disease state as well as the
need to use multiple sedatives at one time to achieve adequate
sedation in many cases.

4.4. Machine learning algorithm

There is growing interest in machine learning algorithms that
can correctly classify EEG signals with the aim of automating con-
tinual real-time assessments. Many methods have been employed
to create algorithms that can accurately classify sedation status
based on qEEG measures in healthy patients (Ramaswamy et al.,
2019; Rathee et al., 2018), patients receiving general anesthesia
(Liang et al., 2018), and in the ICU (Sanz-García et al., 2019). Here
we utilized a random forest algorithm with a sedation classifica-
tion accuracy of 80% ± 17% using PSD in the specified frequency
bands. This method was used as this algorithm is robust to overfit-
ting for small training sets (Hastie et al., 2009). In addition, it
allows for a transparent and natural ranking of the importance of
predictors (Breiman, 2001) and an understanding of which vari-
ables are most important in the model. In our study the lower fre-
quencies (delta, theta, and alpha bands) were more informative,
whereas beta and gamma frequencies were less informative. This
is consistent with the known frequency shifts that occur with dee-
per levels of sedation (Hagihira, 2015) as well as with various seda-
tives (Purdon et al., 2013; Akeju et al., 2016).

4.5. Limitations

There are several limitations to this study worth mentioning.
Firstly, the small sample size and study design limit the generaliz-
ability of the results. Further, constraints imposed by the pandemic
provided challenges to more extensive data collection. For
instance, as there was no control group, we were unable to quan-
tify reductions in staff exposure and sedatives. While we did not
record overall EEG connection time, the experience of the authors
was that the limited montage significantly expedited this process,
consistent with prior reports (Haines et al., 2020). This was felt to
be especially relevant when connecting patients who were in the
prone position. Nevertheless, a larger case-controlled study will
be needed to draw definitive conclusions about these aspects.

Secondly, the clinical team did not follow the recommendation
to reduce sedation in all cases. While the team had access to the
EEG interpretation, they also incorporated the patient’s clinical
and neurological exam, other laboratory values, and the larger
therapeutic goals when deciding whether to adjust the sedation.
While this may have affected our overall results, it was deemed
necessary for patient care. Additional studies are also needed to
evaluate the specific reasons why the team deviated from the
EEG recommendations.

Lastly, frontotemporal leads may show attenuation and discon-
tinuity for reasons other than excess sedation, such as hypoxic-



Fig. 5. Scaled coordinates corresponding to the first two eigenvalues, generated by multidimensional scaling of the proximity matrix of the random forest classifier.
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ischemic injury or cerebral infarction. This could lead to inappro-
priate reduction of sedation and represents one potential contrib-
utor to the need to increase sedation in 12% of cases. None of the
seven patients who died had been evaluated for stroke or
hypoxic-ischemic injury. Of the four patients who recovered, one
was later found to have multifocal punctate infarcts and a larger
occipital lobe infarct. This was not apparent on or relevant to fron-
totemporal EEG monitoring. The limited montage might also miss
epileptiform activity and would not be adequate for patients with
suspicion for seizures. Although prior studies have shown varying
levels of sensitivity and specificity for detecting epileptiform activ-
ity with limited montages (Pati et al., 2017; Ma et al., 2018; Tanner
et al., 2014), it nonetheless remains a limitation that a direct com-
parison of this technique to a traditional full montage was not
done. More studies are needed to evaluate the safety, efficacy,
and applicability of this technique, as well as to compare it to a tra-
ditional montage.
5. Conclusion

A limited frontotemporal EEG montage can be helpful in guid-
ing sedation dose guidance in highly contagious COVID-19 patients
receiving neuromuscular blocking agents. Further studies at addi-
tional centers are warranted to evaluate the broader applicability
of this technique.
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