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ABSTRACT It is well known that mammals and avian gut microbiota compositions are shaped by the host
genomes and affect quantitative traits. The microbial architecture describes the impact of the microbiota
composition on quantitative trait variation and the number and effect distribution of microbiota features. In
the present study the gut microbial architecture of feed-related traits phosphorus and calcium utilization,
daily gain, feed intake and feed per gain ratio in the domestic poultry model species Japanese quail were
assessed by mixed linear models. The ileum microbiota composition was characterized by 16S rRNA
amplicon sequencing techniques of growing individuals. The microbiability of the traits was on a similar
level as the narrow sense heritability and was highly significant except for calcium utilization. The animal
microbial correlation of the traits was substantial. Microbiome-wide association analyses revealed several
traits associated and highly significant microbiota features, both on the bacteria genera as well as on the
operational taxonomic unit level. Most features were significant for more than one trait, which explained the
high microbial correlations. It can be concluded that the traits are polymicrobial determined with some
microbiota features with larger effects and many with small effects. The results are important for the
development of hologenomic selection schemes for feed-related traits in avian breeding programs that
are targeting the host genome and the metagenome simultaneously.
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Livestock microbiota research has received substantial attention in
recent years (Estellé 2019). This is driven by the development of cost-
effective methods for the characterization of the microbiota compo-
sition, e.g., by the 16S rRNA amplicon sequencing approach or by

sequencing the entire metagenome. The microbiota composition
in the gastrointestinal tract (GIT) is strongly associated with quan-
titative traits such as growth and feed efficiency traits in pigs
(Camarinha-Silva et al., 2017; Maltecca et al., 2019; Quan et al.,
2018; Yang et al., 2017), methane emission in ruminants (Difford
et al., 2018; Myer 2019; Roehe et al., 2016), and body weight gain and
feed per gain ratio in poultry (Meng et al., 2014; Stanley et al., 2012).
It is well known that the microbiota itself is shaped by the host
genomes and, hence, it can be seen as a mediator between the
individual host genome and corresponding quantitative trait records.
This enables the development of hologenomic selection schemes that
are targeting the host genome and the metagenome simultaneously
(Estellé 2019; Weishaar et al., 2020). It was shown that especially
for feed-related traits like feed or nutrient efficiency, hologenomic
selection is a promising method to alleviate negative side effects of
improving these traits on animal health (Weishaar et al., 2020).
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Hologenomic selection requires the prediction of quantitative
traits with the aid of microbiota composition (Camarinha-Silva
et al., 2017; Maltecca et al., 2019; Verschuren et al., 2020) and this
benefits from the knowledge of the microbial architecture of quan-
titative traits. The microbial architecture of a quantitative trait
describes the impact of the microbiota composition in a specific
GIT section, and the number and effect distribution of microbiota
features affecting the trait. This can be assessed with the aid of
microbial mixed linear models (Camarinha-Silva et al., 2017; Difford
et al., 2018). These models contain a random animal effect with a
covariance structure modeled by a microbial relationship matrix
M. The elements of M are estimated from the relative microbiota
operational taxonomic unit (OTU) abundances shared by pairs of
animals. The microbiability (Difford et al., 2018) is the fraction of the
phenotypic variance of a trait that can be explained by the microbiota
composition. The marginal OTU effects can be obtained from
the predicted animal effects. These models can thus be used for a
multi-OTU microbiome-wide association study (MWAS), where all
OTUs are fitted simultaneously. Expanding these models toward
multivariate applications reveal the microbiota-driven trait correla-
tions. Alternatively, single OTUs or bacterial genera can be used
one by one in a mixed linear model to test them for trait association.
The MWAS approaches can be used to identify the drives for the
microbiota trait interrelation (Gilbert et al., 2016).

Japanese quail are well-established model animals in domestic
poultry studies because of their short generation interval, small body
size, low space requirements, and good comparability to other poultry
species (Cheng et al., 2010; Kayang et al., 2004; Mills et al., 1997;
Rodehutscord and Dieckmann 2005; Shibusawa et al., 2001; Stock
and Bunch 1982). Only a few studies characterizing the GIT micro-
biota of Japanese quail were conducted (Borda-Molina et al., 2020;
Liu et al., 2015; 2018; Wilkinson et al., 2016; 2020). Compared to
mammals, the avian GIT is shorter in relation to body size and digesta
has a faster passage rate (Wilkinson et al., 2016). While the upper GIT
segments (crop, proventriculus and gizzard) are responsible for initial
feed hydrolysis, the main nutrient absorption takes place in the small
intestine (duodenum, jejunum, and ileum). Thus, the ileum is a
suitable location for the microbiota characterization if the interrela-
tion between the microbiota and feed efficiency traits is to be
investigated. The paired caeca are particularly important for fermen-
tation and a high microbiota density and diversity is observed in this
part of the GIT (Witzig et al., 2015; Yeoman et al., 2012).

Growing Japanese quail were used to study the variability
of mineral utilization efficiency, growth, and other efficiency traits
by Beck et al. (2016). A substantial phenotypic variability of these
traits and a significant heritability were reported. Given the impor-
tance of the microbiota composition for efficiency traits observed in
other species (Maltecca et al., 2019), it can be hypothesized that next
to the host genome, feed and nutrient efficiency traits are also affected
by the GIT microbiota composition. This is supported by studies on
the effect of phosphorus (P) supply on the activity and composition of
the microbiota in the ileum and other GIT sections in broiler chickens
(Borda-Molina et al., 2016; Ptak et al., 2015; Tilocca et al., 2016;
Witzig et al., 2015).

To the best of our knowledge, no studies are published so far
analyzing the impact of GIT microbiota on feed-related traits in
poultry using microbial mixed linear models and microbiome-wide
approaches. The aim of the study was the estimation of microbial
parameters for the traits phosphorus utilization (PU), calcium uti-
lization (CaU), feed intake (FI), feed per gain ratio (F:G), and body
weight gain (BWG), as well as the application of MWAS on phylum,

genera, and OTU level. The interrelation between the traits and
the microbiota composition was further assessed with functional
predictions.

MATERIAL AND METHODS

Experimental design
The experiment was conducted in accordance with the German
Animal Welfare Legislation approved by the Animal Welfare Com-
missioner of the University (approval number S371/13TE) and
described in detail by Beck et al. (2016). Briefly, a F2 cross of
920 individuals of Japanese quail (Coturnix japonica) was established.
After plausibility testing, 888 individuals were available for further
analyses. Before the quail were individually placed in metabolic units
on day five of life, they were housed in groups. After five days of
acclimatization to the metabolic units, the performance testing was
conducted in a strong growth period between 10th and 15th day of life,
and animals were then slaughtered. Slaughtering took place at
12 different days, subsequently denoted as test-days. At slaughter
the ileum was longitudinally opened and digesta was collected and
stored in RNAlater at -80� until further analysis. The animals were
provided with a low-phosphorus but otherwise nutrient-adequate
diet. Bodyweight gain (BWG) was calculated as the difference of the
body weight at day 10 and day 15. Feed per gain ratio (F:G) was
calculated as feed intake (FI) within these 5 days divided by BWG.
Phosphorus utilization (PU) and Calcium utilization (CaU) were
calculated as the difference between total intake and total excretion
of the respective element. Summary statistics are shown in Table 1.
Genetic parameters (heritability and genetic correlations) were
estimated using mixed linear models and are reported by Beck
et al. (2016).

Ileum microbiota characterization
Ileum microbial composition was obtained from a previous study
(Borda-Molina et al., 2020). Briefly, ileum digesta samples of
760 quails were sequenced using 250bp paired-end sequencing
chemistry on an Ilumina MiSeq platform (128 samples did not pass
the quality filter of the sequences and were subsequently discarded).
Demultiplexing and trimming of sequencing reads were done by
using the default parameters from QIIME v1.9.1 pipeline (Caporaso
et al., 2010), and it followed a subsampled open-reference OTU
(operational taxonomic units) calling approach of the pipeline, with a
maximum sequence length of 360 bp. The reads were merged into one
fasta file and aligned using the SILVA Database (Release 132) (Quast
et al., 2013). We used this database, because of its data are quality
checked and includes more updated information. Chimeras were
identified and removed using usearch (Edgar et al., 2011). Sequence
reads can be accessed under the accession number PREJB37544.
Sequences were clustered into operational taxonomic units (OTU)
at .97% similarity and were taxonomically assigned to the closest
species. OTUs were standardized by total. For further analyses, OTUs
with an abundance lower than 0.0001% were removed and only phyla
and genera with an average abundance higher than 0.5% are displayed
in the results.

Functional predictions were carried out with the R package
Tax4Fun2 (Wemheuer et al., 2020), which relied on the SILVA
database (Yilmaz et al., 2014) and used the KEGG hierarchy for the
assignations (Kanehisa et al., 2016). Silva database can provide more
accurate information because it is regularly updated and maintained,
and taxonomic assignations are manually curated (Balvo�ciūtė and
Huson 2017). The biom table to assign this functionality was obtained
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from qiime pipeline (McDonald et al., 2012). Genomes from 16S
rRNA gene sequences identified in this study were downloaded from
the NCBI database (https://www.ncbi.nlm.nih.gov/home/genomes/)
in order to produce the most accurate database. Functional predic-
tions were correlated with the quantitative traits.

Statistical analyses

Microbial linear mixed model: All statistical analyses were per-
formed in R Studio (Version 3.5.2). The following microbial mixed
linear model was fitted within ASReml R (Version 3.0) (Butler et al.,
2009) to determine the microbial variance components:

y ¼ m  1þ Ztdtd þmþ e; (1)

where y is the vector with trait records (the considered traits were PU,
BWG, FI, F:G, and CaU), m is the trait mean and 1 is the vector of
ones, vector td � Nð0; Is2

tdÞ is the vector of random test day (i.e., the
effect of the day at slaughter) effects with variance s2

td and design
matrix Z, and vector e � Nð0; Is2

eÞ contains the random residuals
with variance s2

e . Vector m contains the random microbiota animal
effects with distribution m �   Nð0;  M   s2

mÞ and microbial variance
s2
m. The microbial relationship matrixM was calculated asM ¼ XXT

N ,
where N is the number of OTUs and X is a n ·N matrix, where n is
the number of animals. Matrix X contains the standardized and log-
transformed abundances of the OTUs (Camarinha-Silva et al., 2017).
The model was applied in an univariate setting for the estimation of
microbiability (m2) as m2 ¼  

s2
m  

s2
p  
, with s2

p ¼ s2
m þ   s2

td þ   s2
e . The

significance of microbiability was tested by conducting a likelihood-
ratio test on the random animal effects. The test statistic was
calculated as D ¼ 2½logðL2Þ2 logðL1Þ�, with L2 being the likelihood
of the full model and L1 of the reduced model, i.e., model (1) without
the random microbiota animal effect. The test statistic D under
the null-hypothesis was chi-squared distributed with one degree
of freedom. Next to the microbiability, the microbiota correlation
between quantitative traits was of interest. For this purpose,
model (1) was extended toward bivariate applications. The covariance
matrix of the random microbiota animal effects became

Var

�
m1

m2

�
¼ M5

�
s2
m1 sm1;m2

sm1;m2 s2
m2

�
, with sm1;m2 being the covari-

ance of the animal microbiota effects on trait 1 and 2. From the
solutions of this bivariate model the animal microbiota correlations
were estimated as  rm1;m2 ¼ ŝm1;m2=ðŝm1 � ŝm2Þ. The significance of
the correlation was tested by a likelihood ratio test as described above,
with L2 being the likelihood of the full bivariate model and L1 of the
corresponding bivariate model but with the covariance fixed at zero.
In addition, phenotypic correlations between the raw trait records
were calculated.

Microbiome-wide association analyses, MWAS: MWAS were con-
ducted using two different approaches. The first approach was applied

to bacterial genus level. A second filter step was applied at
a minimum of 0.5% mean abundance of a bacterial genus. This
reduced the number of genera down to 74, which were subject
to the association analysis using the following mixed linear
model

y ¼ Xbþ Ztdtd þ aþ e; (2)

where b is a vector with fixed effects containing the trait mean and the
bacterial genus to be tested. The vector a contained the random
animal effect with distribution a �  Nð0;   As2

aÞ, where A is the
pedigree-based relationship matrix and s2

a the additive genetic
variance (Lynch and Walsh 1998). The effect of the bacterial genera
was modeled as a covariate, i.e., the observation of an individual was
regressed on the abundance of the bacteria genera. The regression
coefficient was tested for significance using an F-Test. This model
was applied for each of the 74 genera and each trait separately. The
nominal p-values were corrected for multiple comparisons using the
Bonferroni correction method. The correction was applied within
each trait. To judge how many false-positive results were among the
significant associations we calculated the false-discovery rate (FDR)
(Benjamini and Hochberg 1995) using the software QVALUE
(Storey and Tibshirani 2003). The FDR q-value of the significant
bacterial genera with the lowest test statistic provided an estimate
of the proportion of false-positive results among the significant
associations.

The same approach was applied on the phylum level, with the four
most abundant phyla (mean abundance . 0.5%) being tested.
Because multiple testing is not a serious issue here, the nominal
p-values were not corrected.

The second MWAS approach was applied at the multi-OTU level.
We used model (1) for predicting the animal microbiota effects and
obtained OTU effects by back-solving the effects as

û ¼ X’M21m̂
N

; (3)

where û is the vector with estimated OTU effects, matrix X is as
defined above, N is the number of OTUs, M21 is the inverted
microbial relationship matrix, and m̂ is the vector with estimated
animal microbiota effects (obtained from model (1)). Because all
OTU effects were estimated simultaneously, they can be inter-
preted as marginal effects, i.e., the effect of each OTU is
corrected for the effects of all other OTUs. We examined those
OTU whose absolute trait association effect exceeded 0.25  sm

more closely.

Data availability
All data generated and analyzed during this study were fully uploaded
to the database of the journal. Supplemental material available at
figshare: https://doi.org/10.25387/g3.12123606.

n■ Table 1 Overview of phenotypic traits. Traits, trait abbreviations, mean, minimum (min), maximum (max) and standard deviation (SD) of
the observed traits of the Japanese quail animals

Traita abbreviation unit min mean max SD

P utilization PU % 21.490 71.399 87.430 7.998
Feed intake FI g 16.110 42.630 62.350 7.120
Bodyweight gain BWG g 5.800 24.491 37.850 5.032
Feed per gain ratio F:G g/g 1.210 1.782 3.920 0.303
Ca utilization CaU % 19.420 60.554 84.310 10.018
a
From day 10 to 15 of life.
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RESULTS

Ileum microbiota community and functional predictions
The amplicon sequences were classified into 1188 OTUs belonging to
7 microbial phyla (Table 2). Most abundant bacterial groups at
phylum level included Firmicutes (mean abundance in percentages
83.25), followed by Proteobacteria (mean abundance 14.29), Actino-
bacteria (mean abundance 1.65), and Bacteroidetes (mean abundance
0.70). The remaining phyla were identified as Epsilonbacteraeota,
Tenericutes, and others. The most abundant genera were Candidatus
Arthromitus (mean abundance 29.64), Clostridium sensu stricto
(mean abundance 14.11), Enterococcus (mean abundance 3.75),
Escherichia-Shigella (mean abundance 14.17), Lactobacillus (mean
abundance 24.33) and Streptococcus (mean abundance 8.25). They
account for 96% of the total community. Further details regarding the
microbiota characteristic are presented in (Borda-Molina et al., 2020).

The results from the functional predictions are shown in Figure 1
for three classification levels. At the broadest level of classification
(level 1), the main activities were carried out for metabolism, followed
by genetic information processing, and environmental information
processing. In the next classification level (level 2 in Figure 1) the
most abundant activities comprised carbohydrate metabolism,
amino acid metabolism and nucleotide metabolism, energy metab-
olism, metabolism of cofactors and vitamins, and lipid metabolism
(Figure 1 and Table S1).

From 352 predicted functions at the third level, a number of
significant correlations with the quantitative traits were identified
(Table S2). To summarize, for PU a total of 17 positive correlations
with functions related to metabolism and environmental information
processing were found. CaU was positively correlated with 30 func-
tions belonging mainly to metabolism and five negative interactions.
BWG showed 48 positive interactions with metabolism and 18 neg-
ative interactions. F:G registered 67 positive and 35 negative inter-
actions. The highest number of correlations were registered with feed
intake where 112 were positive and 60 were negative (Table S1). Thus,
all the traits evaluated mainly interact with metabolic classified
predicted functions.

Microbial parameters
The estimated microbiabilities (results from model 1) were low for
CaU and FI, and moderate for PU, BWG, and F:G (Table 3). They
were highly significant with small standard errors, except for CaU
(P = 0.23). Therefore, no further microbial analyses were conducted
for CaU. The test-day variance component (Table 3) was small for all
traits, except for FI.

The animal microbial correlations (results from the bivariate
extensions of model 1, Table 4) were substantial. They were close to
one for BWG-F:G and above 0.9 for PU-FI, and FI-BWG. They were

highly significant and the standard errors were small in relation to the
estimates. The microbial correlation coefficients were much larger
than the phenotypic correlations, but the directions were the same.

Microbiome-wide association analyses
The results of the single-feature MWAS (model 2) for the four
most abundant phyla revealed only weak significant associations
for Firmicutes and Proteobacteria with PU. A higher abundance of
Firmicutes increased (P nominal = 0.016) and a higher abundance of
Proteobacteria decreased PU (P nominal = 0.048) (not shown
elsewhere).

All genera and OTU effects are reported in units of sm. The
significant associations (P nominal , 0.05) on the genus level are
shown in Table 5. The number of microbiome-wide significant
associations (p adjusted , 0.05) were 2 (3, 5, 6) for PU (FI,
BWG, F:G, respectively). Remarkably, some genera showed highly
significant associations for multiple traits. These were Kurthia (all
four traits), Candidatus Arthromitus (PU, BWG, and FI), Leuconostoc
(PU and BWG), Enterococcus and Rothia (both for BWG and F:G).
All four PU significant genera were also significant for FI and BWG.
The sign of some effects were in agreement with the signs of the
microbial correlation coefficients (Table 4). The highest number of
significant associations among the traits was found for F:G.

The results from the multi-OTU MWAS (model 3) are shown as
Manhattan plots of marginal OTU effects in Figure 2. Several OTUs
with large marginal effects ($ 0.025sm) were mapped for all traits
and are listed in Table 6 along with their taxonomic classifications.
Among the traits, most large effect OTUs were mapped for F:G. Some
large OTU affected several traits. The OTU402 showed a large effect
for all four traits, OTU281 for FI, BWG, and F:G, and OTU1146 for
PU and BWG. The OTU1053 affected both, PU and F:G.

DISCUSSION
This study analyzed the effect of the ileummicrobiota composition on
multiple quantitative traits with microbial mixed linear models. The
results from functional predictions (Figure 1, Table S1, and Table S2)
revealed that the ileum of quails is a highly metabolic active microbial
environment. The m2 estimates (Table 3) revealed a substantial
impact of the microbiota composition on F:G and also on BWG
and PU, which was also found with the functional predictions (Table
S2). The m2 estimates were on a similar level as the narrow sense
heritability estimates for these traits (Beck et al., 2016). Interestingly,
the estimated animal microbiota correlations rm1;m2 between traits
were markedly high (Table 4), which is due to linkages between the
traits, i.e., they were all P- related. It is known from other monogastric
species that feed-related traits are affected by the GIT microbiota
composition (Maltecca et al., 2020). However, the animal microbiota

n■ Table 2 Sample distribution at phylum level. Relative abundances at the phylum level with their minimal (min), mean, maximum (max)
values, and standard deviation (SD)

Phylum

Relative abundances

SDmin mean max

Actinobacteria 0.002 1.652 39.921 3.424
Bacteroidetes ,0.001 0.698 41.246 2.947
Epsilonbacteraeota ,0.001 ,0.001 0.044 0.003
Firmicutes 16.393 83.249 99.875 12.718
others ,0.001 0.104 1.206 0.126
Proteobacteria 0.028 14.295 81.490 12.066
Tenericutes ,0.001 0.001 0.194 0.012
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correlations rm1;m2 were larger than the phenotypic correlations
(Table 4) and the genetic correlations (Beck et al., 2016). This points
to the same underlying microbiota fractions affecting this class of
traits. This can also be deduced from the MWAS results (Table 6),
where most genera affected more than one trait. Some genera showed
substantial effects with up to two or even three units of sm, e.g., for
BWG (Table 6), even though these estimates may be biased due to
multiple testing in the MWAS.

The results from the OTU level MWAS revealed some outliers
with marginal effects . 0.025sm, with many OTUs affecting more
than one trait (Figure 2 and Table 6). However, no substantial peaked
OTU could be identified. It might be that the large genera effect
obtained from model (2) were dissected down to multiple marginal
OTU effects underlying each genus. Firmicutes and Proteobacteria
were also one of the most abundant phyla in other studies
(Kumar et al., 2018; Liu et al., 2018; Shah et al., 2019; Su et al.,
2014; Wilkinson et al., 2016). From these two phyla, four OTUs were
associated with several traits (Table 6). Both OTUs of the phylum
Proteobacteria belong to the Escherichia-Shigella genus, which is

known as enteropathogenic microorganism. Both OTUs had negative
effects on BWG and PU, while a positive effect was estimated for F:G.
In broilers, abundance of Escherichia-Shigella in crop, ileum, and
caeca samples was negatively correlated with performance traits
(Fonseca et al., 2010; Rubio et al., 2015), which is consistent with
our estimates for BWG and PU. One common colonizer of poultry
GIT is Candidatus Arthromitus (Danzeisen et al., 2013; Gong
et al., 2007; Richards-Rios et al., 2020) belonging to the family
Clostridiaceae and the phylum Firmicutes. We found positive
effects on several traits (Table 5), which is in agreement with
other studies reporting positive correlations of this genus with
animal performance traits (Danzeisen et al., 2013; Johnson et al.,
2018). Both bacteria, Bacillus and some subspecies of Enterococcus, are
considered as probiotic in chicken and Japanese quail (Cartman et al.,
2008; Hong et al., 2005). Bacillus showed positive effects on several
traits (Table 5). However, Enterococcus showed negative effects on
FI and BWG, which may be due to the fact that Enterococcus is also
known for pathogenesis and antibiotic resistance (Quednau et al., 1998;
Song et al., 2019).

Figure 1 Functional predictions of different levels of classification. Bar plot for the percentage of relative abundances (y-axis) of the predicted
functions (x-axis) at the three levels of classification based on KEGG database.

n■ Table 3 Results from the microbial linear mixed model (model 1), with microbial variance (s2
m), test-day variance (s2

td), residual variance
(s2

e ), and microbiability (m2) with p values (standard errors are in in parenthesis)

Traita s2
m (SE) s2

td (SE) s2
e (SE) m2 (SE) p value

PU 9.083 (3.210) 1.278 (0.997) 50.043 (3.228) 0.150 (0.050) ,0.001
FI 4.603 (1.852) 9.918 (4.618) 35.152 (2.169) 0.093 (0.037) ,0.001
BWG 4.302 (1.242) 1.504 (0.842) 17.973 (1.160) 0.181 (0.048) ,0.001
F:G 0.023 (0.005) 0.001 (0.001) 0.061 (0.004) 0.269 (0.051) ,0.001
CaU 4.463 (3.771) 5.846 (3.278) 91.457 (5.526) 0.044 (0.037) 0.235
a
For trait abbreviations see Table 1.
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With regards to the trait microbial architecture it can tentative
be concluded, that the traits are poly-microbial determined with
some microbiota features exerting larger effects. In addition, the

across-trait effects of the microbiota features point to substantial
shared microbiota architecture for these traits. This is important
for the development of hologenomic selection schemes that are

n■ Table 4 Phenotypic vs. animal microbial correlations. Phenotypic correlations (rpearson) and results from the bivariate microbial linear
mixed model (bivariate extensions of model 1), with microbial covariance (sm1;m2), and microbial correlation (rm1;m2) with p values (standard
errors are in in parenthesis)

Traitsa
Phenotypic correlation Animal microbial correlation

rpearson p value sm1;m2 (SE) rm1;m2 (SE) p value

PU – FI 0.561 ,0.001 5.695 (2.085) 0.905 (0.102) ,0.001
PU – BWG 0.581 ,0.001 4.671 (1.637) 0.791 (0.116) ,0.001
PU – F:G 20.387 ,0.001 20.310 (0.097) 20.738 (0.134) ,0.001
FI – BWG 0.849 ,0.001 3.743 (1.346) 0.902 (0.059) ,0.001
FI – F:G 20.213 ,0.001 20.282 (0.076) 20.876 (0.117) ,0.001
BWG – F:G 20.645 ,0.001 20.302 (0.072) 20.982 (0.028) ,0.001
a
For trait abbreviations see Table 1.

n■ Table 5 Results from theMWAS conductedwith model (2) at the genus level (n = 74) with nominal p and adjusted p values, FDR q values,
effect estimates b̂ (in units sm, standard errors are in parenthesis)

Traita Genus P value FDR q-value p adjusted b̂ (SE)

PU Candidatus Arthromitus ,0.001 ,0.001 ,0.001 0.024 (0.005)
Kurthia ,0.001 0.011 0.022 21.133 (0.312)

Leuconostoc 0.005 0.089 0.291 1.083 (0.381)
Bacillus 0.005 0.089 0.301 1.677 (0.593)

FI Candidatus Arthromitus ,0.001 ,0.001 ,0.001 0.033 (0.006)
Kurthia ,0.001 0.009 0.019 21.329 (0.362)

Leuconostoc 0.001 0.015 0.044 1.545 (0.449)
Enterococcus 0.001 0.018 0.068 20.040 (0.012)

Bacillus 0.008 0.104 0.467 1.852 (0.702)
Streptococcus 0.010 0.105 0.521 20.018 (0.007)

BWG Candidatus Arthromitus ,0.001 ,0.001 ,0.001 0.026 (0.005)
Enterococcus ,0.001 ,0.001 0.001 20.040 (0.009)

Kurthia ,0.001 0.001 0.002 21.176 (0.281)
Leuconostoc ,0.001 0.006 0.025 1.252 (0.348)

Rothia ,0.001 0.006 0.028 20.666 (0.186)
Streptococcus 0.001 0.008 0.059 20.018 (0.005)
Macrococcus 0.001 0.008 0.064 20.311 (0.093)
Aerococcus 0.002 0.016 0.137 20.158 (0.051)

Unclassified Clostridiaceae1 0.002 0.016 0.145 2.266 (0.734)
Clostridium sensu stricto 0.015 0.102 0.675 0.013 (0.005)

Propionibacterium 0.023 0.142 0.822 2.987 (1.312)
Clostridium XlVa 0.026 0.146 0.853 21.022 (0.457)

Bacillus 0.028 0.146 0.874 1.204 (0.546)
Erysipelotrichaceae incertae sedis 0.030 0.147 0.893 23.053 (1.402)

F:G Aerococcus ,0.001 ,0.001 ,0.001 0.211 (0.042)
Kurthia ,0.001 ,0.001 ,0.001 1.147 (0.233)

Staphylococcus ,0.001 ,0.001 0.001 0.317 (0.073)
Enterococcus ,0.001 0.002 0.006 0.033 (0.008)

Rothia ,0.001 0.002 0.009 0.600 (0.155)
Macrococcus 0.001 0.009 0.050 0.264 (0.077)

Unclassified Ruminococcaceae 0.001 0.009 0.061 0.613 (0.183)
Cutibacterium 0.003 0.021 0.170 0.620 (0.205)

Subdoligranulum 0.003 0.021 0.174 0.745 (0.247)
Candidatus Arthromitus 0.004 0.026 0.230 20.013 (0.004)

Erysipelotrichaceae incertae sedis 0.004 0.028 0.265 3.350 (1.166)
Unclassified Lachnospiraceae 0.005 0.028 0.290 0.171 (0.060)
Lachnospiraceae incertae sedis 0.008 0.044 0.440 1.583 (0.594)

Clostridium sensu stricto 0.010 0.055 0.542 20.013 (0.004)
Streptococcus 0.021 0.106 0.798 0.013 (0.004)

Clostridium XlVa 0.027 0.120 0.867 0.844 (0.380)
Sellimonas 0.028 0.120 0.875 1.385 (0.629)

a
For trait abbreviations see Table 1.
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targeting the host genome and the metagenome simultaneously
(Weishaar et al., 2020).

The models applied show strong similarities with corresponding
genomic models. The genomic counterpart of model (1) is a model
where the microbial relationship matrix M is replaced by a genomic
relationship matrix built by dense SNP data (Yang et al., 2011).
The MWAS models (2) and (3) are closely related to genome-
wide association studies (GWAS) frequently applied in livestock
species, where single-marker as well as multi-marker models are
used (reviewed in Gilbert et al., 2016; Schmid and Bennewitz 2017).
The strength of these association models is that nuisance factors can
be included straightforwardly. In this study the random test-day
effects and the random genetic animal effects (with the pedigree-
based genetic relationship matrix) were included. Both explained
significantly a part of the variance. The inclusion of a random genetic
animal effect in GWAS models is important to model the population
structure and we followed this in the MWASmodel (2). Alternatively,
the relationships of the animals could have been modeled by the
M matrix. We tested this and found in general the same significant
effects, although on a somewhat lower significance level (results not
shown). The latter might result from the genus under consideration
being included twice in the model, i.e., as a fixed covariable and as
random OTUs.

The applied models need large data sets. This is in contrast to
so-called differential abundance analyses (Li 2015). These kind of
studies are based on the comparison of the abundance of microbiota
composition of previously selected groups of animals that differ with
respect to their traits means. Naturally, also differential abundance
analyses benefit from large data sets, but because group means are
compared, they are applicable also to smaller data sets.

Conceptually, the main difference between the MWAS and
the GWAS models is the use of relative abundances as regression

variables instead of SNP genotypes. The relative abundances are
compositional-type data with many zeros (Pawlowsky-Glahn et al.,
2015), which are multivariate with a unit sum. It is impossible to alter
the relative abundance of one feature without altering at least one of
the other abundances (reviewed in Li 2015). This limits the identi-
fication of causalities from MWAS results. Methods are available to
handle microbiota compositional data (Shi et al., 2016) and further
research is needed to study the effect of incorporating these methods
in the applied MWAS models. Thus, it is valid to conclude from the
results of MWAS model (2) that the microbiota features are trait
associated, but no inference of causality can be drawn. Since all
features are considered simultaneously in equation (3), the problem is
less evident for the results of the multi-OTU MWAS. Thus, this
approach might serve as an ad hoc procedure to account for the
compositional-type data structure. Further research is needed for
the calculation of p values from the back-solved OTU effects as
described for SNP effects obtained from genomic models by (Aguilar
et al., 2019).

The multi-OTUMWAS method treated the OTU as random with
normally distributed homogeneous variances. These models are
convenient to apply from a computational point of view, but the
downside is that large OTU effects might be regressed back too strong
and thus do not peak in the Manhattan plots. Alternative models
allow for a heavy-tailed distribution of OTU effects (Maltecca et al.,
2019; Sanglard et al., 2020).

CONCLUSION
Except CaU, all traits were substantially influenced by the ileum
microbiota composition and showed a substantial animal microbiota
correlation. The latter points to the samemicrobiota features affecting
multiple traits, which was confirmed by the results from the MWAS.
The traits were poly-microbial in nature, with some microbiota

Figure 2 Manhattan plot of results from themicrobiome-wide association study conductedwithmodel (3) for P utilization (PU), feed intake (FI), body
weight gain (BWG), and feed per gain (F:G). Each dot represents absolute marginal OTU effect in units of sm and the corresponding OTU number.
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features with large effects on the traits and many features with small
or non-significant effects. The results might help to develop tailored
breeding schemes that invoke microbial trait predictions. In this
study ileum microbiota samples were used, but in practical breeding
applications it is more convenient to use fecal samples. More research
is needed to analyses if the microbiota composition in fecal samples
are good quantitative trait predictors as well. They have to be
confirmed in poultry species and lines such as laying hens or broiler
chickens, which are economically more important than Japanese
quail. The application of microbiome wide mixed linear models
proved to be suitable to unravel the GIT microbial architecture of
the traits, but have to be extended toward handling compositional
type data.
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