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Protein-protein interactions between lens vimentin and o.B-
crystallin using FRET acceptor photobleaching
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Purpose: The R120G mutation of aB-crystallin is known to cause desmin-related myopathy, but the mechanisms
underlying the formation of cataract are not clearly established. We hypothesize that alteration of protein—protein
interaction between R120G aB-crystallin and lens intermediate filament proteins is one of the mechanisms of congenital
cataract.

Methods: Protein—protein interactions were determined by confocal fluorescence resonance energy transfer (FRET)
microscopy using green fluorescence protein (GFP) as the donor and red fluorescence protein (RFP) as the acceptor. The
lens vimentin gene was fused into a GFP vector and the aB-crystallin (WT or R120G mutant) gene was fused into the
RFP vector. The donor-acceptor plasmid pairs of intermediate filament (IF)-GFP and a.B-RFP were co-transfected into
HeLa cells. After incubation, confocal fluorescence images of the transfected cells were taken. FRET was estimated by
the acceptor photobleaching method. Protein—protein interaction was evaluated by FRET efficiency.

Results: The confocal fluorescence images showed that the cells expressing vimentin and R120G o.B-crystallin contained
large amounts of protein aggregates while few vimentin fibers were observed. FRET efficiency analyses indicated that
vimentin had a significantly greater protein—protein interaction with R120G aB-crystallin than with WT oB-crystallin.
Conclusions: Our results show that the R120G a.B-crystallin mutant promoted vimentin aggregation through increased
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protein—protein interaction. This process may contribute to the formation of congenital cataract.

The lens cytoskeleton is composed of microfilaments,
intermediate filaments (IFs), and microtubules [1-3]. The
major function of IFs is to support cellular membranes and to
serve a structural role in maintaining cell shape. The lens fiber
cell contains three IFs: vimentin, CP49, and filensin [1,4-6].
The latter two are lens-specific and form beaded filaments.
Vimentin is a type III intermediate filament. Among the
various crystallins, aB-crystallin is most closely associated
with IF proteins, not only in lens fiber cells [7-9] but also in
muscle cells [10,11]. Desmin, also a type-I1I IF protein found
mainly in smooth and cardiac muscle cells [12], has been the
subject of extensive study in desmin-related myopathy
(DRM), an adult-onset neuromuscular disease characterized
by large accumulations of aggregates of cytoplasmic desmin
and R120G mutant aB-crystallin [13]. Patients with DRM
show muscular weakness and present with cataracts [14-16].
Studies have demonstrated that muscle cell lines transfected
with the mutant oB-crystallin ¢cDNA show intracellular
aggregates that contain both desmin and the oB-crystallin
mutant [10,17,18]. Other studies have shown that the R120G
mutation alters the interaction between aB-crystallin and IFs
that may have contributed to DRM [11,19,20].
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Although the link between desmin and the R120G oB-
crystallin mutation is strong in DRM, it is less clear that the
induction of cataract by this mutation is due to the same
mechanism of association of R120G aB-crystallin and lens
IFs. Moreover, lens fiber cells have vimentin, CP49, and
filensin but not desmin. Vimentin is present in epithelial and
cortical fibers, but it is absent in nuclear fiber cells [21]. Many
studies have demonstrated an association between vimentin
and aB-crystallin [7-9]. The other two IF proteins, filensin and
CP49, assemble as a beaded filament, and their proper
assembly also requires aB-crystallin [4,7]. In the present
study, we have investigated the effects of the aB-crystallin
R120G mutation on the protein—protein interaction with
vimentin using confocal fluorescence resonance energy
transfer (FRET) microscopy. FRET acceptor photobleaching
was applied, and FRET efficiency values were obtained. Our
results show that the oB-crystallin R120G mutant promotes
aggregation of vimentin by increased protein—protein
interactions.

METHODS

Preparation of GFP and RFP fusion proteins: As in our
previous studies, Clontech’s (Palo Alto, CA) pAcGFP-C1 and
pDsRED Monomer-C1 vectors were used [22,23]. The
pAcGFP1-C1 vector is encoded with a green fluorescent
protein (GFP) gene from Aequorea coerulescens (hex/
Aem=475/505 nm). The pDsRED-Monomer-C1 is encoded
with a DsSRED-Monomer gene with a red fluorescence protein
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(RFP), DsRED, a mutant derived from tetrameric Discosoma
(Aex/Aen=557/585 nm). The vimentin gene (in pBluescript
vector) was obtained from ATTC (Manassas, VA). It was
subcloned into the pAcGFP1-C1 vector by polymerase chain
reaction (PCR) using the forward primer-CCT AAG CTT
TGT CCA CCA GGT CC-containing the HindlIII restriction
site (underlined) and the reverse primer-CCC GAA TTC TTA
TTC AAG GTC ATC-containing the EcoRI restriction site
(underlined). The resulting construct was designated as GFP-
VIM; its sequence was verified. The wild-type (WT) and
R120G oB-crystallin constructs (RFP-oB and RFP-oBm
[where m is R120G mutation]) were previously prepared
[22].

Transfection and cell culture: HeLa cells were cultured using
the protocol described in our recent report [22]. Briefly, HeLa
cells were seeded into a 35 mm culture dish. After culturing
for 24 h to obtain at least 80% confluence, cells were co-
transfected with the two constructs using the lipofectamine
2000 reagent (Invitrogen, Rockville, MD) at a ratio of
cDNA:lipofectamine being 1:2. For a positive control, GFP-
0A- and RFP-oB-crystallin were used, and for a negative
control, GFP and RFP were used. After incubation for 48 h,
cell images in the green and red channels were acquired using
a Zeiss Laser Scanning Microscope (LSM; 510 META
Axioplan 2, Carl Zeiss Inc., Thornwood, NY) at the Harvard
NeuroDiscovery Center (Harvard Medical School, Boston,
MA).

FRET acceptor photobleaching: This method measures
energy transfer efficiency (E) and is directly related to the
distance (r) separating a given donor and acceptor pair by the
Foster Equation [24-26]:

E=1/[1+(#/R0)°’] (Equation 1)

where Ry is the Foster distance at which the transfer efficiency
is 50%. The efficiency of transfer (E) can be calculated from
the equation:

E=1-Foa/Fv (Equation 2)

where Fpa and Fp are the donor fluorescence intensities in the
presence and absence, respectively, of energy transfer.

FRET acceptor photobleaching (FRET-AP) involves
measuring the donor “de-quenching” in the presence of an
acceptor. This is done by comparing the donor fluorescence
intensity in the same sample (either a whole cell or region of
interest [ROI] of a cell) before and after destroying the
acceptor by photobleaching. If FRET was initially present, a
resultant increase in donor fluorescence occurs upon
photobleaching of the acceptor. The energy transfer efficiency
is quantified by rewriting Equation 2 as:

E=1-Fye/Frosx  (Equation 3)

where F. is the fluorescence intensity of the donor before the
acceptor photobleaching, and Fp is the fluorescence intensity
of the donor after the acceptor photobleaching.
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In the photobleaching experiments, a repetitive bleaching
(at excitation wavelength of 543 nm) was applied to bleach
the RFP signal in a ROI or a whole cell. A series of pre-
bleaching and post-bleaching donor GFP fluorescence
intensities were collected. The maximum and minimum
values (GFP-max and GFP-min) were used for calculation of
FRET efficiency by rewriting Equation 3 as:

E:l 'FGFP-min/FGFP-max (Equatlol’l 4)

Statistical analyses: Data are expressed as the mean+=SEM
from a minimum of three independent experiments. Statistical
analysis was performed with either a Student’s #-test (two
groups) or an ANOVA analysis (more than two groups) with
p<0.05 as the criterion of significance.

RESULTS

Figure 1 shows representative confocal images of cells
transfected with GFP-VIM or co-transfected with either GFP-
VIM and RFP-WToB or GFP-VIM and RFP-R120GoB. In
the cells expressing GFP-VIM and RFP-R120GoB, a
dramatic increase in the number of aggregates was observed.
In addition, fewer vimentin fibers were present. Aggregation
is shown as bright, dense spots. Cells expressing vimentin
alone show rare aggregates.

The fusion proteins, GFP-0.A and RFP-aB, were used as
a positive control (Figure 2) since 0A-crystallin and ?B-
crystallin are known to have strong subunit-subunit
interaction. We have reported a comparable FRET efficiency
in a solution study [27]. In the photobleaching experiment, the
acceptor is bleached, and as a result, acceptor fluorescence
intensity shows a decrease and donor fluorescence intensity
shows an increase since fewer acceptor chromophores are
available for energy transfer. The pseudo-color images
represent the increase of pixel density before and after
bleaching. The color in the bar represents the pixel density of
the image and thus the intensity of interaction.

Nonfusion GFP and RFP were used as a negative control;
they are not expected to interact. Figure 3 shows some
representative confocal images. Theoretically, the negative
control should show no increase of donor intensity after
bleaching and thus no transfer efficiency, but in the acceptor
photobleaching experiments, the donor is also affected. When
repetitive bleaching is performed, donor intensity increases
initially but then decreases slightly if there is energy transfer
between the donor and acceptor. If there is no energy transfer,
donor intensity shows a slight decrease, and some residual
pixel density in Figure 3 is considered to be experimental
background.

Representative confocal cell images for FRET-AP are
shown in Figure 4 for GFP-VIM and RFP-WToB and in
Figure 5 for GFP-VIM and RFP-R120GoB. The calculated
FRET efficiency values were plotted in Figure 6. Significant
differences in transfer efficiencies were observed among the
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Figure 1. Representative laser scanning microscopy images of HeLa
cells transfected with GFP-VIM and co-transfected with GFP-VIM
and WT oB-crystallin (aB) or R120G aB-crystallin (a«BM). The
single construct or pair of constructs was transfected into HeLa cells.
After culture, laser scanning microscopy (LSM) images were taken.
Either the green image (GFP-VIM) or merged image of green and
red fluorescence (GFP-VIM and RFP-WT oB-crystallin [oB] or
GFP-VIM and RFP-R120G aB) was shown. Vimentin filaments are
clearly shown in cells co-expressing WT aB-crystallin, but enormous
aggregates were formed in the cells co-expressing R120G oB-
crystallin. Vimentin filaments are shown as the fibrous structures and
aggregates as the bright, dense spots.

© 2008 Molecular Vision
various pairs (p=0.0013), and approximately a twofold
increase in the transfer efficiency is observed for vimentin and

R120G aB-crystallin compared with vimentin and WT oB
crystallin (p=0.02).

DISCUSSION

We have been using sensitized emission to detect FRET [22,
23], but recently we found that the acceptor-photobleaching
method is more simple. It requires fewer cell samples and
involves fewer data manipulations. After preliminary
experiments with controls, data acquisition becomes quite
straightforward. The choice of donor-acceptor pair is very
important; the GFP-RFP we used before gave a satisfactory
result. Both GFP and RFP (DsRED) chromophores are
sufficiently photostable during imaging. In fact, a complete
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Figure 2. Representative laser scanning microscopy images of HeLa
cells co-transfected with the positive controls, GFP-oA and RFP-
aB. The constructs were co-transfected into HeLa cells. After
culture, laser scanning microscopy (LSM) images were taken. a.A-
and oB-crystallins are known to have a strong subunit-subunit
interaction. The energy transfer efficiency is high. The increase of
GFP fluorescence intensity is converted to pseudocolor (right panel)
that displays variations of pixel gray scales with color.

After
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Figure 3. Representative laser scanning microscopy images of HeLa
cells co-transfected with the negative controls, untagged GFP and
RFP. The pair of constructs was co-transfected into HeLa cells. After
culture, laser scanning microscopy (LSM) images were taken. The
low efficiency shown arises from experimental background. The
increase of GFP fluorescence intensity is converted to pseudocolor
(right panel) that displays variations of pixel gray scales with color.
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photobleaching of RFP chromophores is difficult to achieve
in a short time. However, a longer bleaching time will
complicate imaging results because the samples shift during
the time between taking pre- and post-bleach images. For this
reason, we used only 45 s of bleaching time to obtain partially
bleached cells in our experiments. After photobleaching,
green fluorescence intensity is increased when the two target
proteins interact because of less FRET. The information from
transfer efficiency values is basically the same as net FRET
values; they reflect the extent of protein—protein interactions.

The nature of the interaction between vimentin and oB-
crystallin is not known, but chaperone binding is thought to
be involved. The assembly of filament fibers may need aB-
crystallin as a chaperone. However, overexpression of R120G
aB-crystallin leads to decreased fibrous vimentin and
increased aggregation (Figure 1). This cannot be due to an
increase of chaperone binding because of the decreased
chaperone-like activity of R120G aB-crystallin [28,29]. The
more likely mechanism is increased hydrophobic interaction
since the R120G aB-crystallin mutant is partially unfolded
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GFP-VIM
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Figure 4. Representative laser scanning microscopy images of FRET
acceptor photobleaching of HeLa cells co-transfected with GFP-
VIM and RFP-WTaB. The pair of constructs was co-transfected into
HeLa cells. After culture, laser scanning microscopy (LSM) images
were taken before and after photobleaching of the acceptor for 45 s
with a 543 nm laser beam. A decrease of red fluorescence and
increase of green fluorescence were observed. The transfer efficiency
was calculated with the equation: E=1 — FGFp-min/FGFp-max.. The
efficiency for this cell that co-transfected with GFP-VIM and RFP-
WTaB is 9.5%, much greater than the negative control of untagged
GFP and RFP. The increase of GFP fluorescence intensity is
converted to pseudocolor (right panel) that displays variations of
pixel gray scales with color.
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and has more exposed hydrophobic surfaces [27]. R120G oB-
crystallin is susceptible to aggregation [22], and when
coexpressed with vimentin the increased hydrophobic
interaction renders them aggregated.

The HeLa cell itself expresses endogenous vimentin, but
the amount must be overshadowed by the overexpressed
tagged protein, and the interaction between the endogenous
vimentin and oB-crystallin should not affect FRET
measurements. In the cells, other heat shock proteins such as
HSP70 and HSP90 were also found to interact with IFs [30,
31], but the nature of their interaction is uncertain; a role to
maintain filaments from aggregation was proposed [32].

The lens cell cytoskeleton was also found to associate
with membranes. An ecarlier study indicated that newly
synthesized vimentin was associated with lens membranes
[33]. The same study also found a-crystallin to be associated
with lens membranes. Later, a-crystallin was reported to
associate with other cytoskeletal proteins (actin and
microtubule) [34-36]. These observations indicate that the
three lens components (crystallins, membranes, and
cytoskeleton) are interrelated; thus the protein complex, a
macromolecular assembly, must be responsible for lens-
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Figure 5. Representative laser scanning microscopy images of FRET
acceptor photobleaching of HeLa cells co-transfected with GFP-
VIM and RFP-R120G aB. The pair of constructs was co-transfected
into HeLa cells. After culture, laser scanning microscopy (LSM)
images were taken before and after photobleaching of the acceptor
for 45 s with a 543 nm laser beam. A decrease of red fluorescence
and increase of green fluorescence were observed. The transfer
efficiency was calculated with the equation: E=1 — FGrp-min/Frp-
max. The efficiency for this cell that co-transfected with GFP-VIM
and RFP-R120G oB is 19.5%, twofold greater than the GFP-VIM
and RFP-WTaB. The increase of GFP fluorescence intensity is
converted to pseudocolor (right panel) that displays variations of
pixel gray scales with color.
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specific functions. Protein—protein interaction may provide
information on not only when two proteins interact but also
when such interactions are modified. In age-related cataracts
or congenital cataracts, protein modifications or mutations are
found. Disruption of protein—protein interactions will
profoundly change protein or cell functions. Protein—protein
interactions in turn are dictated by specific protein
conformations; partial unfolding not only destroys the
interaction sites but also exposes buried hydrophobic sites.

Another possible mechanism involves IF structures.
Some data suggest that the vimentin IF structure is dynamic;
IF undergoes subunit exchange [37-39]. The vimentin
filament is composed of smaller protofibrils, each of which in
turn consists of two smaller protofilaments. Each
protofilament consists of tetramers [12], which are assumed
to result from the interaction of two dimers. A monomeric
vimentin consists of a central a-helical domain with one non-
helical NHa- (head) and one COOH- (tail) domain. The two
monomers are twisted around each other to form a coiled
dimer. The head and tail are involved in the end-end and lateral
interactions. The dynamic structure of IFs suggests that IFs
reorganize in response to cell cycle-specific or differentiation-
specific cues. Thus, the presence of aggregation-prone R120G
aB-crystallin may interfere with the IF assembly and
disassembly process. The dynamic structure of vimentin may
also help the formation of the filament network of tagged
GFP-VIM since GFP-VIM can participate in the subunit
exchange in the filament network of the endogenous vimentin.

There are two other myopathy-associated aB-crystallin
mutants, Q151X and 464delCT [40]. Both mutants caused the
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Figure 6. Summary of transfer efficiencies for various pairs, GFP and
RFP, GFP-aA and RFP-aB, GFP-VIM, and RFP-WToB and GFP-
VIM and RFP-R120G oB. Significant differences in transfer
efficiency were observed among them (ANOVA test, p=0.0013), and
atwofold increase for the pair of GFP-VIM and RFP-R120G aB over
the pair of GFP-VIM and RFP-WTaB (#-test, the asterisk indicates
p=0.02) was also observed. The n inside the bar is the number of cells
photobleached.

© 2008 Molecular Vision

formation of cytoplasmic aggregates in skeletal muscles, but
did not cause cataract. Apparently, the effects of these two
mutants on desmin are the same as the R120G mutant, but the
effects on vimentin or other IFs are different from the R120G
mutant. The mechanism for the different effects is not known
and needs further study.

In conclusion, we have demonstrated that the R120G oB-
crystallin mutant promotes vimentin aggregation, and FRET
photobleaching shows that the mechanism of aggregation is
increased protein—protein interactions between vimentin and
R120G aB-crystallin.
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