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Abstract

Fluorescence microscopy allows for a detailed inspection of cells, cellular networks, and 

anatomical landmarks by staining with a variety of carefully-selected markers visualized as color 

channels. Quantitative characterization of structures in acquired images often relies on automatic 

image analysis methods. Despite the success of deep learning methods in other vision applications, 

their potential for fluorescence image analysis remains underexploited. One reason lies in the 

considerable workload required to train accurate models, which are normally specific for a given 

combination of markers, and therefore applicable to a very restricted number of experimental 

settings. We herein propose Marker Sampling and Excite — a neural network approach with a 

modality sampling strategy and a novel attention module that together enable (i) flexible training 

with heterogeneous datasets with combinations of markers and (ii) successful utility of learned 

models on arbitrary subsets of markers prospectively. We show that our single neural network 

solution performs comparably to an upper bound scenario where an ensemble of many networks 

is naïvely trained for each possible marker combination separately. In addition, we demonstrate 

the feasibility of this framework in high-throughput biological analysis by revising a recent 

quantitative characterization of bone marrow vasculature in 3D confocal microscopy datasets and 

further confirm the validity of our approach on an additional, significantly different dataset of 

microvessels in fetal liver tissues. Not only can our work substantially ameliorate the use of 
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deep learning in fluorescence microscopy analysis, but it can also be utilized in other fields with 

incomplete data acquisitions and missing modalities.

Introduction

Deep neural networks have been largely successful in many computer vision problems 

[1, 2], by learning network model parameters in layers to produce feature maps called 

activations, to arrive at a desired output often given as ground truth during a training phase. 

The learned parameters can then be deployed in an inference phase to make predictions 

on new input data. Countless advances in this field have occurred in a relatively short 

timeframe, especially in the use of supervised segmentation, where the goal is the semantic 

partitioning of an input image with the ground truth typically consisting of pixels annotated 

interactively by experts. For instance, UNet [3] is a well-known deep Convolutional Neural 

Network (CNN) architecture with proven success on semantic segmentation in various 

biomedical domains. Nevertheless, some aspects of biological images still pose several 

practical challenges in the application of deep CNN architectures (hereafter also called 

models).

Fluorescence-based microscopy (FM) is a mainstay technology for the study of living or 

fixed tissues in biomedical research. It operates by detecting microscopic signals emanating 

from inorganic molecules or genetically encoded proteins. Fluorescent dyes are often 

coupled to antibodies, which target structures or cells of interest within complex samples 

in a highly specific fashion, a process known as immunostaining. Fluorescent signals are 

registered and separately encoded as independent image channels due to their distinct 

spectral properties, thereby allowing the visualization of stained anatomical landmarks of 

interest. Herein we refer to these channels as markers (also called labels in the literature), 

which are analogous to the acquisition of modalities in other imaging fields, such as the 

specific imaging sequences for quantifying different tissue properties with Ultrasound or 

Magnetic Resonance Imaging.

The inherent nature of markers in bioimaging studies poses some additional limitations 

in the creation of datasets that can be processed by typical CNN frameworks. First, the 

number of markers that can be simultaneously imaged is limited, due to the overlapping 

spectral profiles of different fluorochromes, which preclude their reliable separation in 

individual channels. Therefore, any detailed characterization of tissues and their pathological 

perturbations often requires the use of different permutations of a restricted number of 

markers, which in turn can only provide a limited level of insight into the biological 

structures studied. Moreover, sample availability is typically a limiting factor, and 

processing, immunostaining and image acquisition are laborious and time consuming tasks, 

especially for whole-organ or 3D imaging techniques. Thus, it is not always technically 

feasible to increase the number of markers, although such additional sources of information 

would simplify image processing techniques. Finally, the process of immunostaining does 

not always work consistently, leading to cells and structures stained with variable intensity 

despite using the same markers. Altogether, these issues hinder the generation of a large 

number of datasets of images stained consistently with all combinations of possible markers. 
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FM datasets thereby often consist of heterogeneous combinations of markers, and with each 

combination often being limited in number of samples, applications of deep learning become 

strongly limited. Furthermore, typical supervised segmentation algorithms allow a trained 

model for only limited future applicability, i.e. when the exact same marker combination is 

used as in training. This limitation leads to the tradeoff that either a separate specific model 

is trained each time a new combination is desired and data is available, or a small set of 

intersection of markers is found in the data; either way neglecting large amounts of precious 

data and any possibility of using the models later with alternative marker combinations.

In a general image analysis framework, the problem settings above can be referred to 

as missing modalities, and are somewhat related to Multi-Task Learning, a field that 

studies whether information should be learnt jointly or separately [4], and to Domain 

Adaptation, which aims to bring datasets from different sources into a common space 

to improve generalization performance [5]. It is agreed in both these fields that using a 

unique model that shares certain amount of information is advantageous. Despite many 

advances in these fields, the presented missing marker or modality problem is, however, 

largely unexplored. Recently, synthesis approaches for completing missing data have been 

proposed for both markers [6, 7, 8] and time-sequences [9] in FM, as well as for modalities 

in magnetic resonance imaging [10, 11, 12, 13]. Such modality synthesis is cumbersome 

and potentially sub-optimal when the segmentation model could instead encode information 

across modalities with shared features. Methods combining different modalities in shared 

feature spaces were proposed in [14] as Hetero-Modal Image Segmentation framework 

(HeMIS) as well as in [15, 16]. One would reasonably expect a multi-modal network model 

to behave differently in the existence or absence of a particular modality. Such processes 

of conditioning the models explicitly are known as attention mechanisms. For example, soft 

attention mechanisms transform the activations of a model conditioned on the activations 

themselves [17, 18]. Notably, Squeeze and Excitation (SE) [19] and similar modules [20, 

21, 22, 23] have been very successful and since been integrated in several different network 

architectures to improve their performance and the interpretability of extracted features.

Building on these ideas, we herein devise a method that addresses the fundamental problem 

of multi-modality heterogeneous sets and evaluate this on a 3D microscopy image dataset 

of bone marrow vascular network [24], where the annotations are divided into two vascular 

types, namely sinusoids and arteries. The variable size and morphology of the vasculature 

had hindered precise segmentation and thus a reliable vasculature characterization in earlier 

works [25, 26, 27, 28, 29]. In this experimental setting with 5 FM imaging markers, we 

first evaluate multiple baseline conventional scenarios to analyze the effect of each possible 

marker combination on the performance of semantic (not to be confused with instance) 

vessel segmentation, which also serves as an upper bound for assessing our proposed 

methods. Then, we show that a Marker Sampling strategy enables a single CNN model 

to successfully perform in the presence of any marker combination, while outperforming 

the current state-of-the-art HeMIS. Next, we present our novel Marker Excite soft attention 

module, which learns how to recalibrate the network activations as a function of available 

markers, showcasing this by training a single model that performs comparably to the upper 

bound scenario with an ensemble of 31 separate models individually trained and specialized 

for each of the marker combinations. We further demonstrate that our model can even 
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outperform the upper bound, by leveraging information shared across markers when the 

training dataset contains such practical variations. Next, we present a case study on the 

problem setting of [24] to show the application of our method on an existing practical 

research question. Finally, we demonstrate the widespread applicability of our methods by 

applying them to a largely different and independently generated fetal liver FM dataset, 

thereby providing the first quantitative characterization of microvascular networks in this 

organ across different embryonic stages.

Results

Segmenting fluorescence microscopy samples stained with multiple markers

Markers in FM label specific biological structures, and their efficient combination enables 

the visualization of distinct cellular/subcellular components or networks thereof. Manual 

annotation of these structures as classes is usually possible when the available markers 

accurately portray them. Meanwhile, image segmentation algorithms can target these classes 

by employing arbitrary combinations of markers, but their performance will largely vary 

depending on the combination employed. To be able to achieve such segmentation with 

different markers, we designed a neural network-based image processing pipeline applicable 

to tissue-wide FM imaging (illustrated in Fig. 1a with details in the Methods section) that 

processes markers as channels. In this work we employ a dataset with 8 large samples 

divided in a number of 2D patches (Supplementary Table 1). Each patch consists of two 

ground truth classes (sinusoids and arteries) and five markers (DAPI, endomucin, endoglin, 

collagen, and CXCL12-GFP) denoted as mG, G ⊆ {1,…, 5}. Hereafter, we use multiple 

subscripts successively to indicate combinations of these markers. All following CNNs 

results were validated with 4-fold cross-validation, and claims are made only when the 

respective null hypothesis can be rejected with a p-value≤0.05. More details are given in the 

Methods Section.

We build an extensive semantic segmentation baseline by training a distinct UNet separately 

for each of the 31 possible combinations of 5 markers. These also serve in the following 

sections as upper bound performance given this architecture. We present results for models 

trained separately for two classes of vessels, since empirically (measured with F1-score 

in Fig. 1b,f) this performed superior to training them simultaneously. To analyze marker 

importance, we rank in Fig. 1c-e&g-i the marker combinations according to their mean 

F1-score. Although the segmentation accuracy is seen overall to increase with more markers, 

it is seen to also highly depend on specific markers: Sinusoid segmentation in Fig. 1c-e has 

higher accuracy when either m 2 or m 3, which specifically label these structures, are present 

(blue). Without them, m 4 helps with segmentation (red), compared to the least helpful m 

1 or m 5 (green). For arteries in Fig. 1g-i, having the arterial-specific m 4 marker seems 

essential (blue), and results can be further improved by adding m 2 (red). These observations 

are used later herein to interpret outcomes, e.g. when some suitable markers are missing.

Marker Sampling for segmenting with missing markers

The strategy described above allows to determine the best combination of markers to 

segment a given class. Nevertheless, the need for a fixed marker combination would be 
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restraining in different applications due to the practical limitation on number of markers 

to use simultaneously in sample preparation. It is also not fail-safe if individual markers 

fail during acquisition. Moreover, such a naïve approach of training a distinct CNN for 

each combination would require 2K – 1 models for K markers (31 models in our study), 

an exponential growth, which is prohibitive for training CNNs in reasonable time frames. 

Finally, retraining this many models becomes highly impractical as new samples are added 

to the training dataset. To address this challenge we propose a Marker Sampling (MS) 

approach (illustrated in Fig. 2a). A key component of MS is a sampling layer at the input of 

a segmentation network, herein UNet. During training, we provide all the available markers 

to the network, while this sampling layer randomly selects a subset to be processed by the 

proceeding network. This single-model framework consequently can learn to generalize to 

any subset of markers at inference.

Since the accuracy for each marker combination may vary widely (also seen in Fig. 1c,g), 

we herein report comparative improvements in a paired test manner; i.e. when we test a 

hypothesis with respect to an alternative method (indicated in the figures as “Rel. to”), we 

calculate the relative metric difference separately for each marker combination experiment 

and report the distribution and statistical significance of such differences (with details in the 

Method Section). Fig. 2b shows a comparison of our MS method with the state-of-the-art 

HeMIS. In addition we train our single CNN without MS, i.e., the network always uses 

all markers during training without sampling. When performing inference on a subset of 

markers, we simply set the missing input to zero. We refer to this simplistic baseline as 

Marker Zero (MZ). The results show that our MS model vastly outperforms both HeMIS 
and MZ, indicating that training a network simply with randomly sampled marker subsets 

generalizes across the possible input combinations better than the other two approaches. 

Surprisingly, MZ does not perform significantly different than HeMIS, suggesting that the 

latter does not provide any advantage for this task compared to a standard UNet architecture. 

Based on this, learning shared features can be considered comparable to marker-specific 

representations for this purpose. For completeness we also evaluate incorporating the MS 
strategy in the HeMIS architecture (Fig. 2c) and find that there is no improvement compared 

to UNet-based MS, therefore concluding that any advantage originates from our MS strategy 

per se.

It could be beneficial to normalize the output of the sampling layer across channels to 

keep its signal magnitude constant. In fact, MS can be interpreted as a variant of Dropout 

regularization of neural networks [30], where it is applied only on the input layer and, not 

only during training but also during inference (deterministically via available markers). We 

investigate such relation by training two variants of our model: Marker Sampling with 
Dropout (MS-DR), which scales the intensities of the available images by a constant 

Dropout ratio, and Marker Sampling with Variable Ratio (MS-VR), which scales the 

intensities by the ratio of available markers in each sample. Among these, MS is found to be 

the best performing model (Fig. 2c), indicating that our improvements cannot be matched by 

such handcrafted normalization in the sampling layer.

In summary, while HeMIS, MZ, and MS all perform well when all markers are present (m 

12345), our proposed MS generalizes significantly better when some markers are missing at 
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the time of segmentation. Indeed, for instance, with m 4 alone our proposed MS can already 

segment satisfactorily (Fig. 2d), which the baselines are unable to.

Marker Excite for learning attention to markers

As demonstrated above, MS can effectively generalize across marker combinations using 

a traditional neural network backbone such as UNet to learn shared features for distinct 

markers. We herein additionally propose Marker Excite (ME) — a novel attention module 

for a further boost by learning a weighting of deep features as a function of available 
markers. Note that existing attention modules such as SE learn such weighting as a function 

of layer activations. Instead, our ME module learns attention to marker availability, provided 

explicitly as an additional input to the network in the form of a one-hot encoded symbolic 

vector (Fig. 3a). We integrate ME modules at different layers of a UNet as shown in Fig. 

3b. Integrating our ME approach with the previously presented MS strategy of prepending a 

sampling layer, we attain our ultimate model MS-ME. We compare this below also using the 

conventional attention by replacing ME with SE, a baseline referred hereafter as MS-SE.

Fig. 3c shows that MS-ME yields improved overall accuracy with respect to MS as well 

as MS-SE, especially for the sinusoids. A major advantage of attention modules is that 

they increase the model complexity only marginally (MS-ME having merely 0.64% more 

parameters than the UNet architecture it was based on). To demonstrate that the presented 

improvement does not originate from inflation of model size, we conducted an additional 

experiment with a much larger UNet baseline (MS+) of over 20% more parameters and 

show that the clear improvement from our proposed approach persists (Fig. 3d). We also 

performed an ablation study by placing ME attention at different network layers (Fig. 3f,g), 

concluding that placing ME after every convolutional block (outlined in orange in Fig. 3b) 

is the optimal configuration (namely MS-ME) for our task. An analysis of the influence of 

the proposed ME modules reveals that the recalibration effect is stronger for activations of 

higher resolution (Extended Data Fig. 1).

We also compare our proposed MS-ME model with an upper-bound (UB) presented in Fig. 

1c,g. Note that UB consists of 31 individual models each of which separately trained and 

specialized to the availability of a specific marker combination, whereas MS-ME is a single 

model aiming to achieve well on whatever marker combination may be available at a given 

time. Fig. 3e shows that across all markers combinations our MS-ME is not significantly 

different than UB, and even slightly superior for sinusoid segmentation potentially thanks to 

leveraging additional information shared across combinations. A sample qualitative result is 

provided in Fig. 3h for a marker combination (m 15) known to be suboptimal (based on Fig. 

1c,g) with a specialized training of a dedicated UB model. Even for this case, MS-ME is 

seen to still perform somewhat satisfactorily, while UB fails completely.

Training with heterogeneous panels of markers

We next study the scenario with an incomplete training set, i.e. with acquisitions of 

heterogeneous combinations and different number of markers — a typical setting in the 

field in practice. For this purpose, we used subsets of our fully-annotated dataset. Training 

a separate network of all combinatorial test settings would be computationally prohibitive, 
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thus we artificially ablate the data to create a number of case studies (Fig. 4) and thereby 

emulate various practical or extreme scenarios.

In Cases 1 to 4 we studied settings in which training data contain a fixed number of markers 

per sample, each with a different marker combination. Case 5 simulates a common scenario 

where two different sets of samples are prepared with two different staining protocols. Case 

6 studies a practical scenario with samples available from different studies, which have so 

far been largely unusable for machine learning due to their heterogeneity.

While our proposed CNN models are by construction applicable for the above scenarios, any 

baseline segmentation methods such as UNet require an overlapping set of markers. These 

baseline models are therefore trainable only for a few intersections of marker combinations, 

and discard any potentially useful information outside such common intersections. For 

instance, the marker combination m 23 in Case 3 is only trainable using samples s1 or s2, 

and in Case 1 not even trainable.

With our proposed models, in all cases any marker combination is trainable. Therefore, for 

numerous test combinations, our proposed models are inherently superior by design, since 

the baselines cannot even accommodate test combos unseen during training. For many other 

tests, the baselines would be using a small intersection subset of samples, again at a major 

disadvantage and also forcing us to retrain a network for each of these subsets. We herein 

compared our methods (Fig. 4) to the UB models only for marker combinations achievable 

by baseline in training. As this clearly biases results towards UB, we also report herein the 

ratio of marker combinations subject to such evaluation, i.e. available in the training set. 

Small ratios in most cases demonstrate that our contribution is not only superior in F1-score, 

but also in the ability to include and utilize datasets hitherto impossible.

The superiority of MS over MZ and of MS-ME over MS is emphasized with increasing 

number of markers available for individual samples, since there are more combinations from 

which information can be leveraged through sampling and attention. Thus, MS and MS-ME 
do not add any advantage only when all samples have a single marker (Case 1). Remarkably, 

when considering both sinusoids and arteries, MS-ME outperforms UB in Cases 3, 4, 

and 6, where there is more heterogeneity of markers across samples. Thus, best relative 

gains of MS-ME are observed with more heterogeneity and number of markers across 

samples. We see that MS-ME not only requires a single model and is applicable for several 

marker combinations previously unattainable, but it also presents a superior segmentation 

performance, even over the UB for several cases.

A practical application on segmenting bone marrow vasculature

As a showcase of the proposed methods in an application scenario, we herein revise 

our segmentation results from [24], where the use of traditional Morphological Image 

Processing (MIP) algorithms had restricted our analyses both in terms of the number of 

samples included as well as in the accuracy of quantification. As indicated in Supplementary 

Table 2, the herein proposed MS-ME (i) permits full automation of the analysis, (ii) 
substantially increases F1-score by 47.3±9.6%, and (iii) almost quadruples the number of 

samples that can be successfully processed, allowing the inclusion of 35 samples which 
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could not be previously analyzed due to marker heterogeneity (Fig. 5b) or insufficient image 

quality for MIP. Segmentation examples with MS-ME can be seen in Extended Data Fig. 2.

We separately quantify the vascular volumes in two distinct regions of the bone marrow, 

namely diaphysis and metaphysis, shown in Fig. 5a. Our revision of the previous analysis 

[24] indicates that the volume occupied by sinusoids is significantly lower than we 

previously reported (Extended Data Fig. 3). The results in Fig. 5c also confirm the 

previously observed trend (with more statistical power) that they are more abundant in the 

metaphysis (15.65 ± 2.55%) than in the diaphysis (10.69 ±2.16%). The differences can be 

explained by the higher accuracy of our new method. In addition, our methods allow for an 

accurate segmentation of much rarer arterial networks, which to the best of our knowledge 

have only been quantified in very limited tissue regions in previous studies [31]. We find that 

these vessels occupy 0.63 ± 0.40% of the volume in the diaphysis and 0.52 ± 0.32% in the 

metaphysis.

Marker Sampling and Excite for the characterization of fetal liver vasculature

To further demonstrate the ability to generalize across samples and the applicability 

of our proposed methods on significantly different biological tissues in which different 

marker combinations are available, we provide a comprehensive quantitative analysis of 

a murine fetal liver FM dataset. The segmentation label (vessels) and the 5 different 

markers employed for this dataset, largely divert from those employed in bone marrow 

and are illustrated in Fig. 6a, denoted as mG, G ⊆ {a,…, e} (details in Methods section - 

Segmentation of fetal liver vasculature).

Evaluating the UB for each of the possible marker combinations shows that a superior 

F1-score is always achieved when mb is available (Fig. 6b). If all markers are available 

at training time, our models behave similarly as with the bone marrow dataset; i.e., 

MS is superior to MZ and MS-ME is superior to MS in terms of F1-score evaluated 

across all possible marker combinations at test time (Fig. 6c). We further evaluate the 

segmentation performance when the training samples have different combinations of 

markers by artificially assigning a random marker combination to each of the samples. The 

results in Fig. 6d show again the superiority in F1-score of MS-ME relative to MS and MZ. 
In this case, MZ has a comparable F1-score to that of MS, probably because the ablation 

strategy employed in this setting already creates enough training examples with the different 

combinations of markers, rendering sampling unnecessary. The F1-score of all three models 

is comparable to that of UB in this setting, corroborating results from some training settings 

in Fig. 4 for the bone marrow dataset.

Next, we follow the analysis strategy of the previous section to demonstrate the potential 

of our framework in the characterization of different biological samples. We employ MS­
ME to segment the liver vasculature in 15 fetal liver samples at two different embryonic 

stages denominated E13.5 and E17.5 as illustrated in Fig. 6e, each having different marker 

combinations (Fig. 6f). The results in Fig. 6g reveal isometric vascular growth during these 

embryonic stages, as no significant differences in vascular occupancy between timepoints is 

observed, with a vascular ratio of 19.4±3.60% across all samples.
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Discussion

In this work we formalize the widespread challenges concerning segmentation of structures 

in FM datasets with different markers, and address them with unprecedented accuracy and 

efficiency. We first studied the contribution of all marker combinations by naïvely training 

a distinct CNN model for each combination. The segmentation results were ranked for each 

of the possible markers employed, of which even the worst combinations could produce 

meaningful results. Albeit useful as an upper bound performance, training this number of 

models is infeasible in practice. We hence proposed a number of methods that allow for a 

practicable workflow with a single model that can operate with any combination of markers 

both during inference (application-time) and training.

During our preliminary experiments, the fact that a simple UNet adaptation MZ could 

perform as well as HeMIS, the state-of-the-art deep learning approach for missing 

modalities, indicated to us that the solution to this challenge was potentially not in the 

design of novel network architectures, but rather in adapting suitable training strategies 

that can inherently address such problem. Accordingly, we devised MS as a sampling 

strategy, the results of which confirmed our hypothesis, providing a drastic improvement at 

inference for segmenting different structures with any marker combination. We also tested 

normalization strategies for the sampled markers, but none helped: MS-DR may have failed 

because it scales image intensities by a constant factor at training time, which makes sense 

in the original Dropout idea that samples weights as a regularization technique, but sampling 

in our missing marker setting intrinsically occurs at inference too. MS-VR, which scales 

intensities by the ratio of available markers, did not improve the results either. The reason 

could be that such scaling is reasonable as regularization in the case of marker-independent 

features, whereas the employed network may learn different features for each marker.

Results with our novel ME method show that attention mechanisms do not have to be 

limited to layer activations, but using other sources of information as weak labels can also 

boost outcomes substantially with only a slight increase in model complexity. When our 

two contributions were combined as MS-ME the best segmentation results were obtained, 

performing as well as an ensemble of 31 specialized UB models. In addition, when 

training samples had different markers, MS-ME was applicable to combinations inaccessible 

with typical CNNs such as UNet or HeMIS, while our MS-ME segmentation accuracy 

surpassed even an upper bound setting, especially when marker heterogeneity was high. 

This surprising result, as a far-reaching consequence, shows that the solution we originally 

devised to accommodate missing markers can easily help to improve outcomes even in 

traditional learning scenarios, potentially by leveraging and incorporating complementary 

information from multiple sources.

When applied to the bone marrow vasculature dataset, our approach based on MS-ME 
showed a dramatic increase in accuracy, speed, and number of samples which could be 

processed, indicating the importance of chosen image analysis techniques in scientific 

studies. We therewith increased the statistical power of the characterization reported in [24], 

allowing us to confirm the previously hinted tendency of sinusoids occupying larger volumes 

of the metaphysis than the diaphysis. Application of the same analysis pipeline to a dataset 
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depicting fetal liver vasculature with a different marker set, further allowed to quantitatively 

describe the vascular occupancy in different embryonic stages. Our proposed techniques 

will be instrumental in imaging studies to accurately study the morphometric and structural 

features of microvascular networks in hematopoiteic organs, to gain key deeper insight on 

their described fundamental roles in the pathophysiology of blood-forming tissues. Beyond 

this, vascular segmentation in large multidimensional datasets remains a widespread and 

largely unresolved challenge for many groups using advanced microscopy technologies. The 

methods presented may reveal as extremely powerful tools for studies aimed at uncovering 

novel mechanisms regulating tissue and cellular dynamics in almost any biological tissue, 

from animal models, human samples, to model organoids grown in vitro [25].

Despite the superiority of MS-ME in segmentation results without compromises in number 

of parameter or inference speed (Supplementary Table 4), some limitations exist. For 

instance, although MS-ME can be applied to previously unseen combinations of markers, 

quantitative quality assessment is only possible if labeled examples exist featuring the 

respective combination. In addition, although not observed in our study, our MS strategy 

may amplify existing imbalances of markers in the training set, increasing the danger of 

overfitting to specific combinations.

These challenges open a number of interesting questions for future work. For instance, 

novel uncertainty estimation methods for deep neural networks [32, 33] can be employed 

as proxy for assessment of segmentation quality upon previously unseen combinations. In 

addition, although overfitting to specific markers can be naïvely addressed with a validation 

set containing as many markers as possible, investigating how to adapt the dropout rate of 

MS to different experimental settings may lead to solutions with superior results. Lastly, 

our MS-ME model may enable novel possibilities in the context of transfer learning [34] 

that enables seamless application of trained networks to distinct biological tissues with new 

markers. For example, fine-tuning only the few parameters in the ME module as opposed to 

expensive, classical fine-tuning strategies may yield competitive results if the core network 

already learned suitable general purpose features.

A major challenge and limitation for utilizing deep learning in FM has been the difficulty 

in establishing standardized staining protocols that would enable more homogeneous marker 

combinations to train supervised models. With our methods proposed herein, a single 
model is shown to perform comparably or superior to a number of individual problem­

specific models that would be infeasible in practice due to the exponential growth in 

model parameters and training time with an increasing number of markers. In addition, 

the versatility of our methods enables them to be easily applied to different network 

architectures for tasks beyond semantic segmentation, such as classification [35, 36], 

detection [37, 38], or instance segmentation [39, 40]. These contributions can facilitate the 

sharing and exchange of trained CNNs across labs in the field as well as a faster adoption of 

neural network solutions in routine lab work at, e.g., microscopy facilities.
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Methods

Dataset composition and notation

The dataset S under evaluation consists of 8 samples si, i ∈ {1,…, 8} and each sample si is 

composed of J patches pji, j ∈ {1,…, J}. Samples are prepared with a set of different markers 

k ∈ {1, …,K}, where K is the total number of markers. Marker combinations are denoted as 

mG, where G is a non-empty subset of available markers, i.e. G ⊆ {1,…, K}, denoted in the 

subscript as a successive sequence, e.g. m 12345 indicating the combination of all markers for 

K = 5 in our study. Each sample Si was manually annotated for C classes c ∈ {1, …, C}. 

Thus, each patch pji consists of |G| input images xk ∈ ℝℎin × win with k ∈ G and two output 

annotations yc ∈ ℝℎout × wout as follows:

pji = xk, yc ∀k ∈ G, ∀c ∈ 1, …, C

All patches are of the same size, i.e. h in = w in = 572 and h out = w out = 388.

The complete bone marrow dataset S (Supplementary Table 1) was prepared using the 

following 5 markers: DAPI stains DNA in all nuclei, endomucin and endoglin have both 

been reported to have a high specificity for bone marrow sinusoids, collagen mostly 

stains vessel walls (including sinusoids and arteries), as well as extracellular matrix, and 

GFP (in the CXCL12-GFP mouse) is a genetically encoded marker which stains reticular 

mesenchymal stromal cells. We use C = 2 annotated classes: sinusoids and arteries (the latter 

accounting for both central larger arteries and endosteally located smaller arterioles). The 

immunostaining and imaging protocols are detailed extensively in [24]. Note that such a 

dataset with a fixed combination of markers and classes is challenging to obtain in practice. 

We artificially ablate parts of the data as described in the different experiments to simulate 

different realistic scenarios of marker and class combinations. The fetal liver dataset is 

separately described in the Segmentation of fetal liver vasculature subsection.

Marker combination strategies

We study herein two fundamentally different settings. First, we study a relatively simpler 

scenario where training data is acquired with a consistent, fixed set of available markers 

m 1,…,K; while at test time segmentation is requested for samples only with a subset of 

trained markers. In this setting we ablate subsets of markers to generate test samples with 

missing markers, i.e.: mG ∀G ⊆ {1,…, K}. Note that such training data with many markers 

are scarce as they require extensive workforce, effort, and budget; not only for the sample 

preparation and acquisitions, but also for their annotations.

Next, we study the more common (and more challenging) scenario where a training set with 

a fixed set of markers is unavailable. Since it is computationally not feasible to evaluate 

each possible set of markers during training, we propose to evaluate a number of illustrative 

cases (Fig. 4). To this end, we predefine a set of marker combinations Mtrain so that specific 

combinations mG
i ∈ Mtrain are assigned to each sample si in the training set. The test set is 

constructed with all possible combinations of markers as above, i.e. mG ∀G ⊆ {1,…, K}. To 
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avoid overfitting to a specific marker combination, we use a validation set with samples that 

contain all the markers, i.e. m 1,…,K. In addition, Mtrain is shuffled for each cross-validation 

step so that different mG
i  are applied to different samples.

The resulting segmentation performance understandably varies largely across different 

marker sets mG. Such variation in any metric would be difficult to interpret and to use 

to compare the models. We therefore report relative changes, i.e. the score Q achieved by 

a model ϕ on a marker combination mG relative to a reference model ϕ ref as Q ϕ,ϕref(mG) 

= Qϕ(mG) – Q ϕref(mG). Consequently, a resulting vector encodes metric differences of 

a method with respect to a reference, on a given marker combination mG. To put such 

results in context, we also report results referenced to an ideal Upper Bound model (UB) 

as Qϕ, ϕUB mG = Qϕ mG − QϕUB
mG , where ϕUB

mG is a UNet model trained exclusively on mG. 

Note that such UB reference results QϕUB
mG  can only be computed for marker combinations 

explicitly available in at least a sample, i.e. for marker combinations

mG ∈ MUB, where MUB = mG G ⊆ mi, ∀mi ∈ Mtrain .

In contrast, Qϕ with the proposed models can be computed on any marker combination, i.e.

mG ∈ Mtotal, where Mtotal = mG G ⊆ ∪
mi ∈ Mtrain

mi

In other words, the proposed methods can produce results even for combinations mG that 

never occur in any training sample, as long as the individual markers are present in at least 

one sample. Thus, the ratio |M UB|/|M total| is also reported to indicate the maximum possible 

marker combinations achievable by conventional networks. Lower ratios then emphasize 

that, besides requiring comprehensive training sets, standard neural network models for 

segmentation can only be utilized for few marker combinations, while our proposed model 

can accommodate all combinations.

Network architectures

The network architectures employed in this work are described below, first the two baseline 

models adapted from previous work, followed by our proposed models:

• UNet [41] is one of the most commonly used segmentation models of biomedical 

images. It is a CNN based on an encoder-decoder architecture with skip 

connections, targeted to extract features at different resolution levels. We used 

its standard settings, except for decreasing the number of parameters in each 

layer by a factor of two, having empirically found that this produces superior 

results on our dataset.

• HeMIS [14] is the current state-of-the-art for image segmentation with missing 

modalities. Each marker is processed by separate models (backends) that are 

subsequently combined with mean and standard deviation (abstraction layer). 

Gomariz et al. Page 12

Nat Mach Intell. Author manuscript; available in PMC 2021 September 17.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Such feature aggregation using statistical moments allows to seamlessly apply 

backpropagation regardless of the missing modalities. The merged output is 

then processed with additional convolutional layers (frontend) to obtain the final 

segmentation.

• Marker Zero (MZ) is a UNet where missing markers are padded with zeros, i.e., 

for any marker combination mG, an input image

xk
xk if k ∈ G
0 otherwise.

• Marker Sampling (MS) is a UNet prepended with a sampling layer that randomly 

deletes markers at training time with probability rdrop S (0,1), i.e. xk ← Bern(r 

drop)xk, where Bern(r) denotes random sampling from a Bernoulli distribution 

with probability r. r drop = 0 would be equivalent to MZ, and r drop = 1 is 

excluded because that would create an input image without markers. Note that no 

such sampling occurs at inference, but it is implicit to the application strategy in 

that samples with different markers are expected. We set r drop = 0.5 in all our 

experiments, hence all marker combinations are sampled with equal probability. 

In-depth analysis revealed that this choice leads to the best overall accuracy 

(Extended Data Fig. 4a). Note that in this study we consider the scenario where 

all marker combinations are equally likely to occur at inference, which justifies 

the choice of setting r drop = 0.5. However, if combinations of specific number 

of markers are expected to occur more frequently at inference, r drop can be 

adjusted accordingly (Extended Data Fig. 4b), potentially also incorporating 

marker-specific preferences.

• Marker Sampling - Dropout (MS-DR) is similarly to MS, where the sampling 

layer is replaced with a Dropout layer, i.e. xk rdrop
−1 Bern rdrop xk only at training 

time.

• Marker Sampling - Variable Ratio (MS-VR) is a modification of MS where 

the sampling layer normalizes the output according to the number of sampled 

markers, i.e. xk ← p –1 Bern(r drop)xk at training time, with p being the ratio of 

markers chosen by the sampling layer. In this case, the normalization p is also 

applied at inference time, i.e. xk ← p –1 xk, since it it is a function of the number 

of utilized markers, instead of an expected probability as in MS-DR.

• HeMIS - Marker Sampling (HeMIS-MS) is a HeMIS network that is prepended 

with our MS sampling layer. In contrast to zeroing out missing markers as in 

the UNet counterpart, we herein ablate any backend corresponding to a missing 

marker, in order to avoid statistical moment calculations from empty feature 

maps.

• Marker Sampling - Squeeze And Excitation (MS-SE) is an MS model with a 

Squeeze and Excitation (SE) module as proposed in [19] in each UNet block (see 

Fig. 3b). These modules each learn a weighting function δ:ℝ1 × F ℝ1 × F  of 

a feature map X with F activations, where each activation layer X f∈{1,…,F} is 
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weighted as a function of its layer-wise mean value 〈Xf〉, i.e. Xf ← δf(〈Xf〉)Xf. δ 
is parametrized using two fully-connected network layers, respectively, with F/2 

and F nodes and no biases. The first layer is followed by a rectified linear unit 

(ReLU) and the second one by a sigmoid function.

• Marker Sampling - Marker Excite (MS-ME) instead weights the activations 

using our proposed Marker Excite (ME) module (illustrated in Fig. 3a) that 

learns a weighting from a binary vector V encoding which of the K markers 

are presented to the network as input. Our module thus learns a function 

ω: 0, 1 K ℝ1 × F  to weight the activations as Xf ← ωf(V)Xf. Similar to SE 
we parametrize ω using two fully-connected layers. The first layer has as many 

nodes as possible marker combinations (2K – 1) and we employ biases in both 

layers, which is seen to increase F1-score (Extended Data Fig. 5). Similarly to 

MS-SE, we add ME modules after each UNet block (Fig. 3b).

We do not apply Batch Normalization in any of the models as we empirically found this 

to decrease the F1-score, presumably due to the relatively small batch sizes. Supplementary 

Table 4 shows that the HeMIS architecture has less parameters than UNet, but a higher 

memory footprint and lower speed. Meanwhile, our MS and ME methods have little to no 

additional burden, neither in memory space nor in speed.

Training and evaluation details

We implement all CNN models in TensorFlow 2.1 [42] and train them on an NVIDIA 

GeForce GTX TITAN X GPU with 12 GB of VRAM, with 3 Intel Xeon E5-2640 v3 CPU 

cores and 40GB of host RAM. Due to large image sizes and GPU memory limitations, 

we use a rather small batch size of 2. Using the Adam optimizer [43], we minimize the 

following weighted cross-entropy loss:

L = ∑
c ∈ C

W c ∑
yjc ∈ Y c

yjc log yjc ,

where yjc is the ground truth annotation for class c, yjc is its corresponding network prediction, 

and Wc is a class-specific weight to account for class imbalance. We found that using a 

weight that is linear in the class cardinality leads to training instabilities, especially with 

large class imbalance. Therefore we instead use a logarithmic weighting as follows:

W c = log ϵ + 1
C Y c ∑

i ∈ 1, …, C
Y i ,

where |Yc| is the total number of annotated pixels for class c and ∈ is a small number for 

stability in logarithm calculation.

The results are evaluated using F1-score, individually for each of the classes, as follows:
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F1 = 2TP
2TP + FP + FN

All networks are trained for 200 epochs, and we choose for evaluation the one that yields 

the highest mean F1-score across all classes on the validation set. The evolution of the 

loss function and the F1-score is shown in Extended Data Fig. 6. Note that there exists a 

considerable class imbalance (see Supplementary Table 1), which can explain the inferior 

F1-scores when classes are targeted simultaneously (Fig. 1b,f) as compared to targeting 

them individually, which is why we chose the latter approach to conduct our experiments. 

There has been substantial research in class imbalance [44], but this is not within the scope 

of this paper, where we focus on effects of markers, i.e. input image modalities.

The 230 image patches were split according to which of the 8 FM samples in Supplementary 

Table 1 they belonged to, with 5 samples for training, 1 for validation, and 2 for testing. For 

all experiments we employ 4-fold cross-validation, by ensuring that all samples are once in 

test set and that the same sample folds are used for different methods in each experimental 

setting such that their results can be directly compared.

Tiling strategy for handling large datasets

Wide-tissue FM images typically have very large pixel sizes, exceeding memory capacity 

of typical GPUs used for deep learning. In addition, FM samples are often acquired with 

different resolutions. To address these problems, we herein adopt a pipeline similar to those 

included in recent UNet variants [41, 45] by decomposing each sample si in J patches 

pji, j ∈ 1, …, J  with constant size and resolution to segment them individually and to 

subsequently stitch them together. These patches are constructed as follows (illustrated in 

Extended Data Fig. 7):

1. We resample the resolution of all FM samples to 1μm pixel size.

2. Since convolution operations decrease the spatial extent of the image, we first 

zero-pad the complete sample with a margin of 92 pixels (half of the difference 

between input and output patch sizes) required to preserve the original size when 

stitching the output patches.

3. The input patches are taken with an overlap of 92 pixels (same as the padding) 

between them so that there is no overlap in the output patches. In this way, we 

limit padding artefacts to the border of the samples instead of introducing them 

for each individual patch used in the CNNs.

4. To normalize appearance differences across samples, for each patch we apply 

Gaussian standardization (zero mean, unit variance) using the mean and standard 

deviation of the respective sample that the patch comes from.

5. Output patches are neither overlapping nor padded. Since the sample size does 

not have to be divisible by the patch size, the last patch of each dimension was 

taken with as much overlap with the previous one as needed to cover the whole 

sample. At inference, the result for the overlapping region is averaged for the 
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involved patches. Finally, the slices reconstructed by 2D tiling are inserted in 

their corresponding axial position to form 3D images.

Bone marrow quantification pipeline

For the results reported on the characterization of bone marrow vasculature we employed 

additional unlabeled samples from the dataset described in [24]. In that earlier work, several 

samples had to be discarded because their image quality was not sufficient for the simplistic 

image processing tools (MIP) employed therein.

The MS-ME model proposed herein allows for processing of samples with diverse marker 

combinations. However, as shown in Fig. 1c-e&g-i, not all markers are beneficial for 

achieving a precise segmentation. In order to provide an accurate quantification without 

sacrificing many samples, we employ in our analysis only samples that are stained with 

the marker sets in M2
s for sinusoids and in M2

a for arteries, as shown respectively in Fig. 

1c and Fig. 1g. Quantified on the samples stained with the best marker combination, the 

above marker sets guarantee an F1-score of 75% or higher than that achievable given the 

best marker combination. With this criterion, 47 samples are employed for the quantification 

of sinusoids and 29 for arteries.

All employed samples were visually inspected to qualitatively confirm that the segmentation 

was satisfactory (examples in Extended Data Fig. 2). The F1-score reported for MS-ME in 

Supplementary Table 2 is calculated from the results reported in Fig. 3e aggregated over 

the markers in M2
s for sinusoids and in M2

a for arteries. The MIP method was evaluated on 

the same annotations as the other methods proposed in this work (Supplementary Table 1), 

although not all of these samples were employed for the quantification in [24].

FM images often contain out of tissue regions which must be discarded for analysis 

purposes. To this end, we account in this analysis for an extra class denoted as tissue. 

In several works, segmentation of this class is easily achieved by thresholding of the marker 

m 1 (DAPI) and some simple morphological image processing [25]. Given the simplicity of 

the task, we train a separate UNet model that uses only m 1 (available in all the samples) 

and achieves an F1-score of 88.7 ± 6.8 with the same evaluation strategy applied for other 

models in this work. The reported fraction of bone marrow volume for sinusoids and arteries 

is calculated as the ratio of their respective foreground pixels within the newly defined tissue 

class to the total number of foreground tissue pixels.

Segmentation of fetal liver vasculature

For the fetal liver dataset presented in Results section Marker Sampling and Excite for 
the quantification of fetal liver vasculature, we employed the same strategies previously 

described for the earlier bone marrow dataset. We herein report the dataset description and 

technical details that differ from the bone marrow images.

We denote the 5 available markers with letters instead of numbers (i.e. the complete marker 

set is denoted as mabcde): DAPI (a), lyve1 (b), Hlf (c), Evil or α-catulin (d), and smooth 
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muscle actin (e). The class to segment in this dataset is denoted as vessels. The number of 

samples, patches, and percentage of annotated pixels can be seen in Supplementary Table 3.

The vasculature quantification for different embryonic stages denoted as E13.5 and E17.5 

displayed in Fig. 6g is performed on 15 unlabeled samples: 8 samples of E13.5 and 7 

samples of E17.5. A manually annotated 3D tissue mask is included in these images that 

defines the total tissue volume, which is employed to disregard out-of-tissue regions in the 

analysis of vasculature occupation. Note that that the annotated fetal liver vasculature data 

employed for training and evaluation of segmentation CNNs is a subset of these samples.

Statistical tests

Unless otherwise specified, the two-sided Wilcoxon signed-rank test was employed to assess 

differences between paired test results, which is non-parametric to avoid any assumption of 

normal distribution. Since the aim of the models was to perform best across different classes, 

the employed tests aggregated the data for both sinusoids and arteries in a paired-wise 

manner. When the data under evaluation was unpaired, we used two-sided Mann-Whitney 

U test, which is also non-parametric. Unless otherwise stated, measurements were always 

taken from distinct samples. Significance was established with a p-value≤0.05. Boxplots 

employed in the different figures consist of a box that represents the data quartiles and 

whiskers that indicate the extent of data points within 1.5 times the interquartile range.

Animal studies

Mice C57BL/6J were purchased from Charlesriver. For bone marrow studies, mice were 

analysed at 12-20 weeks of age. For fetal liver analyses, embryos were extracted from 

the previously euthanized pregnant dams at the developmental stages indicated, through 

a small abdominal incision and further dissected with forceps under a stereo microscope, 

where single lobes were separated using a surgical scalpel. The lobes were fixed in 2% 

paraformaldehyde (diluted in PBS) (6h, 4°C), washed twice in ice-cold PBS for five minutes 

and subsequently dehydrated in 30% sucrose in PBS (24–48h, 4°C). The liver lobes were 

placed into base molds (15×15×5 mm) and completely covered in OCT medium, snap­

frozen using liquid nitrogen and stored at -80°C until use. Slices were stained following 

the same protocols described in [24] for marrow tissues. Experimental animals were not 

randomized and experiments were performed in a non-blinded fashion. Animals were 

maintained at the animal facility of the University Hospital Zürich and treated in accordance 

with the guidelines of the Swiss Federal Veterinary Office. Experiments and procedures 

were approved by the Veterinüramt des Kantons Zürich, Switzerland.
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Extended Data

Extended Data Figure 1. 
Analysis of attention parameters in ME modules for sinusoids (left) and arteries (right). 

We estimate recalibration strength by calculating cosine distances between the ME attention 

subnetwork outputs obtained for each of the possible input marker combinations. Results 

are represented as the mean of all such pair-wise distances between all possible marker 

combinations, at a given layer where ME is placed, with the bars depicting the standard 

deviations of these distances. Using the colored network layers shown in Fig. 3b, Encoder 
layers correspond to the network layers in blue, Decoder to the layers in green, and 

Bottleneck to the yellow layers. The numbers next to each layer indicate the resolution 

level, where 0 corresponds to the highest (original resolution) and 3 to the lowest (i.e., right 

before and after the bottleneck, for the encoder and decoder, respectively). It can be seen 

in this representation that recalibration strength is higher in layers with higher resolution, 

especially near the input of the network. This observation may indicate that high resolution 

layers of the network focus on effectively combining features from available markers, and 

in this way create shared abstract features that are common across markers for subsequent 

processing in lower resolution layers.
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Extended Data Figure 2. 
Example images for the qualitative assessment of the segmentation of bone marrow images 

employed for the quantification of vasculature. Input images contain different combinations 

of markers shown as an overlay of different colors. The white rectangle within the input 

images represents the size of the output image when processing with a neural network. 

White arrows depict inference with the MS-ME model. Different colors are employed in the 

output images to show the different predicted classes. Since the tissue class overlaps with the 

other two, its contour is used instead for visual purposes.
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Extended Data Figure 3. 
Bone marrow volume ratio occupied by sinusoids. This volume is compared in both 

diaphysis (DIA) and metaphysis (META) when segmenting them with the morphological 

image processing (MIP) algorithm previously proposed (n=12 for both DIA and META) and 

with our MS-ME method proposed here (n=61 for DIA, n=24 for META).
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Extended Data Figure 4. 
Effect of marker dropout rate r drop in MS. F1-score of MS models with different r drop 

evaluated on the sinusoids (left) and arteries (right) relative to the proposed MS with 

r drop = 0.5. (a) Evaluation for all 31 possible marker combinations (n=124). Whereas 

some r drop ≠ 0.5 produce a slightly superior F1-score for sinusoids, r drop = 0.5 is the 

best option for arteries and overall. (b) Median relative F1-score for models evaluated on 

combinations of specific numbers of markers, each represented by a different color for the 

different rdrop n = K!
K − k !k! , where K is the number of markers available, and k the number 

of markers considered for each evaluation). Smaller r drop are shown to be beneficial for 

combinations of more markers, and vice-versa. However, this trend becomes noisier for r 

drop > 0.5, as illustrated with the gray dashed line. This effect can be due to the decrease in 

markers observed over time, although it is a question worth of further investigation in future 

work.
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Extended Data Figure 5. 
Effect of bias term on ME module. F1-score of MS-ME model where the bias terms for all 

ME modules have been removed, relative to the proposed MS-ME model with bias across all 

marker combinations and cross-validation steps.
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Extended Data Figure 6. 
Training evolution with our proposed MS-ME model. The weighted cross-entropy loss (top) 

and the F1-score (bottom) are shown across epochs for the training (blue) and validation 

(orange) sets, both for models trained for segmentation of sinusoids (left) and arteries 

(right). The red dashed line marks the epoch at which we choose the model, based on the 

highest validation F1-score.
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Extended Data Figure 7. 
Illustration of the image tiling pipeline employed to create suitable patches for CNNs. 

An example of a slice within the 3D image frame is shown in the upper part using 

Imaris (Bitplane AG). That slice is decomposed in patches as illustrated in the lower part. 

Each output patch (red) is smaller than their corresponding input patch (cyan) due to the 

convolutional operations in CNNs. We position the output patches next to each other without 

overlap in order to avoid padding artifacts in the application of CNNs. Instead, zero padding 

is only applied along the borders of the whole slice (area with white stripes). When an 
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overlap between output patches cannot be avoided to fill the slice (area with green stripes), 

the average of the different patches in that region is used.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data availability

The labeled dataset employed for training and evaluation of the models described is 

included as a single HDF5 file within a CodeOcean capsule in https://codeocean.com/

capsule/8424915/tree/v1[46].

Code availability

The code employed for training the models described in this paper is publicly available 

on the CodeOcean platform as https://codeocean.com/capsule/8424915/tree/v1 [46]. This 

capsule also includes the trained models employed for the different presented figures. MS­
ME is also implemented within MiNTiF, our Fiji plugin for ImageJ for user-friendly training 

and deployment of CNNs by non-experts of deep learning: https://github.com/CAiM-lab/

MiNTiF.
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Figure 1. Segmentation of different classes with different UNet models trained with specific 
marker combinations.
a Illustration of our image segmentation pipeline in the presence of multiple markers. 

b,f Comparison of F1-score (n=124) evaluated separately on sinusoids (b) and arteries (f) 
for all CNN models (across marker sets and cross-validations) when trained separately 

to segment the class under evaluation as well as when trained to segment both classes 

simultaneously (All). c,g F1-score (mean ± standard deviation) for models trained with each 

possible combination of markers, sorted in ascending order of mean values. Each model 
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was evaluated through 4-fold cross-validation (n=4). We group markers as Mi
c based on 

which models perform similarly on class c (c = s for sinusoids and c = a for arteries). The 

subscript i denotes different groups. d For sinusoids, models with either m 2 or m 3 marker 

M2
s, n = 96  are seen to perform superior to those without these markers M1

s, n = 28 . e 

Among the remaining M1
s models, those with m4 M1, B

s , n = 48  perform superior to those 

without M1, A
s , n = 48 . h For arteries, models with m4 M2

a, n = 64  perform superior to those 

without m4 M1
a, n = 60 , and i among M2

a, the ones with m2 M2, B
a , n = 32  perform superior 

to those without M2, A
a , n = 32 . j Visualization of the different markers employed (upper 

row) and the ground truth and segmentation predictions for models using sample marker 

combinations as examples of different aforementioned groups. The white squares within the 

marker images depict the size of their corresponding segmentation images. Error figures 

show false positive and false negative pixels. Significance is indicated with p-value≤0.05 (*), 

p-value≤0.01 (**), and p-value≤0.001 (***).

Gomariz et al. Page 29

Nat Mach Intell. Author manuscript; available in PMC 2021 September 17.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 2. Segmentation with a single CNN model for all marker combinations.
a Illustration of the MS strategy. Every time a batch is fed to the network during training, 

its markers are randomly deleted, i.e. set to blank (zero) images. b Comparison of MZ and 

MS with HeMIS. To this end, a paired test is employed to compare F1-score of each marker 

set between the model and HeMIS, representing all differences (n=124) as a boxplot for 

sinusoids and arteries. c The same representation of results (n=124) is employed to compare 

HeMIS-MS, MS-DR, and MS-VR with respect to MS. d Visual examples of the differences 

in segmentation with HeMIS and MS for different marker combinations (shown on bottom). 
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When all five markers are used, no significant differences are observed. But when a subset 

is used (for instance, m 4 alone), the proposed MS performs much superior to HeMIS. 

Significance is indicated with respect to the baseline model of each graph (—) or between 

different models (|—|) with p-value≤0.05 (*), p-value≤0.01 (**), and p-value≤0.001 (***).
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Figure 3. Results with attention modules.
a Illustration of the attention modules: conventional SE (top) and proposed ME (bottom). 

These modules learn weights (colored circles) which are employed to recalibrate the 

activations (colored stacks) of a feature map (in gray). Whereas SE learns such weights 

as a function of spatially pooled feature maps, our proposed ME learns from a symbolic 

one-hot encoded vector indicating marker availability (details in Methods). b Schematics of 

our network architecture based on UNet, where the feature maps calibrated by an attention 

module are outlined in orange. The numbers below each block indicate the number of 
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activations in that feature map, and the numbers to their left specify their width and height. 

For ablation experiments, we refer to parts of the network as encoder (blue), bottleneck 

(yellow), decoder (green), and input (black). c Relative F1-score (n=124) of MS-SE and 

MS-ME compared pairwise to MS. Similarly, MS-ME compared to MS+ in d and to UB in 

e. f,g An ablation study for placing ME attention at different network layers colored in b: 

input (I), encoder (E), bottleneck (B) and decoder (D). Results for f sinusoids and g arteries 

are presented relative to the proposed MS-ME (equivalent to E+B+D). h Visualization 

of a sample output with marker combination m 15 (among the worst according to Fig. 

1c,g), where it is seen that our multi-task single model MS-ME performs superior to 

the dedicated upper bound UB in F1-score, thanks to the ME attention module and by 

potentially leveraging additional info from other marker combinations in the shared network 

body. Significance is indicated with respect to the baseline model of each graph (—) or 

between different models (|—|) with p-value≤0.05 (*), p-value≤0.01 (**), and p-value≤0.001 

(***).
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Figure 4. Comparison of proposed CNN models to UB when training with heterogeneous 
combinations of markers.
The upper table represents the markers available (denoted with X) for each of the 5 training 

samples in the different simulated cases. The number of marker combinations for which 

an UB model can be created as compared to our models (as explained in the text) in each 

Case is shown as an additional row (possible models). Below, the three most representative 

models proposed in this work (MZ, MS and MS-ME) are compared for the segmentation of 

sinusoids and arteries in the 6 different Cases. Significance is indicated with respect to the 

baseline model of each graph (—) or between different models (|—|) with p-value≤0.05 (*), 

p-value≤0.01 (**), and p-value≤0.001 (***).
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Figure 5. Vasculature segmentation and quantification in bone marrow with MS-ME.
a Visual example of bone marrow images for diaphysis, DIA (left) and metaphysis, 

META (right). Each sample has a marker combination (displayed as a maximum intensity 

projection in the top row) which is employed by our MS-ME to segment arteries and 

sinusoids (bottom row). The tissue mask is shown as a transparent 3D mask. Image 

visualization with Imaris (Bitplane AG). b Fraction of quantified images that contained 

each of the markers for both sinusoids and arteries. The number of images is different due 

to the quality standards defined in the Methods Section. c Fraction of bone marrow volume 

occupied by the different vascular structures for diaphysis (DIA, n=47 for sinusoids and 

n=29 for arteries) and metaphysis (META, n=14 for sinusoids and n=6 for arteries) regions. 

Significance is indicated with p-value≤0.05 (*), p-value≤0.01 (**), and p-value≤0.001 (***).
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Figure 6. Study of our proposed models in the segmentation of fetal liver vasculature with 
different marker combinations.
a Example of labeled patch that illustrates the markers available in this dataset with their 

corresponding segmentation output as ground truth, model prediction, and error. b F1-score 

achieved when training UB models specialized on each of the possible marker combinations. 

The segmentation quality is observed to be superior when mb is available (blue region) as 

compared to marker combinations without it (orange region). c, d Segmentation F1-score of 

the different proposed models relative to UB when (c) all markers are available at training 

time and (d) they are artificially ablated as described in the main text. A symmetrical 
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logarithmic scale (linear between -2 and 2, and logarithmic elsewhere) is used in d to 

emphasize the differences near the UB line. e Example visualization of two fetal liver 

samples corresponding to embryonic stages E13.5 (left) and E17.5 (right). The maximum 

intensity projections of the volumes for the available markers are displayed in the top row 

and their corresponding vessels segmented with MS-ME together with the tissue mask 

are shown below. f Ratio of availability of the 5 different markers across the samples 

employed for quantification of vascular occupancy. g Fraction of tissue volume occupied 

by vasculature as segmented by MS-ME, compared across fetal liver samples in the 

different embryonic stages E13.5 and E17.5. Significance is indicated with respect to the 

baseline model of each graph (—) or between different models (|—|) with p-value≤0.05 (*), 

p-value≤0.01 (**), and p-value≤0.001 (***).
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