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Abstract: Building the capacity of efficiently determining the provenance of food products represents
a crucial step towards the sustainability of the global food system. Despite species specific empirical
examples of multi-tracer approaches to provenance, the precise benefit and efficacy of multi-tracers
remains poorly understood. Here we show why, and when, data fusion of bio-tracers is an extremely
powerful technique for geographical provenance discrimination. Specifically, we show using exten-
sive simulations how, and under what conditions, geographical relationships between bio-tracers
(e.g., spatial covariance) can act like a spatial fingerprint, in many naturally occurring applications
likely allowing rapid identification with limited data. To highlight the theory, we outline several
statistic methodologies, including artificial intelligence, and apply these methodologies as a proof
of concept to a limited data set of 90 individuals of highly mobile Sockeye salmon that originate
from 3 different areas. Using 17 measured bio-tracers, we demonstrate that increasing combined
bio-tracers results in stronger discriminatory power. We argue such applications likely even work for
such highly mobile and critical fisheries as tuna.

Keywords: food provenance; species origin; bio-tracers; data fusion; supervised learning

1. Introduction

Today’s global food system is a collection of highly inter-connected trade networks
that span a myriad of organizations and geographies [1–4]. While such a system represents
an important and perhaps necessary mechanism for meeting demands for nutritious and
affordable food [3,5], it also represents a complex web of activity that carries with it a
number of inherent challenges such as sustainability and transparency [2,6]. Most food
items travel thousands of kilometers [7] changing form and ownership several times before
reaching a consumer’s plate [4]. Without proper labelling—such as Country of Origin
Labelling (COOL) regulation—the consumer does not have the capability to accurately
identify where their food originated and thus cannot make informed decisions about
the products they are buying [8]. Unfortunately, tracing food commodities back to their
respective origin is a formidable task, which can only be tackled by a robust traceability
system integrated along the entire food supply chain [9].

The introduction of new technology (e.g., Wireless Sensor Network and Radio Fre-
quency IDentification, blockchain) and ad hoc recommendations(ISO 9000, Codex Ali-
mentarius, etc.) represent indispensable tools to monitor and secure different food chain
stages [9–11]. However, there is one common limitation that is stopping us from realizing
robust provenance-based value chains—the ability to verify traceability information [12].
Consequently, a vigorous research effort has been geared towards the development of
methods to authenticate type and origin of food commodities, such as sensory analysis and
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chromatographic techniques [12–14]. One promising avenue is the use of bio-tracers, i.e., bi-
ological features (e.g., DNA, trace-elements, metabolomic compounds, stable isotopes,
etc.) that vary with (and thus reflect) the environment an individual is living in, to create
fingerprints that can recognize different food products. For instance, DNA barcodes have
been used for over a decade to uncover fraudulent labelling practices in the seafood indus-
try [15–19]. Similarly, stable isotopes have shown a lot of promise for authenticating the
origins of various food products including olive oils, cheese, honey, meat and fish [20–22].

In food product authentication, classes of bio-tracers are often employed indepen-
dently of each other and “vertical” bio-tracer strategies (i.e., using different markers within
a given class of bio-tracers) still prevail to adjust the granularity of information being
sought. For example, small DNA sequence fragments of the mitochondrial cytochrome c
oxidase I gene (COX-1) are enough to identify a fish fillet to species [19], but the genome
coverage required is larger when trying to discriminate sub-populations where genetic
variability is much smaller [17]. Similarly, increasing the number of stable isotopes used
has repeatedly been shown to be a powerful approach to determine the provenance (i.e., the
origin) of numerous food products, even at fine spatial scales [21,23–26]. Interestingly,
despite the evidence of important gains in discriminatory power brought by vertical data
fusion, the general reasons behind such success are rarely discussed. Furthermore, it
remains unclear whether this gain extends beyond one class of bio-tracers, i.e., the potential
of “horizontal” strategies for food authentication remains to be established [12,27].

In what follows we discuss the efficiency of combining information from different
bio-tracers (vertically and horizontally) for food authentication with a specific focus on
provenance. Our goal here is threefold. First, we explain how to use multiple bio-tracers to
create spatial fingerprints. Second, we show that increasing the number of bio-tracers for
authentication increases authentication performance. Third, we provide a relatively simple
explanation for why data fusion is always a winning strategy and comment on the potential
of horizontal strategies. We support our arguments (which are mainly mathematical, see
Appendix A) by comparing how well a set of bio-tracers perform when trying to assign
Sockeye Salmon (Oncorhynchus nerka) to three geographically distinct fisheries: British
Columbia, Canada; Kamchatka Peninsula, Russia; and Alaska, United States (Figure 1).
The set of bio-tracers included three isotopes (δ15N, δ13C and δ34S) and 14 fatty acids for a
total of 17 bio-tracers spanning two different classes. The Sockeye fishery itself presents
an interesting model because sustainability practices vary somewhat geographically. The
entire Alaskan fishery is certified by the Marine Stewardship Council (MSC)—the most
rigorous and widely recognized eco-certification available. The Canadian fishery was
also recognized by MSC as sustainable, until 2019 when the Canadian Pacific Sustainable
Fisheries Society (CPSFS) decided to self-suspended its MSC certification for many salmon
species, including Sockeye [28]. While some fisheries in Russia received certification
from the MSC, many remote fisheries in Eastern Russia are under threat due to extractive
industries, loss of habitat and large-scale poaching [29]. Much of this is thought to be
driven by linkages to organized crime in east Asian markets [30,31]. Therefore, building the
capacity to distinguish high-level geographic origins of Sockeye is of particular relevance
to the sustainability of Sockeye fishery and food provenance interests in general.



Foods 2021, 10, 717 3 of 26

Figure 1. Combining bio-tracers to improve the determination of samples’ provenance. (a), Sockeye salmon (Oncorhynchus
nerka) samples of this study originate from three potential origins, namely Alaska, United States (yellow); British Columbia,
Canada (cyan) and Kamchatka Peninsula, Russia (magenta). (b), We examine the efficiency of horizontal strategies that
combine several classes of bio-tracers as opposed to vertical strategies that focus on one specific class. (c), While using a
single bio-tracer to discriminate the true origin of a sample (distributions on top and right of the chart, dotted line depict
bio-tracer values of a sample) may prove difficult, combining bio-tracers (colored areas) enhances the performance of
the inference process. (d), This is also shown with confusion matrices obtained using a classifier that uses only the first
bio-tracers (top), only the second one (middle) or the combination of the two (bottom).

2. Materials and Methods
2.1. Data

Muscle tissue trimmings were collected from 90 Sockeye salmon individuals from
three different regions (30 individuals per region): British Columbia, Canada; Kamchatka
Peninsula, Russia; and Alaska, United States were donated by Albion Farms & Fisheries
Ltd. (now Intercity Packers Ltd.), Richmond, BC, Canada. All samples were derived from
fillet trimmings to simulate a likely Quality Assurance/Quality Control scenario. Each mus-
cle trimming was processed to obtain 2 muscle tissue samples for analyzing 17 bio-tracers
of two classes: 3 stables isotopes (δ15N, δ13C and δ34S) and 14 fatty acids (C16:0, C16:1,
C18:0, C18:1, C18:2n-6, C18:2n-6, C18:3n-3, C18:4n-3, C20:1, C20:4n-3, C20:5n-3, C22:1,
C22:5n-3, C22:6n-3 and C24:1). One muscle sample from each fish was delivered frozen
to the Lipid Analytical Services at the University of Guelph for fatty acid analysis using a
combination of Bligh and Dwyer and Morrison and Smith methods [32,33]. Individual FA
weights (µg/g) were converted to a % FA composition and fatty acids with >1% presence
were retained as bio-tracers. The second muscle samples were dried at 70 ◦C for 2 days
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and ground into a fine powder in preparation for stable isotope analysis. Tissue samples
were sent to the University of Windsor GLIER Chemical Tracers Lab for isotopic analysis
of δ15N, δ13C and δ34S (Windsor, ON, Canada). Importantly, all variables were centered
and scaled before any statistical inference.

2.2. Numerical Simulations
2.2.1. Statistical Models

We created spatial fingerprints of increasing complexity by combining up to 17 bio-
tracers for our three regions of interest (see Figure 1) and then evaluating their performances
(on a different set of samples) to correctly determine the origin of a sample (see the following
section). Among the large diversity of supervised-learning methods available, we chose
three to reflect current and emerging practices in food authentication:

• Linear Discriminant Analysis [34] (LDA), see Sun et al. [35] for a use case;
• Naive Bayesian Classifier [34] (NBC), see Wunder [36] and Bataille and Bowen [37]

for examples;
• A Multi-Layer Perceptron [34] (MLP), see Wu et al. [27] for a recent study.

For all three methods, we assessed the probabilities of correctly assigning a sample
to its true origin (referred to as *performance*) for every region (this corresponds to the
diagonal of the confusion matrix) as well as the probability of assigning a sample to its true
origin, irrespective of its true provenance (overall performance). Assuming that we have
no prior expectation for the origin of a given sample, the overall performance corresponds
to the mean of the diagonal of the confusion matrix.

2.2.2. Simulations Design

For every simulation, we randomly selected 20 samples per regions (60 samples total)
as training set and used the remaining samples (10 per region) to evaluate performances of
combinations of bio-tracers (thus, the samples used to evaluate performances are different
from the one use by the algorithm to create its own knowledge of the data). All simulations
were replicated for all three selected classification approaches. We also evaluated the
impact of respective size of the two data sets for and we show that gains of performances
beyond 20 samples in the training set were marginal for all three methods (see Figure A8).

We evaluated the performances for an increasing number of bio-tracers (from single
performances up to the combination of all the 17 bio-tracers available). For every number
p of bio-tracers, we used 500 combinations of p bio-tracers. When there were less than
500 existing combinations, we used all of them. For every combination, we randomly
chose 200 pairs of training and test sets, leading to up to 100,000 simulations for a given
number of bio-tracers. We also assessed the overall performances of the three approaches
on the dataset ordered by a Principal Component Analysis (PCA). PCA is a statistical tool
commonly used to reduce dimension [38], here PCA was used to transform our data set
and obtained uncorrelated variables ordered according to the percentage of variance of the
entire data set they capture. To evaluate the robustness to noise, we added an increasing
amount of white noise in the of the training set, i.e., for every simulation, we drew 60 values
in a centered normal distribution of an increasing standard deviation (from 0.0001 to 10).
For every simulation, we used 500 combinations of bio-tracers and 200 pairs of training
and test sets (randomly chosen).

Finally, for all bio-tracers and all combinations of 2 and 3 bio-tracers, we computed
the inter-regions variance as well as the distance between region centroids (coordinates of
region centroids are the means of coordinates of all samples in a given region). We also
computed the region data overlap. To do so, for the three regions studied, we computed the
convex hull for all pairs and triplets of bio-tracers. Note that, in order to discard potential
outliers, we only used 27 data points per region (90%), points included were the closest to
their respective region centroid. We then computed the volume (or area) of all intersections
between the three convex hulls, summed them and then divided the quantity thereby
obtained by the total area (or volume) of the three convex hulls. Last, for all of these sets of
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bio-tracers we evaluated the performance bio-tracers using 1000 pairs of training and test
sets (randomly chosen).

2.3. Mathematical Proof

In Appendix A, using Bayes’s rule, we demonstrated that increasing the number of
bio-tracers combined almost surely increases the discriminatory power (performance) of a
Naive Bayesian Classifier (NBC).

Numerical Implementation

For LDA, we used the R implementation lda() available in the package “MASS” [39].
We implemented our own naive Bayesian classifier using R version 3.6.3 [40] and use the
function density() for kernel density estimates.

Finally, we used the Julia library Flux.jl [41] for the multi-layer perceptron (two dense
layers and cross-entropy loss function). As this approach is data demanding, we used a
simple data augmentation procedure: data in the training set were repeated and noise
(random variables drew from a centered normal distribution of standard deviation σ)
of various levels was added to it (as a centered normal distribution). After evaluating
the performances under various augmentation scenarios (see Figure A6), we opted for
1000 repetitions of the data set and a noise level of σ = 0.01.

3. Results
3.1. The More Bio-Tracers the Better

For the three regions considered, increasing the number of bio-tracers always increased
the probability of correctly assigning a sample to its true origin (Figure 2). The three
statistical approaches considered show similar behavior, qualitatively, with MLP having
the best performance (Figure 2c). All three methods consistently exceed 90% of correct
assignment when 12 or more bio-tracers are combined for Canadian and Russian samples.
The three approaches also perform significantly less efficiently for Alaskan samples, which
are geographically closer to the two other regions Figure 1. Interestingly, the same order
applied in the data space: the distance between Russia and Canada (based on the Euclidean
distance between group centroids) is the longest (4.819 vs. 4.145 for Canada-USA and 2.536
for Russia-USA).

The overall performance (i.e, the probability of correctly determining the provenance
of a sample irrespective of its true origin), based on a single sample, from 1 to 17 bio-tracers
increases from 0.444 to 0.898 for LDA, from 0.465 to 0.817 for NBC and from 0.482 to 0.915 for
MLP (Figure 2d–f). Moreover, performances are strongly improved when testing multiple
individuals (Figure 2d–f). It is worth noting that even in such case, employing more
bio-tracers still provides more accurate predictions (Figure 2d–f). Note that these results
align fully with our analytical derivations (see Appendix A and Figure A3). Furthermore,
increasing bio-tracers is very robust to noise addition, and this holds true for all three
methods (Figure 3). For instance, the overall performance of LDA with 5 bio-tracers and
a very low level of noise added (10−4) is 0.710, but combining 15 bio-tracers with an
addition of a noise with a level as high as 1 (a fairly strong noise addition) still yields better
discriminatory power (0.758). Therefore, even if the measurement are known to be less
accurate for some bio-tracers, they are likely worth being combined with others, assuming
that the error is consistent among samples.
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Figure 2. Increasing the number of bio-tracers considerably improves statistical performances. (a–c),
The probability of assigning one sample to its true origin increases as the number of bio-tracers
employed increases for the three regions considered, namely Alaska (yellow), British Columbia (cyan)
and Kamchatka Peninsula (magenta). (d–f), The overall performance (i.e., the correct assigning any
sample to its true origin) can also be improved by combining samples, assuming samples combined
originate from the same region (e.g., individuals of the same lot). Points are colored according to
the number of samples combined. These results are qualitatively similar for the three statistical ap-
proaches considered, which are Naive Bayesian classifier (NBC; (a,d)), Latent Discriminant Analysis
(LDA; (b,e)) and a Multi-Layer Perceptron (MLP; (c,f)). In all panels, points represent performances
averaged over up to 100,000 replicates (see Methods for further details).

Figure 3. Combining bio-tracers is robust to noise addition. The probability of correctly determining
the provenance of samples is evaluated for an increasing noise addition to the training data set.
The lighter the gray, the more the number of bio-tracers combined. Note that prior to analysis, all
bio-tracer values were scaled, thus a noise level of 1 represents a strong noise addition. The three
panels correspond to three statistical approaches used: NBC (a), LDA (b), MLP (c).

Using the first axes provided by Principal Component Analysis (PCA) applied on
the data set (see Methods) is a strategy that performs relatively well: across all three
approaches, using up to the first 6 principal component axes is consistently better than the
median of all the bio-tracer combinations we tested (Figure 4). Furthermore, as expected,
the results obtained are similar when most or all bio-tracers are being used, except for NBC
for which the PCA slightly negatively impacts the overall performance. Most importantly,
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for all methods, the axis order provided by a PCA (the first axis being the one that captures
the most variance) does not necessary reflect their discriminate power. Hence, the three
statistical methods show that the 5th principal component axis provides a more important
gain in performance than the 4th one (Figure 4). In general, combining only a few of
the first principal component axes to authenticate food products, as frequently done [42],
may be a sub-optimal approach as it can discard axes that carry less variance but more
discriminatory power.

Figure 4. PCA does not necessarily provides axes with the maximum discriminatory power. Boxplots
represent the probability of correctly determining the provenance of one sample for 500 combinations
of bio-tracers (or all combinations if the total number of combinations is less than 500; see methods
for details). Black lines and points represent results obtained when the first of principal component
axes are being used. The three panels corresponds to three statistical approaches used: NBC (a), LDA
(b), MLP (c).

3.2. An Examination of the Performances

Individually, the 17 bio-tracers have contrasting authentication performances (Figure 5),
this holds true for both classes of bio-tracers : δ15N and oleic acid (C18:1) alone perform
well (0.547 and 0.548, respectively) whereas δ13C and linoleic acid (C18:2n-6) perform
poorly (0.343 and 0.333). It is worth noting that the top 3 bio-tracers, based on individual
performances, includes 2 fatty acids (oleic acid and docosapentaenoic acid, i.e., C22:5n-3)
and one stable isotope (δ15N; see Figure 5) and thus cover the two classes of bio-tracers.
Note that even though we only show this for LDA (Figure 5), this holds true for NBC (see
Figure A8 in Appendix B) and MLP (see Figure A11).

Interestingly, the overall performance of a pair of bio-tracers systematically outcom-
petes the best performing of the two bio-tracers included in the pair (see Figure 6a for
the results for LDA and Figure A9a for NBC and Figure A12a for MLP). Similarly, the
performance of combining the three bio-tracers is better than the best performing pair of
bio-tracers that can be drawn from the triplet (see Figures 6b, A9b and A12b). Furthermore,
the overall performance of a set of bio-tracers positively correlates with the performances
of its subsets. Therefore using the best performing bio-tracers frequently yields a stronger
discriminatory power (Figures 6c,d, A9c,d and A12c,d). This explains that the top 3 bio-
tracers, and thus the two classes of bio-tracers, are systematically included in the best pairs
and triplets (see Tables A1 and A2).
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Figure 5. Performances of individual bio-tracers. Overall performances of all 17 bio-tracers (listed on
the right) using LDA are plotted against the proportion of inter-regions variance (a) and the mean
distance between all pairs of region centroids (b).

Figure 6. Including one more bio-tracers increases performance. Overall performances of all pairs of
bio-tracers using LDA are plotted against the best individual performing bio-tracers of the pair (a)
and their average overall performance (c). Similarly, overall performances of all triplets of bio-tracers
are plotted against the best performing pair of bio-tracers of the triplet (b) and their average overall
performance (d). Magenta dashed lines represent the 1:1 slope.

As expected, the percentage of inter-regions variance captured by a bio-tracer is
strongly and positively correlated with its overall performance (Figures 5a and 7a,b).
Even in 2 and 3 dimensions, simple non-linear least-squares regressions efficiently cap-
tures the variance of these relationship (R2 = 72.0% and 48.1% for LDA, respectively, see
Figures 7a,b, A10a,b and A13a,b for NBC and MLP, respectively). In one dimension, the
mean Euclidean distance between region centroids efficiently summarizes one key geomet-
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rical results of the data space: the further apart the data points of different regions are, the
stronger the discriminatory power (Figure 5b). This result could be seen as a simple case of
a more general one: the less overlap among regional hypervolumes (i.e., hypervolumes
generated by data points of the different regions), the stronger the discriminatory power of
a set of bio-tracers gets (Figures 7c, A10c and A13c). Notably, increasing dimensions is often
an efficient way to reduce overlap among regions data points (see Figure 7c, Appendix A,
Figures A10c and A13c).

Figure 7. Efficient combinations of bio-tracers maximise inter-regional variance and minimize overlap
of region data hypervolumes. (a,b) For all combinations of 2 (a) and 3 (b) bio-tracers, the overall
performances (with LDA) of sets of bio-tracers are plotted against their inter-regions variance. (c)
We present relationship between the proportion of overlap of data between regions and the overall
performances for all pairs and triplets of bio-tracers. Magenta dashed lines represent the results
of non-linear leas-squares regression and the corresponding R-squared are added at the bottom of
every panel.

4. Discussion

Working in high dimensions for reliable authentication is already being used in our
day-to-day life. For instance, face recognition algorithms use a high number of “abstract
features” to recognize faces [43,44]. Similarly, multi-messenger astronomy is experimenting
with the fusion of electromagnetic radiation, gravitational waves, neutrinos and cosmic rays
to observe and understand the universe through a new lens [45]. Here we acknowledge
similar potential for food authentication and clarify why data fusion can enhance the
discriminatory power of traceability tools, and thus play a major role in food authentication
in the foreseeable future, as other authors have predicted [12]. Our simulations suggest
that multi-tracer approaches are increasingly strengthened by spatial tracer covariance
and, importantly, allow rapid provenance detection even in the face of noise relative to
low dimensional approaches. This is especially relevant for horizontal data fusion of
bio-tracers as they are plentiful—some of which have just started to reveal their potential
in tracing food products [46]—and reflect various interactions between individuals and
their immediate environment. Hence, together with technical advancements that trace
movements of food products (such as blockchain), using bio-tracer based fingerprinting
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strategies to verify the origin of food product can contribute to making the food supply
chain more transparent, more robust and eventually more sustainable.

Even though working in high dimension could be a very efficient approach, it also
comes with its challenges: even if additional dimensions increase the discriminatory power
of statistical classifiers, it comes at a cost as probability density estimates are more difficult
and thus less accurate [38]. This is where dimension reduction methods, such as PCA, can
be utilized, as they allow for working in a simpler space with mathematically-desirable
properties (e.g., uncorrelated axes that concentrate the variance). However, one needs to
bear in mind that what matters is to keep as much discriminatory power as possible and
thus one should realize that, for instance, working with only the few first principal compo-
nents may not always provide the best authentication tool as dimensions representing a
low amount of total variance may still be of major importance to separate a pair of regions
or more. Researchers should rather focus on statistical tools that reduce dimensions while
maximizing discriminatory power, such as stepwise LDA [47]. Fortunately, the recent boom
in artificial intelligence research is bringing considerable methodological advancements in
multivariate density estimation and dimension reduction [48].

Taking advantage of data fusion can only be achieved if relentless efforts are made
to acquire reliable data that would be securely archived (e.g., within a blockchain) while
being widely accessible. This would require creating and maintaining ad hoc digital
infrastructure. In our Sockeye example, we only needed 90 samples and 17 bio-tracers to
cleanly differentiate a globally ubiquitous species by geographical region; however, we
only covered 1 species across 3 spatially coarse regions—making high diversity and fine
spatial scale applications will require more intensive data and probably the integration of
additional classes of bio-tracers. Although we did not consider DNA approaches beyond
COI barcoding, we did explore DNA barcodes, well known for its species identification
abilities [49,50], as a tool for spatial identification. Nonetheless, the genotypic variation at
the COI gene was small and showed no spatial signal (see Figure A14). Moreover, here
we did not investigate the temporal variations in bio-tracers distribution for the different
regions which will be a critical step as this would determine the survey frequency required
to maintain reliable spatial fingerprints. Overall, the sampling effort and the data required
to extensively cover fishing areas experiencing food security concerns with numerous
species of interest (and/or at risk) over long periods of time would certainly be bigger by
several orders of magnitude.

Ultimately, standardizing sampling protocols, building large databases and employing
powerful computational tools will allow researchers and national authorities to create
dynamic maps of probability of origin for any food product to be tested [37,51]. There
are various strategies to improve food authentication, employing horizontal data fusion
is clearly one of them. Fortunately, we are living in an era where major technical needs
have been met, thus horizontal strategies can be employed immediately, but evidently their
spread will depend on the balance between the cost of their application and the economical
benefits for fishing industry, which vary across seafood products. That said, horizontal data
fusion of bio-tracers could certainly be employed beyond the field of food authentication
as it is a general principle where bio-tracers can be applied and combined to determine
a wide array of biological properties, be it for determining the origin of a species or the
structure of an entire food web.
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Appendix A. Mathematical Proofs

In this first part of the Supplementary Information, we provide a mathematical proof of
our main result, i.e., increasing the number of bio-tracers combined increase the probability
of assigning a sample to its true origin. To do so, we use several strong simplifying
assumptions which are necessary for the rigor of the demonstration. Importantly, numerical
results of the main text fully align with the mathematical ones obtained below.

Appendix A.1. Objectives

We consider a sample of n individuals that belong to one of p existing populations
and we aim at determining the population the sample originate from. In order to do so, q
properties (e.g., fatty acid profile) are measured for every individuals and we assume value
distributions are known for every populations. For the sake of clarity, we refer to these
measurements as bio-tracers and we assume that inferring the population of origin equates
inferring the geographic origins of the sample. Below, we use a Bayesian framework to infer
the geographic origin of a sample based on bio-tracers and to discuss how the properties of
the value distribution affect the inference [36,52].

Appendix A.2. Notations and Definitions

In what follows:

• n, p and q are three natural numbers other than zero;
• Nn is the set of natural numbers ranging from 0 to n, where n ∈ N∗;
• [X] denotes the probability of the event X (X being an event, or a realization of a

random variable), and [X|Y] probability of X given Y;
• N (µ, σ) denotes a Gaussian distribution of parameter (µ, σ);
• E(X) denotes the expected value of the random variable X.

We consider q bio-tracers and p populations. For any population j, f j denotes the
probability density distribution (pdf) of bio-tracers values as follows:

f j : D1 × ...× Dq → [0, 1]

x→ f j(x)

https://foodfromthought.ca/
www.westgrid.ca
www.computecanada.ca
https://doi.org/10.5061/dryad.95x69p8jd
https://doi.org/10.5061/dryad.95x69p8jd
https://zenodo.org/badge/latestdoi/250544023
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where Dl denotes the support set of the lth bio-tracer (we use the same support set for all
areas). Now let S1, . . . , Sn be n random vectors of q dimensions. Such collection defines
the random variables for a sample of size n. Then, let Sk = (Sk,1, ..., Sk,q) denotes the set of
random variables describing the bio-tracer profile of the kth individual of the profile and
sk = (sk,1, ..., sk,q) the observed values.

Appendix A.3. Bayesian Approach

Let [Ai|s] be the probability that the individuals of the sample originate from the
populations i given the bio-tracers values observed. For any population i (i ∈ Np):

[Ai|s] =
[Ai ∩ s]

[s]
(A1)

Applying Bayes theorem yields:

[Ai|s] =
[s|Ai][Ai]

[s]
(A2)

Assuming that Ai, . . . , Ap is a partition (i.e., those are the only potential population
of origins):

[Ai|s] =
[s|Ai][Ai]

∑j
[
s|Aj

][
Aj
] (A3)

using the bio-tracers distribution and assuming independence among individuals of
the sample: [

s|Aj
]
= ∏

k
f j(sk) (A4)

Equation (A3) becomes:

[Ai|s] =
∏n

k fi(sj)[Ai]

∑j ∏k f j(sk)
[
Aj
] (A5)

In case where bio-tracers are independent (A5) can be written as:

f j(sk) = ∏
l

f j,l(sk,l) (A6)

which yields:

[Ai|s] =
[Ai]∏k ∏l fi,l(sk,l)

∑j
[
Aj
]

∏k ∏l f j,l(sk,l)
(A7)

where the probability
[
Aj
]

is a prior information. This can be used to complement the
information about the sample. For instance, in seafood authentication, it can be used
to reflect knowledge on species distribution or fisheries pressure. If no information is
available, it is a reasonable assumption to consider populations equipossible in which case
the relative size of population can be used as weights and in case population sizes are
comparable (or no information is available) for any (i, j), [Ai] = [Aj], (A7) then becomes:

[Ai|s] =
∏k ∏l fi,l(sk,l)

∑j ∏k ∏l f j,l(sk,l)
(A8)

Those assumptions are the same as the ones used by a Naive Bayesian Classifier (one
of the three approaches we used in the main text)



Foods 2021, 10, 717 13 of 26

Appendix A.4. Effect of Dissimilarity between 2 Distributions

Appendix A.4.1. General Considerations

Broadly speaking, there are three main directions that can lead to improving the
inference process described above:

1. Improving the a priori knowledge (which we do not consider here);
2. Considering a larger quantity and/or higher quality of observations;
3. Using more reliable inference techniques.

Below, we focus on how the data quantity and the properties of the distribution
themselves influence the success of authentication. We do so as an attempt to better explain
how increasing dimensionality can lead to better discriminatory power. To this end, we
use simple cases where mathematical developments are fairly straightforwards.

We consider a simplified situation wherein one sample whose individuals come from
one of two existing populations A1 and A2 are to be distinguished based on the distribution
of one single bio-tracer. Under these assumptions, (A7) becomes:

[A1|s] =
[A1]∏n

k f1,1(sj,1)

[A1]∏n
k f1,1(sj,1) + [A2]∏n

k f2,1(sj,1)
(A9)

if we assume [A1] = [A2] (i.e., a non-informative prior) and assuming ∏n
k f1,1(sj,1) > 0,

then (A9) becomes: :

[A1|s] =
1

1 + ∏n
k f2,1(sj,1)

∏n
k f1,1(sj,1)

(A10)

Assuming that the sample originates from A1, then our goal is to understand how the

dissimilarities between the two probability distributions impact the ratio ∏n
k f2,1(sj,1)

∏n
k f1,1(sj,1)

and

thus [A1|s]. As the latter probability also describes the success rate of which a sample is
ascribed to its true provenance, we sometimes refer to this quantity as performance. Note
that because the size of the sample n strongly influences the performance, we also examine
n affect [A1|s].

We further simplify the problem and posit that f1,1 is the density function of a Normal
distribution N (µ1, σ1) and f1,2 is the density function of Normal distribution N (µ2, σ2).
(A9) becomes:

[A1|s] =
1

1 +
(

σ1
σ2

)n
exp

(
− 1

2

(
∑n

k=1

(
sk−µ2

σ2

)2
−
(

sk−µ1
σ1

)2
)) (A11)

In the two following sections, we will consider two cases where dissimilarity is
straightforwardly defined :

1. σ1 = σ2 = σ where the dissimilarity will be quantified as |µ1 − µ2|;
2. µ1 = µ2 = µ where the dissimilarity will be quantified as σ1

σ2
.

Appendix A.4.2. Identical Variances

Under the assumption that σ1 = σ2 = σ, (A11) becomes:

[A1|s] =
1

1 + exp
(
− 1

2σ2

(
∑n

k=1(sk − µ2)
2 − (sk − µ1)

2
)) =

1
1 + exp(−R)

(A12)

where:

R =
1

2σ2

n

∑
k=1

(sk − µ2)
2 − (sk − µ1)

2 (A13)
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Expanding R we obtain:

R =
1

2σ2

n

∑
k=1

(sk − µ2 + sk − µ1)(sk − µ2 − sk + µ1) =
1

2σ2

(
n(µ2

2 − µ2
1) + 2(−µ2 + µ1)

n

∑
k=1

sk

)
(A14)

We are now looking for an expression of the expected performance, i.e., E([A1|s]) for
any n. As we assume that all individuals of the sample originate from A1, if Xn = ∑n

k=1 sk
then we have Xn ∼ N (nµ1,

√
nσ). As E(Xn) = nµ1 one can notice that

E(R) =
(

n(µ2
2 − µ2

1) + 2nµ1(−µ2 + µ1)
)
=

n
2σ2 (µ1 − µ2)

2 (A15)

On a side note, as for all x > 0, x → x
1+exp(−x) is concave, following Jensen’s inequality,

we obtain the following upper boundary:

E([A1|s]) ≤
1

1 + exp
(
− n

2

(
µ1−µ2

σ

)2
) (A16)

For the exact computation of E([A1|s]), given that Xn ∼ N
(
nµ1,
√

nσ
)
, then R ∼

N
(

n
2σ2 (µ2 − µ1)

2,
√

n(µ1−µ2)2

σ

)
.Using (A12), we conclude that [A1|s] ∼ Logitnormal(µLN , σLN)

where µLN = n
2σ2 (µ2 − µ1)

2 and σLN =

√
n(µ1−µ2)2

σ . The moments do not have closed
forms [53] but are straightforwardly computed numerically see [54]. Importantly enough
here µLN

σLN
= 1

2 σLN , so the ratio increases with σLN which is a monotonically increasing
function of |µ1 − µ2| and n. Following Frederic and Lad [53], we therefore conclude that
E([A1|s]) increases with |µ1 − µ2| and n and illustrate this in Figure A1.

Figure A1. The larger the difference between the means the better the performance. E([A1|s]) is
computed for an increasing value (µ1 − µ2)

2. Every point corresponds to the average value from
10,000 simulations and red lines correspond to the analytic solutions. From the darkest to the lightest
gray, triplets {µ1, µ2, σ} are as follows: {0, 0.1, 1}, {0, 0.25, 1}, {0, 0.5, 1}, {0, 1, 1} and {0, 1, 0.5}.

Appendix A.4.3. Identical Means

Now we examine E([A1|s]) for µ1 = µ2 = µ. Under such condition, (A11) becomes:
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[A1|s] =
1

1 +
(

σ1
σ2

)n
exp

(
− 1

2

(
1

σ2
2
− 1

σ2
1

)
∑n

k=1(sk − µ)2
) (A17)

Assuming X ∼ N (µ, σ1), by defining Y = ∑n
k=1

(
X−µ

σ1

)2
we have Y ∼ χ2(n)

and therefore:

E([A1|s]) =
∫ +∞

0

1

1 +
(

σ1
σ2

)n
exp

(
− 1

2

(
σ2

1
σ2

2
− 1
)

y
) f (y, n)dy (A18)

where f is the probability density function of Y. Using the expression of f , we obtain:

E([A1|s]) =
∫ +∞

0

(
1
2

) n
2 1

Γ(n/2)y
n
2−1 exp(−y

2 )

1 +
(

σ2
1

σ2
2

) n
2

exp
(
− 1

2

(
σ2

1
σ2

2
− 1
)

y
)dy (A19)

where Γ is the gamma function. At first glance, it is hard to determine how E([A1|s])
changes with with n and σ1

σ2 . To examine this, we posit:

h(x, n) =
∫ +∞

0
g(y, x, n) f (y, n)dy (A20)

where
g(y, x, n) =

1

1 + xn exp
(
− 1

2 (x2 − 1)y
) (A21)

One can trivially shows that for any n > 1, if x = 1 then h(x, n) = 1
2 . We further

conjecture that for any x ∈ R, x → h(exp(x), n) is symmetric and monotonically increasing
on x ∈ R+ increase. We also conjecture that for any reals n > 1 and m > 1, if m > n then
h(x, m) > h(x, n). Simulations presented in Figure A2a support our conjectures. Keeping
this in mind, we computed E([A1|s]) for various values and an increasing sample size in
Figure A2b.

Figure A2. Effect of the variance ratio on performances. (a) E([A1|s]) is computed for an increasing
σ1
σ2

value. From the darker to the lighter gray, n (sample size) increases as follows: 1, 2.5, 5, 10, and 25.
(b) E([A1|s]) is plotted against the sample size (n). Every point represents the average value from
10,000 simulations, red lines correspond to the analytic solutions. For all simulations, µ1 = µ2 = 0,
σ1 = 1 and from the darkest to the lightest gray, σ2 increases as follows: 1, 1.2, 1.5, 2 and 5.
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Appendix A.5. Effect of Dimensionality

Appendix A.5.1. General Considerations

In this section, we explore how increasing the number of bio-tracers q affects the
inference. As we previously did, we consider only two populations and we posit that
the sample originates from A1. Without further assumption on the co-distribution of
bio-tracers, (A10) becomes:

[A1|s] =
1

1 + ∏n
k f2(sk)

∏n
k f1(sk)

, (A22)

where f1 and f2 are q-variate density functions. We now have q sets of random variables:
(S1,1, ..., S1,n), . . . , (Sq,1, ..., Sq,n). Under the assumption of independence among individuals
of the sample:

∀(i, j) ∈ N2
n, i 6= j, [S1,i ∩ S1,j] = [S1,i][S1,j] (A23)

Note that in the general case, adding bio-tracers improves the inference process only if

n

∏
k=1

f2,1(sk)

f1,1(sk)
>

n

∏
k=1

f2(sk)

f1(sk)
(A24)

It is hard to assert whether it is generally true and below we use simple case to discuss
under what conditions this holds true.

Appendix A.5.2. Simplification

We first assume that the bio-tracers are independent, in this case we have

n

∏
k=1

f2(sk)

f1(sk)
=

n

∏
k=1

q

∏
l=1

f2,l(sj,l)

f1,l(sj,l)
(A25)

which is almost equivalent to increasing the number of samples and demonstration are
similar to the previous ones. For instance, if for any l, Xn,l ∼ N

(
nµ1,l ,

√
nσ
)
, then

(A13) becomes

R =
1

2σ2

q

∑
l=1

n

∑
k=1

(sk,l − µ2,l)
2 − (sk,l − µ1,l)

2 (A26)

which yields:

R =
1

2σ2

q

∑
l=1

(
n(µ2

2,l − µ2
1,l) + 2(−µ2,l + µ1,l)

n

∑
k=1

sk,l

)
(A27)

Assuming Xn,l = ∑n
k=1 sk,l , then we have Xn,l ∼ N (µ1,l ,

√
nσ), for any l. As all Xn,l are

independent, then R ∼ N
(

n
2σ2 ∑

q
l=1(µ2,l − µ1,l)

2,
√

n
σ

√
∑

q
l=1(µ2,l − µ1,l)

2
)

, thus [A1|s] ∼

Logitnormal(µLN , σLN) where µLN = n
2σ2 ∑

q
l=1(µ2,l−µ1,l)

2 and σ =
√

n
σ

√
∑

q
l=1(µ2,l − µ1,l)

2.

Just as in the previous section Appendix A.4.2, we have µLN
σLN

= 1
2 σLN , so the ratio increases

with σLN which is a monotonically increasing function of ∑
q
l=1(µ2,l − µ1,l)

2 and n and thus,
following Frederic and Lad [53], combining bio-tracer (i.e., augmenting the number of
terms in the sum) increases the performances (see Figure A3). Note that in the simplified
situation where (µ2,l − µ1,l)

2 = d for any l, ∑
q
l=1(µ2,l − µ1,l)

2 = qd, then q and n and d
plays similar roles.
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Figure A3. Effect of the number of bio-tracers combined on performances. E([A1|s]) is computed
for an increasing number of samples (a) and for an increasing number of bio-tracers combined (b).
Every point represents the average value from 10,000 simulations, red lines correspond to the analytic
solutions. For all simulations, σ = 1, for any real l, µ1,l = 0 and µ1,l = 0.2. (a) from the darkest to
the lightest gray, the number of bio-tracers combined are 2, 3, 5, 10 and 20, respectively. (b) from the
darkest to the lightest gray, the number of samples employed are 1, 3, 5, 10 and 20, respectively.

Appendix A.6. The Role of Correlation

When bio-tracers are not independent, we have the following relationship

n

∏
k=1

f2(sk)

f1(sk)
=

n

∏
k=1

f2,1(sk,1) f2,Sk,2|Sk,1
(sk,2)... f2,Sk,q |Sk,1,...,Sk,q−1

(sk,q)

f1,1(sk,1) f1,Sk,2|Sk,1
(sk,2)... f1,Sk,q |Sk,1,...,Sk,q−1

(sk,q)
(A28)

where fX|Y denotes a conditional probability density function. We can only assert that as
long as all ratios of conditional probability are less than 1, adding bio-tracers increase the
overall performance, which should be true, on average.

That being mentioned, in the rest of the section, we examine the role of correlation
among bio-tracers. We do so using a simple case where we assume that bio-tracer values
are drawn in multivariate normal distributions, so for any population j, for any individual
i, we have Si,j ∼ N (µj, Σj), where Σj is the variance-covariance matrix.

We start by considering two bio-tracers. In this case, the general form of Σj is:

Σj =

[
σ1,j cov(S1,j, S2,j)

cov(S2,j, S1,j) σ2,j

]
(A29)

We assume that for any i and j, σi,j = 1 and we focus on the role of cov(S1,j, S2,j).
Note that under our assumption, cov(S1,j, S2,j) is also the correlation between the two
bio-tracers (ρj). As we consider only two populations, we have two correlation values, ρ1
and ρ2, and we further simplify the problem by positing ρ1 = ρ2. In other words, we do
not explore cases where different populations have different correlation structures among
their bio-tracers. Therefore Σ1 = Σ2 = Σ that is of the following form:

Σ =

[
1 ρ
ρ 1

]
(A30)

To illustrate the role of ρ, we use (A22) under the new set of assumptions and vary ρ
from 0.99 (bio-tracers are extremely correlated) to 0 (bio-tracers are independent) for an
increasing sample size (Figure A4). This shows that there is a continuum: from a situation
where the two bio-tracers are very correlated and act effectively as a single bio-tracer, up to
the situation where we have two uncorrelated bio-tracers, which performs better.
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Figure A4. Effect of correlation among bio-tracers on the determination of origin. The lighter the line
the less correlated are the two bio-tracers. ρ values range from 0 to 0.99 with an increment of 0.11,
each point represents the average over 100,000 simulations.

In a second step and examine [A1|S] against an increasing dimensionality (i.e., a
number of uncorrelated bio-tracers): from 1 to 10, for a sample of 25 individuals (Figure A5).
This shows that E([A1|s]) increases with dimensionality.

Figure A5. Effect of dimensionality of the set of bio-tracers on the determination of origin. Each
point represents the average value from 100,000 simulations.

Appendix A.7. Conclusions

In order to strengthen the performance of the inference process herein described
(i.e., in order to increase E([A1|s])) and correctly determine the population of origin of one
sample, one may:

1. Increase the size of the sample,
2. Use bio-tracers that maximize the dissimilarity of distributions,
3. Increase the number of bio-tracers used (preferably as less correlated as possible),
4. Use a combination of the factors aforementioned.

Note that in the above consideration we only consider two populations. When as-
suming more than two populations, mathematical developments are similar in principle
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but more tedious. For instance, if we extend the assumptions of Appendix A.4.2 to m
populations (normality and independence among the l populations considered, σl = 0),
(A11) becomes:

[A1|s] =
1

1 + ∑l exp(−Rl)
(A31)

where Rl ∼ N
(

n
2σ2 (µl − µ1)

2,
√

n(µl−µ1)2

σ

)
. Solving this analytically is beyond the scope

of this appendix.

Appendix B. Additional Figures and Tables

In this part of the Supplementary Information we added supplementary figures and
supplementary tables that complements the ones in the main text.

Appendix B.1. Influence of Data Augmentation and Noise Addition for Multi-Layer
Perceptron (MLP)

Figure A6. Effect of data augmentation and noise addition in the overall performance of the Multi-
Layer Perceptron (MLP). Overall performance of the MLP are plotted against the number of times
the data set is repeated (augmentation) and lines are colored according the noise level employed. We
did so for the three stable isotopes we used (a), the three first fatty acids (b) and all the 17 bio-tracers
together (c). The dotted red vertical line indicates the augmentation level we opted for and the red
plain line represents the noise level we chose.

Appendix B.2. Influence of the Training Set Size for the Three Methods

Figure A7. Effect of the size of the training set on overall performance of the three methods employed.
Overall performances are plotted for an increasing number of sample used in the training set. Points
are colored according to the number of bio-tracers combined. Every point represents the average
over up to 100,000 simulations (up to 500 axes combinations of bio-tracers and 200 replicates per
combination). The vertical red dotted line indicates the size of the training set we used in the main
text. The three panels correspond to three statistical approaches used: NBC (a), LDA (b), MLP (c).
Note that potential gains in discriminatory power are increasing with the number of bio-tracers
combined but obtaining such gains requires a larger number of samples.
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Appendix B.3. Results for Pairs And Triplets

Appendix B.3.1. Equivalent of Figures 5–7 for the Naive Bayesian Classifier (NBC)

Figure A8. Performances of individual bio-tracers. Overall performances of all 17 bio-tracers (listed
on the right) using NBC are plotted against the proportion of inter-regions variance (a) and the mean
distance between all pairs of region centroids (b).

Figure A9. Including one more bio-tracers increases performance. Overall performances of all pairs
of bio-tracers using NBC are plotted against the best individual performing bio-tracers of the pair (a)
and their average overall performance (c). Similarly, overall performances of all triplets of bio-tracers
are plotted against the best performing pair of bio-tracers of the triplet (b) and their average overall
performance (d). Magenta dashed lines represent the 1:1 slope.
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Figure A10. Efficient combinations of bio-tracers maximise inter-regional variance and minimize
overlap of region data hypervolumes. (a,b), For all combinations of 2 (a) and 3 (b) bio-tracers, the
overall performances (with NBC) of sets of bio-tracers are plotted against their inter-regions variance.
(c), We present relationship between the proportion of overlap of data between regions and the overall
performances for all pairs and triplets of bio-tracers. Magenta dashed lines represent the results
of non-linear leas-squares regression and the corresponding R-squared are added at the bottom of
every panel.

Appendix B.3.2. Equivalent of Figures 5–7 for Mutiple-Layer Perceptron (MLP, a Class of
Neural Network)

Figure A11. Performances of individual bio-tracers. Overall performances of all 17 bio-tracers (listed
on the right) using MLP are plotted against the proportion of inter-regions variance (a) and the mean
distance between all pairs of region centroids (b).
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Figure A12. Including one more bio-tracers increases performance. Overall performances of all pairs
of bio-tracers using MLP are plotted against the best individual performing bio-tracers of the pair (a)
and their average overall performance (c). Similarly, overall performances of all triplets of bio-tracers
are plotted against the best performing pair of bio-tracers of the triplet (b) and their average overall
performance (d). Magenta dashed lines represent the 1:1 slope.
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Figure A13. Efficient combinations of bio-tracers maximise inter-regional variance and minimize
overlap of region data hypervolumes. (a,b), For all combinations of 2 (a) and 3 (b) bio-tracers, the
overall performances (with MLP) of sets of bio-tracers are plotted against their inter-regions variance.
(c), We present relationship between the proportion of overlap of data between regions and the overall
performances for all pairs and triplets of bio-tracers. Magenta dashed lines represent the results
of non-linear leas-squares regression and the corresponding R-squared are added at the bottom of
every panel.

Appendix B.4. Best Pairs and Triplets of Bio-Tracers

Table A1. Top 10 pair of bio-tracers. Abbreviations are as follows: bt bio-tracer, op overall performance.

Rank LDA NBC MLP
bt 1 bt 2 op bt 1 bt 2 op bt 1 bt 2 op

1 C20:5n-3 C22:1 0.701 δ15N C18:1 0.721 C20:5n-3 C22:1 0.748
2 C18:1 C22:6n-3 0.701 C18:1 C22:5n-3 0.717 C18:1 C18:3n-3 0.722
3 C18:0 C18:1 0.700 C18:1 C20:1 0.694 C18:3n-3 C22:5n-3 0.701
4 C16:0 C18:1 0.697 δ15N C22:5n-3 0.693 C18:1 C22:5n-3 0.691
5 δ15N C18:1 0.691 C18:1 C20:5n-3 0.693 C18:0 C18:1 0.688
6 C20:1 C22:6n-3 0.688 δ15N C18:4n-3 0.687 δ15N C18:1 0.683
7 δ15N C16:1 0.687 C18:4n-3 C22:5n-3 0.682 C16:0 C18:1 0.683
8 C18:1 C20:1 0.677 δ15N C20:1 0.682 C18:1 C22:6n-3 0.680
9 C18:1 C22:1 0.666 C16:0 C18:1 0.677 C16:0 C20:5n-3 0.678
10 C18:1 C20:5n-3 0.663 δ15N C20:4n-3 0.676 C18:1 C20:5n-3 0.670
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Table A2. Top 10 triplet of bio-tracers. Abbreviations are as follows: **bt** bio-tracer, **op** overall performance. The most
left column indicates the rank of the combination.

LDA NBC MLP
bt 1 bt 2 bt 3 op bt 1 bt 2 bt 3 op bt 1 bt 2 bt 3 op

1 C18:1 C20:5n-3 C22:1 0.833 δ15 N C18:1 C18:4n-3 0.805 C18:1 C20:4n-3 C22:5n-3 0.873
2 C18:1 C20:5n-3 C22:6n-3 0.793 C18:1 C18:4n-3 C22:5n-3 0.791 C18:3n-3 C20:5n-3 C22:1 0.851
3 δ15 N C20:5n-3 C22:1 0.787 δ15 N C18:1 C22:5n-3 0.779 C18:1 C20:5n-3 C22:1 0.833
4 C16:0 C18:1 C20:5n-3 0.771 C18:1 C20:4n-3 C22:5n-3 0.779 C18:1 C20:4n-3 C20:5n-3 0.832
5 C18:0 C18:1 C20:4n-3 0.769 C18:1 C18:4n-3 C20:5n-3 0.775 δ15 N C20:5n-3 C22:1 0.828
6 C18:1 C20:4n-3 C22:6n-3 0.769 C18:1 C18:3n-3 C22:5n-3 0.773 C18:3n-3 C20:4n-3 C22:5n-3 0.828
7 C20:1 C20:4n-3 C22:6n-3 0.762 δ15 N C18:4n-3 C22:5n-3 0.771 C20:5n-3 C22:1 C22:5n-3 0.826
8 C18:1 C20:1 C20:5n-3 0.759 δ15 N C18:1 C20:5n-3 0.765 C18:4n-3 C20:5n-3 C22:1 0.814
9 C18:0 C18:1 C20:5n-3 0.758 δ15 N C18:1 C20:4n-3 0.762 C18:1 C18:3n-3 C20:4n-3 0.812

10 δ15 N C18:1 C20:4n-3 0.755 δ15 N C18:1 C18:3n-3 0.761 C18:3n-3 C22:5n-3 C22:6n-3 0.810

Appendix B.5. DNA Barcodes

Figure A14. Unrooted neighbour-joining tree (NJ) based on the p-distance of the 650 bp barcode
region of the Cytochrome c Oxidase I gene. The NJ tree was generated using the Barcode of Life
Data System V4 see also boldsystems.org [55] using the Kimura 2 Parameter distance model [56] and
sequences were generated using the LifeScanner DNA sequencing kit (lifescanner.net).

boldsystems.org
lifescanner.net
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