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N6-methyladenosine (m6A) is an important modification of eukaryotic mRNA. Since the first
discovery of the corresponding demethylase and the subsequent identification of m6A as a
dynamic modification, the function and mechanism of m6A in mammalian gene regulation
have been extensively investigated. “Writer”, “eraser” and “reader” proteins are key
proteins involved in the dynamic regulation of m6A modifications, through the
anchoring, removal, and interpretation of m6A modifications, respectively. Remarkably,
such dynamic modifications can regulate the progression of many diseases by affecting
RNA splicing, translation, export and degradation. Emerging evidence has identified the
relationship between m6A modifications and degenerative musculoskeletal diseases, such
as osteoarthritis, osteoporosis, sarcopenia and degenerative spinal disorders. Here, we
have comprehensively summarized the evidence of the pathogenesis of m6Amodifications
in degenerative musculoskeletal diseases. Moreover, the potential molecular mechanisms,
regulatory functions and clinical implications of m6A modifications are thoroughly
discussed. Our review may provide potential prospects for addressing key issues in
further studies.
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INTRODUCTION

Emerging evidence has shown that methylation modifications have regulatory effects on the RNA of
eukaryotic cells, and the common modifications include N1-methyladenosine (m1A), N6-
methyladenosine (m6A), 5-methylcytosine (m5C), 7-methylguanosine (m7G), m1G, m2G, m6G,
etc. (Shi et al., 2020). m6A is the most common of these modifications, accounting for the largest
proportion, and approximately 20–40% of all transcripts encoded in mammalian cells are m6A-
methylated (Frye et al., 2018). Each mammalian mRNA contains more than three m6A sites on
average, in the consistent sequence of G (m6A) C (70%) and A (m6A) C (30%) (Wei et al., 1976; Wei
andMoss, 1977). The m6Amodification was first discovered by Prof. Desrosiers. R and his group in a
groundbreaking experiment in the 1970s (Desrosiers et al., 1974). Subsequent studies have shown
that it is a dynamic and reversible modification that is widely involved in physiological and
pathological processes (Cao et al., 2016), including cellular aging (Casella et al., 2019), cancer
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progression (Lan et al., 2019) and inflammatory response (Zong
et al., 2019). Specifically, m6A manipulates the splicing, export,
translation and degradation of RNA through methylation and
demethylation, controlled by a variety of enzymes, which in turn
affect various physiological and pathological processes.

Degenerative musculoskeletal diseases are associated with
aging and inflammatory conditions. These diseases include
osteoarthritis (OA), osteoporosis (OP), intervertebral disc
degeneration disease (IVDD), ossification of the
ligamentum flavum (OLF) and sarcopenia (Ikegawa, 2013;
Tabebordbar et al., 2013). Currently, a considerable body of
epigenetic research is available in this area (Tu et al., 2019;
Wijnen and Westendorf, 2019). Alterations in the levels of
m6A play an important role in the progression of
degenerative musculoskeletal diseases (Wu et al., 2018; Liu
et al., 2019).

In this review, we present a broad summary of the functions of
m6A in the development and progression of various degenerative
musculoskeletal diseases, with the aim of deepening our
understanding of the association between m6A and
degenerative lesions and exploring the preconceived idea that
m6A can be a diagnostic marker and therapeutic target for
degenerative musculoskeletal diseases in the future.

RNA m6A Modification
As mentioned above, the m6A modification is a dynamic and
reversible epigenetic alteration and controls disease progression
by affecting mRNA stability and functionality (Chen et al., 2019a;
Li et al., 2020a; Qin et al., 2020). The position of m6A in the gene
is highly conserved, and it is enriched in the consensus RRACH
sequence of stop codons and long internal exons (R �G or A, H �
A, C or U) (Dominissini et al., 2012). Current research shows that
m6A can affect the splicing, translation, export, and degradation of
mRNA through three types of key proteins. These three types of
proteins are known asm6Awriters, erasers and readers (Chen et al.,
2019b). The writer and eraser proteins dynamically regulate m6A
levels, while the readers determine the ultimate fate of mRNA (Shi
et al., 2019). In this section, we will analyze and summarize the
functions of these three types of proteins (Figure 1).

m6A Writer
m6A is incorporated into RNA by a multisubunit writing
complex in a highly specific manner (Bokar et al., 1997).
This multisubunit writing complex is the m6A writer, and
the following subunits have been identified: METTL3,
METTL14, WTAP, VIRMA, METTl16, etc. METTL3 and
METTL14 dominate most of the m6A modifications and are
the core components of the entire complex. Both of them
contain S-adenosylmethionine binding sequences, which can
add methyl groups to adenosine and form a heterodimeric
complex to regulate m6A (Geula et al., 2015; Wang et al.,
2016a). Analysis has shown that METTL3 functions as a
catalytic subunit, while METTL14 is an important
component facilitating binding to RNA (Wang et al., 2016b).
WTAP itself does not have methyltransferase activity; it binds to
METTL3/14 as a cofactor that helps METTL3/14 localize to
nuclear patches and is an essential protein for recruiting

substrates (Ping et al., 2014). In addition, it has been shown
that WTAP relies on METTL3 to regulate its homeostasis (Sorci
et al., 2018). On the other hand, VIRMA functions to promote
the binding of m6A to the 3′UTR (Yue et al., 2018).

m6A Eraser
In contrast to the function of the m6A writer, the m6A eraser is
responsible for the demethylation of m6A to adenosine (Jia et al.,
2011). It is important for realization of the dynamic and reversible
modification function of m6A (Zhao et al., 2017). Demethylation
enzymes include fat mass and obesity-associated protein (FTO)
and alkB homolog5 (ALKBH5).

The demethylase activity of FTO was first discovered by Prof.
He’s group (Jia et al., 2011). It shows homology to the ALKB
dioxygenase family. The demethylation function of FTO occurs
by oxidizing m6A to N6-hydroxymethyladenosine (hm6A) and
N6-formyladenosine (f6A), which eventually becomes simply A
(Fu et al., 2013). Although the actual substrate for the action of
FTO is N6,2-O-dimethyladenosine (m6Am), a modification with
a chemical structure identical to that of m6A in the base part is
found near the 5′ cap in mRNA (Mauer et al., 2017). However, a
follow-up study showed that FTO had demethylation activity for
both m6A and m6Am: m6A is mainly located in the nucleus,
whereas the major substrate in the cytoplasm is m6Am (Wei et al.,
2018).

ALKBH5 was the second enzyme to be discovered as an
m6A-based demethylase (Zheng et al., 2013). The role of
ALKBH5 can be summarized as follows: 1. Knockdown of the
ALKBH5 gene has no effect on the normal growth and
development of mice but has an impact on their
spermatogenesis. ALKBH5 is enriched in testes and female
ovaries, which suggests that the demethylase activity of
ALKBH5 is important for germ cell development (Zheng
et al., 2013). 2. The altered expression levels of ALKBH5 affect
m6A modifications, which play an important role in several
diseases via the regulation of m6A. For example, ALKBH5
expression is decreased in bladder cancer tissues and cells,
which correlate with poor patient prognosis. The
overexpression of ALKBH5 could inhibit disease progression
through the m6A-CK2a-mediated glycolytic pathway and
increase the sensitivity of bladder cancer to cisplatin (Yu et al.,
2021).

m6A Reader
m6A readers are a class of proteins that recognize m6A
modifications on RNA and determine the function of
transcripts. These readers include the YT521-B homology
(YTH) domain, heterogeneous nuclear ribonucleoproteins, and
insulin-like growth factor 2 mRNA-binding proteins.

The crystal structure of the human YTH domain revealed that
it contains a recognition pocket consisting of three conserved
tryptophan residues for specific recognition of methylation
modifications (Luo and Tong, 2014; Xu et al., 2014; Zhu et al.,
2014). The most widely studied YT521-B homology (YTH)
domains include YTH N6-methyladenosine RNA binding
protein 1–3 (YTHDF1-3) and YTH domain containing protein
1–2 (YTHDC1-2). YTH N6-methyladenosine RNA binding
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protein is mainly localized in the cytoplasm, while YTH domain-
containing protein is localized in the nucleus (Reichel et al., 2019).
Among them, YTHDF1 promotes the translation of mRNA
mainly by affecting the translation mechanism (Wang et al.,
2015). On the other hand, YTHDF2 can mediate the
degradation of its target m6A transcripts by reducing their
stability (Li et al., 2018). As a cofactor of YTHDF1 and
YTHDF2, YTHDF3 can synergize with both YTHDF1 and
YTHDF2 to promote translation and degradation, respectively
(Ni et al., 2019). However, YTH domain-containing proteins have
other functions. YTHDC1 interacts with m6A in nuclear RNA to
regulate splicing of premRNA (Kasowitz et al., 2018) and
promotes nuclear export of m6A-modified RNA (Roundtree,
2017). Interestingly, YTHDC2 seems to be quite important for
fertility, as it is mainly enriched in the testis, mediates mRNA
stability and translation and regulates spermatogenesis (Hsu
et al., 2017). In addition, it promotes the translation of the
m6A methylation-modified RNA coding region (Mao et al.,
2019).

HNRNP is a group of RNA binding proteins responsible for
precursor mRNA shearing and stabilization of newly transcribed
precursor RNA (Geuens et al., 2016). For instance, hnRNPA2B1 can
affect the shear processing of precursor miRNAs by recognizing and
binding to sites containingRGm6AC sequences (Alarcón et al., 2015).
HNRNPC was one of the first HNRNP proteins identified to be

involved in shearing, and it requires oligomerization with other
HNRNPC monomers to form a specific binding RNA interaction
(Cieniková et al., 2015). HNRNPC preferentially binds single-
stranded U-tracts (5 or more contiguous uridines) and affects
nascent RNA shearing, translation, etc. (Liu et al., 2015). Finally,
HNRNPG contains a low-complexity region that recognizes
structural changes mediated by m6A modifications involved in
the shearing of cotranscribed precursor mRNAs (Liu et al., 2017;
Zhou et al., 2019).

Finally, IGF2BP is able to target transcripts by recognizing
GGAC sequences rich in m6A modifications; it promotes the
translation of mRNA by recruiting mRNA stabilizers such as
HuR and MATR3, which enhance the stability of mRNA (Huang
et al., 2018).

Roles of m6A in Degenerative
Musculoskeletal Disorders
Degenerative musculoskeletal diseases are associated with aging
and inflammatory conditions. m6A modifications have been
considered to be involved in degenerative musculoskeletal
diseases. However, the molecular mechanisms and functional
details are not fully understood. Thus, we summarize the current
evidence on the pleiotropic function of m6A in degenerative
musculoskeletal diseases (Figure 2, Table 1).

FIGURE 1 | Dynamic regulation of RNA m6A modification. The dynamic regulation of RNA m6 A modifications relies on writers (including METTL3, METTL14,
WTAP, etc.) erasers (including FTO, ALKBH5, etc.), and readers (including YTHDFs, YTHDCs, HNRNPs, etc.). Adenosine located in RNA is recognized by writers for
methylation, while erasers can catalyze the demethylation of m6A. Finally, themodification is recognized by the reader protein, allowing it to perform its function. ALKBH5,
alkB homolog 5; FTO, fat mass and obesity-associated protein. m6A, N6-methyladenosine; YTHDF, YTH N6-methyladenosine, RNA binding protein, YTHDC, YTH
domain containing protein, HNRNP, heterogenous nuclear ribonucleoprotein.
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m6A in Osteoarthritis
Osteoarthritis (OA) is a chronic joint disease represented by
symptoms such as pain, stiffness, joint deformity and limited
joint movement. Elderly females and overweight people are most
affected (Sharma, 2021). Tang. X et al. indicated that the
prevalence of knee OA in China was 8.1%, while a later study
by Li. Z et al. showed that the prevalence of patellofemoral OA
had increased to 23.9% (Tang et al., 2016; Li et al., 2020b). A
worldwide study showed that there were approximately 301.1
million prevalent cases of hip and knee OA, which was a 9.3%
increase from 1990 to 2017 (Safiri et al., 2020). As the aged
population becomes more sophisticated, OA has become one of
the most important diseases affecting quality of life, which
imposes a huge economic burden on society (Hunter et al.,
2014). Pathologically, the main mechanism of OA is the
degradation of the articular cartilage matrix, including type II
collagen and a small amount of type IX and XI collagen, which
ultimately causes total joint damage (Hunter and Bierma-
Zeinstra, 2019). In addition, the development of OA is
associated with senescent cells, which are linked to aging-
related mitochondrial dysfunction and associated oxidative
stress (Coryell et al., 2021). Inflammatory factors such as IL-
1β and TNF-α cooperate with chemokines to participate in the
progression of OA (Chen et al., 2017). It is now believed that the
study of the relationship between epigenetic regulation and
inflammatory factors will be the way forward for OA
treatment. Thus, the relationship between m6A modifications
and OA has attracted the attention of researchers.

Although both Liu. Q et al. and Sang. W et al. concluded that
METTL3 affects OA development by regulating the inflammatory

response and extracellular matrix (ECM) degradation, and their
experiments presented different results. Liu. Q et al. showed that
METTL3 expression was increased in IL-1β-treated ATDC5 cells.
SilencingMETTL3 expression inhibited the level of inflammatory
cytokines and the transactivation of the NF-κB signaling pathway,
which delayed the progression of OA. Moreover, it could inhibit
the synthesis of ECM by downregulating the expression of
MMP13 and COII-X (Liu et al., 2019). Sang. W et al. showed
that METTL3 expression was reduced in patient tissues and in IL-
1β-treated SW1353 cells. Overexpression of METTL3 resulted in
decreased levels of inflammatory cytokines and promoted the
expression of p-65 protein and p-ERK to activate the NF-κB
signaling pathway. Overexpression of METTL3 also regulated the
balance between TIMPs and MMPs to affect the degradation of
ECM (Sang et al., 2021). The discrepancy in experimental results
was speculated to be due to the following two reasons: 1.
differences in the selection of cell models: ATDC5 cells and
SW1353 cells have a limited ability to mimic primary articular
chondrocytes; 2. the normal control selected by Sang. W et al.
collected articular cartilage from patients who underwent
replacement for femoral neck fractures (for ethical reasons),
although whether this is fully consistent with normal human
METTL3 expression needs to be reconsidered; 3. Liu. Q et al.
verified the expression of METTL3 in experimental osteoarthritis,
which might not reflect the actual expression of OP patients. In
addition to the methylation enzyme METTL3, the demethylase
FTO has also been studied for its effect on the development of
OA. It was shown that FTO-mediated overweight could lead to
increased susceptibility to OA (arc et al., 2012; Panoutsopoulou
et al., 2014). However, both Wang. Y et al. and Dai. J et al.

FIGURE 2 | m6A is correlated with the progression of multiple degenerative diseases including osteoarthritis, osteoporosis, sarcopenia, and degenarative spinal
diseases.
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demonstrated that the single nucleotide polymorphism (SNP)
rs8044769 of FTO was not associated with OA in the Chinese
population, and some other genes may account for it. Therefore,
the correlation between FTO and OA needs further investigation
(Wang et al., 2016c; Dai et al., 2018).

m6A in Osteoporosis
Osteoporosis (OP), a disease characterized by low bone mass and
altered bone microarchitecture (Johnston and Dagar, 2020), is a
complex multifactorial disease. Age, sex, BMI (body mass index),
postmenopausal women, and previous history of fracture are
considered risk factors (Rubin et al., 2013). Altered bone quality
and bone microarchitecture in OP cause increased bone
brittleness and susceptibility to fracture (Compston et al.,
2019), which seriously affect quality of life (Cauley, 2017).
Zeng. Q et al. hypothesized that an estimated 10.9 million

men and 49.3 million women suffered from OP in China by
2019, and the age-standardized prevalence rates of OP in Chinese
men and women over 50 years old were 6.46 and 29.13%,
respectively (Zeng et al., 2019). The United States and the
United Kingdom spend approximately US$17.9 billion and £4
billion each year on osteoporosis-related fractures (Clynes et al.,
2020), which is a huge economic burden for society. However, the
current treatment protocols for OP have some issues, such as a
long treatment cycle time and poor patient compliance (Qaseem
et al., 2017; Estell and Rosen, 2021). Therefore, it is important and
intriguing to explore OP treatment from the perspective of
epigenetics (de Nigris et al., 2021).

A genome-wide identification study showed that 138, 125 and
993 m6A SNPs were associated with density issues of the femoral
neck, lumbar spine and heel, respectively, at significant levels (Mo
et al., 2018). The differentiation tendency of bone marrow

TABLE 1 | The role of m6A in degenerative musculoskeletal diseases.

disease m6A
regulator

Cell type Target gene/signal
pathway

Roles in
disease

References

OA METTL3 ATDC5 Cell NF-κB signaling Promoting inflammatory response, collagen synthesis and
degradation, and cell apoptosis in chondrocytes

Liu et al. (2019)

METTL3 SW1353 cell NF-κB signaling Promoting inflammatory response, degradation of extracellular
matrix

Sang et al.
(2021)

OP METTL3 Primary MSCs PTH/PTH1r signaling Impairing bone formation Wu et al. (2018)
METTL3 BMSCs PI3K-AKT signaling axis Inhibiting osteogenic differentiation Tian et al.

(2019)
METTL3 BMSCs JAK1/STAT5/C/EBPβ

signaling axis
Suppressing the early lipid differentiation of BMSCs Yao et al. (2019)

METTL3 BMSCs PremiR-320/RUNX2 Promoting OP development Yan et al. (2020)
METTL14 Osteoblasts miR-103-3p miR-103-3p can target METTL14 to inhibit osteogenic

differentiation
Sun et al. (2021)

FTO BMSCs GDF11- FTO - PPARγ
signal pathway

Promoting differentiation of BMSCs to adipocytes Shen et al.
(2018)

FTO BMSCs miR-149-3p miR-149-3p promotes osteogenic differentiation by
targeting FTO.

Li et al. (2019)

FTO BMSCs miR-22-3p and MYC/
PI3K/AKT signal pathway

miR-22-3p in BMSC-derived EVs can inhibit MYC/PI3K/AKT
signal pathway by targeting FTO to stimulate osteogenic
differentiation

Zhang et al.
(2020a)

ALKBH5 MSCs PRMT6 mRNA Inhibiting the osteogenic differentiation of MSCs through
PRMT6

Li et al. (2021)

Sarcopenia METTL3 C2C12 cell MyoD mRNA Mettl3 is required for MyoD mRNA expression in proliferative
myoblasts

Kudou et al.
(2017)

METTL3 C2C12/MuSCs - METTL3 regulates the differentiation of MuSCs Gheller et al.
(2020)

METTL3 MuSCs Notch Signaling Regulating the notch signaling pathway and controllingmuscle
regeneration and repair with the METTL3-m6A-YTHDF1 axis

Liang et al.
(2021)

FTO C2C12 cell mTOR-PGC-1α pathway Regulating mTOR-PGC-1a-mediated intramitochondrial
synthesis and muscle cell differentiation

Wang et al.
(2017)

FTO C2C12 cell AMPK Reducing lipid accumulation by inhibiting the demethylase
activity of FTO.

Wu et al. (2017)

Degenerative spinal
diseases

METTL14 HNPCs miR-34a-5p METTL14 promotes he senescence of nucleus pulposus cell
by increasing the expression of miR-34a-5p

Zhu et al. (2021)

METTL3 chondrocytes PI3K/AKT signaling METTL3 promotes the degeneration by inhibit the protective
effect of PI3K/Akt signaling pathway on endplate cartilage

Xiao et al.
(2020)

METTL3 Primary Ligament
Fibroblasts

XIST/miR-302a-3p/
USP8 Axis

Regulating the ossification of primary ligament fibroblasts Yuan et al.
(2021)

ALKBH5 Ligamentum Flavum
Cells

AKT pathway Promoting ligamentum flavum cell osteogenesis by decreasing
BMP2 demethylation and activating Akt signaling pathway

Wang et al.
(2020b)

ALKBH5, alkB homolog 5; BMSC, bone marrow mesenchymal stem cell; FTO, fat mass and obesity-associated protein; m6A, N6-methyladenosine; METTL3, methyltransferase-like 3;
METTL14, methyltransferase-like 14; OA, osteoarthritis; OP, osteoporosis. HNPCs, human nucleus pulposus cell. MuSCs, Muscle-specific adult stem cells.
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mesenchymal stem cells (BMSCs) is closely associated with the
development of OP, and the imbalance between osteogenic and
lipogenic differentiation of BMSCs is often considered the basis
for the development of OP. BMSC differentiation into adipocytes
may lead to decreased bone formation, which contributes to the
development of OP (Chen et al., 2016; Qadir et al., 2020).
Coincidentally, as an m6A-modified demethylase, FTO
mediates demethylation to regulate mRNA shearing, which is
required for lipogenesis (Zhao et al., 2014). Importantly, Guo. Y
et al. found an association between FTO and OP phenotype (Guo
et al., 2011). Shen. G et al. found that the GDF11-FTO-PPARγ
(peroxisome proliferator-activated receptor γ) axis controls the
differentiation of BMSCs to adipocytes and reduces bone
formation in OP patients. The main mechanism is that the
upregulated GDF11-FTO signaling targets PPARγ, which is
dependent on FTO demethylase activity. This can reduce m6A
modification of the mRNA encoding PPARγ, prolong the half-life
period, and ultimately contribute to differentiation of BMSCs into
adipocytes (Shen et al., 2018). In addition, miR-149-3p can
promote the differentiation of BMSCs into osteoblasts by
binding to the mRNA 3′UTR of FTO, which in turn inhibits
its own expression (Li et al., 2019). Notably, to investigate the
effect of extracellular capsule-encapsulated miR-22-3p from bone
marrow mesenchymal stem cells on osteogenic differentiation,
Zhang. X et al. performed a series of experiments. They found that
miR-22-3p in BMSC-derived EVs can inhibit the MYC/PI3K/
AKT signaling pathway by targeting FTO to stimulate osteogenic
differentiation (Zhang et al., 2020a). Interestingly, although FTO
could inhibit the differentiation of BMSCs to osteoblasts in OP, it
had a protective effect on differentiated cells. Studies in normal
mouse models showed that the demethylase activity of FTO is
required for normal bone growth and calcification in mice
(Sachse et al., 2018). FTO is also able to avoid genotoxic
damage to osteoblasts by stabilizing endoplasmic reticulum
stress pathway components, such as Hsp70 (which inhibits
NF-κB signaling pathway activation) (Zhang et al., 2019). As
another demethylase, ALKBH5 could also negatively regulate the
osteogenic differentiation of MSCs through PRMT6 (protein
arginine methyltransferase 6) (Li et al., 2021).

As m6A-modified methylesterases, METTL3 and METTL14
have likewise received the attention of researchers. METTL3-and
METTL14-mediated m6A methylation affects the differentiation
of BMSCs through multiple pathways. On the one hand,
METTL3 knockdown in mice could decrease the translation
efficiency of PTH1r (parathyroid hormone receptor-1) and
reduce its expression in vivo, which interferes with the
osteogenesis of PTH (parathyroid hormone) via the PTH/
PTH1r signaling axis to induce an OP-related pathological
phenotype (Wu et al., 2018). Moreover, knockdown of
METTl3 could inhibit osteogenic differentiation of BMSCs by
suppressing VEGF-a expression and activation of the PI3K-AKT
signaling pathway in vivo (Tian et al., 2019). On the other hand,
METTL3 could promote the modification of m6A in JAK1mRNA
and reduce JAK1 expression by recognizing and destabilizing
JAK1 through YTHDF2, thereby inhibiting the activation of the
JAK1/STAT5/C/EBPβ signaling pathway. METTL3 could also
suppress the early lipid differentiation of BMSCs (Yao et al.,

2019). In addition, Yan. G et al. showed that the downregulation
of METTL3 in BMSCs could reduce the expression of RUNX2
and PremiR320 by inhibiting their methylation (Yan et al., 2020).
RUNX2 is an important regulator of osteogenic precursor cells in
vivo and is involved in bone mineral deposition and the
progression of OP (Komori, 2019). As another m6A-modified
methylation enzyme, METTL14 can be targeted by miR-103-3p
to inhibit osteogenic differentiation. Moreover, it can also
modulate miRNA activity through DGCR8 in a feedback-
dependent manner, which suggests that the miR-103-3p/
METTL14/m6A signaling axis is a potential target in the
treatment of OP (Sun et al., 2021).

Emerging evidence has shown that the knockdown of the
m6A-modified reader protein YTHDF2 can enhance the
phosphorylation of IKKα/β, IκBα, ERK, p38 and JNK in the NF-
κB and MAPK signaling pathways and then mediate LPS-induced
osteoclast formation and inflammation (Fang et al., 2021). This
indicates that the role of m6A reader proteins in OP is important,
which provides a novel pathway for future research.

In summary, the relationship between m6A modifications
and OP is closely associated with the regulation of BMSC
differentiation. The modalities can be summarized as follows:
1. METTL3 and MEETTL14 can mediate the differentiation
of BMSCs toward osteoblasts; 2. FTO can mediate the
differentiation of BMSCs toward adipocytes; 3. FTO can
protect the cells from genotoxic injury; 4. ALKBH5
negatively regulates the osteogenic differentiation of
BMSCs; 5. YTHDF2 reader protein can mediate osteoclast
formation. Current research on the relationship between
m6A and osteoporosis mainly focuses on the
differentiation and regulation of BMSCs. Given that the
imbalance of bone remodeling due to abnormal
differentiation of osteoclasts is an important pathological
basis of osteoporosis and that METTL3 has been shown to
regulate osteoclast differentiation (Li et al., 2020c), the
mechanism by which m6A modification regulates
osteoclast differentiation in osteoporotic patients needs to
be further addressed in the future.

Thus, it appears that there may be a dual role of m6A
modification in the progression of OP. Understanding the
mechanism associated with m6A modification with this dual
relationship could provide promising insight for the
prevention and treatment of OP.

m6A in Sarcopenia
Sarcopenia, a disease characterized by a decrease in muscle
mass and function associated with age-related progression,
was first identified by Rosenberg et al., in 1997 (Rosenberg,
1997). Sarcopenia often results in many adverse outcomes,
such as falls, decreased function, fractures and even death.
These adverse outcomes can lead to increased hospital stays
and exacerbate the sarcopenia process (Coker and Wolfe,
2012; Dhillon and Hasni, 2017; Yeung et al., 2019). The
etiology of sarcopenia can be described as follows: 1. Age:
muscle content decreases with age and reflects the trend of
development. However, the speed of muscle loss in sarcopenia
patients is far beyond that in the normal population (Larsson
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et al., 2019); 2. Chronic low-titer systemic inflammatory state
of the body: the body of a sarcopenia patient always presents a
chronic low-titer systemic inflammatory state with cachexia,
which could increase physical exertion and accelerate muscle
decrease (Muscaritoli et al., 2010). Nevertheless, the
mechanism of sarcopenia pathogenesis is not yet well
understood.

With regard to the relationship between m6A modification
and sarcopenia, current research has mainly focused on
muscle stem cell differentiation. Kudou et al. found that
muscle stem cells require MyoD regulators to maintain
differentiation potential, and m6A modifications of mRNA
encoding MyoD are enriched in the 5′UTR. The m6A
methylation enzyme METTl3 can stabilize MyoD RNA by
promoting pro-myogenic differentiation mRNA processing in
proliferating cells. Knockdown of METTL3 can significantly
downregulate processed MyoD mRNA expression in adult
myoblasts (Kudou et al., 2017). Knockdown of METTL3 in
mouse C2C12 cells and muscle stem cells can reduce the level
of m6A modification and lead to premature differentiation of
adult myoblasts, suggesting an important role of METTL3 in
m6A regulation (Gheller et al., 2020). METTL3 can enhance
protein expression by increasing mRNAm6A modification via
the Notch signaling pathway and increase the translation
efficiency of mRNAs through the YTHDF1 reader protein.
This suggests that METTL3 is essential for regulating muscle
stem cells and promoting muscle injury recovery (Liang et al.,
2021).

Similarly, FTO demethylases have also been found to be
involved in the regulation of muscle stem cells. Increased
expression of FTO is observed during muscle cell
differentiation and regulates mTOR-PGC-1a-mediated
intramitochondrial synthesis through its own demethylase
activity (affecting muscle cell differentiation) (Wang et al.,
2017). In addition, the expression of AMPK (AMP-activated
protein kinases) is a key regulator of skeletal muscle lipid
metabolism and m6A modification in skeletal muscle. These
proteins showed a negative correlation with lipid accumulation
in skeletal muscle. Lipid accumulation may be reduced by
inhibiting the demethylase activity of FTO and increasing the
level of m6A modification (Wu et al., 2017).

In summary, although the existing evidence does not
directly verify the relationship between m6A modification
and sarcopenia, the ability of m6A to regulate the
differentiation of muscle stem cells will provide us with a
future direction. Given the variety of sarcopenia mouse
models that have been established (Xie et al., 2021), novel
methods of sarcopenia research can be developed.
Interestingly, given the regulatory role of FTO in muscle
differentiation and lipid accumulation in skeletal muscle,
FTO may be considered a key regulatory factor specifically
in sarcopenic obesity (high-risk disease characterized by both
sarcopenia and obesity (Batsis and Villareal, 2018)).

m6A in Degenerative Spinal Disease
Degenerative spinal disorders are a group of age- and aging-
related structural abnormalities of the spine, including cervical

spondylosis, lumbar disc herniation, spinal stenosis and posterior
longitudinal ligament calcification (Ailon et al., 2015; Davies
et al., 2018). These constitute a type of clinical syndrome
caused by degenerative alternations or long-term strain as age
increases. A structural imbalance in the spine initiates repair in
the body and stimulates bone hyperplasia, ligament thickening
and ossification, which eventually lead to the emergence of spinal
cord, nerve root or vertebral dynamic compression. This
imbalance can seriously affect the quality of life of patients
and even endanger life (Wang et al., 2016d; Badhiwala et al.,
2020). Abnormal nucleus pulposus cells are a crucial cause of
lower back pain (a common chronic inflammatory pain closely
related to disc degeneration in which IL-1 and TNF-α are key
factors (Cunha et al., 2018; Wang et al., 2020a)). Zhu. H et al.
showed that TNF-α and TNF-α can promote the expression of
miR-34a-5p through the methylation enzyme activity of
METTL14 in myeloid cells, which may increase the m6A
modification of the mRNA encoding miR-34a-5p (targeting
the utility of SIRT1 inhibition). Eventually, this promotes the
senescence of nucleus pulposus cells (Zhu et al., 2021). As another
methylesterase, METTL3 is able to promote inflammation by
binding DGCR8 to positively regulate the m6A modification level
of pri-miR-365-3p in a CFA-induced chronic inflammation
model (Zhang et al., 2020b). In IVDD, degeneration of
endplate chondrocytes may also lead to pathological
alterations. Xiao. L et al. found that METTL3-mediated m6A
modification was closely associated with degeneration (Xiao et al.,
2020). METTL3 expression was upregulated in IL-1β-mediated
inflammatory cells: METTL3 upregulation promoted the
breakdown of pri-miR-126-5p to increase miR-126-5p
expression. Subsequently, miR-126 could downregulate
PIK3R2 expression to inhibit the protective effect of the PI3K/
Akt signaling pathway (Xiao et al., 2020). METTl3 increases the
level of m6A modification of lncRNA XIST during posterior
longitudinal ligament ossification and subsequently affects the
ossification of primary ligament fibroblasts by influencing the
miR-302a-3p/USP8 axis (Yuan et al., 2021). During ligamentum
flavum ossification, the ALKBH5 demethylase can promote
ligamentum flavum cell osteogenesis by decreasing BMP2
demethylation and activating the Akt signaling pathway
(Wang et al., 2020b).

Thus, although research on the role of m6A in the process of
spinal degeneration is still in its infancy, a close association
between the regulation of m6A modifications and spinal
degeneration has been identified. Both the METTL3 and
METTL14 methylation enzymes and the ALKBH5
demethylase can influence the progression of spinal
degeneration by regulating the level of m6A modifications
(affecting the level of inflammation or differentiation
tendency). The excellent studies described here provide novel
insight for the diagnosis and treatment of degenerative spinal
disorders in the future.

Perspective
Currently, accurately describing the specific mechanisms of m6A
in degenerative musculoskeletal diseases remains a great
challenge. The impact of m6A modifications on degenerative
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musculoskeletal diseases remains to be addressed. First, the
current SNP detection methods, such as high-resolution and
high-throughput detection, need to be improved. Second,
research on OA, sarcopenia and degenerative spinal diseases is
relatively limited, and we hope that subsequent investigators will
more thoroughly examine the mechanisms involved. Third,
although an important role of YTHDF2 in degenerative
musculoskeletal diseases has been observed, the role of the
reader protein has been less well investigated (Fang et al.,
2021). Finally, current evidence suggests that targeting m6A
modifications may be a promising therapeutic option (Peng
et al., 2019; Bedi et al., 2020). However, more in-depth studies
on safety and efficacy are still needed.

CONCLUSION

Recently, researchers have begun to investigate the role and
importance of m6A modifications in a variety of diseases.
However, only a small number of these studies have focused
on degenerative issues. In this review, we summarize the role and
regulatory mechanisms of m6A in the pathogenesis of
degenerative musculoskeletal diseases. During transcription,
the level of transcript m6A modification is closely associated
with the development and repair of bones, muscles and soft
tissues. The regulation of the m6A modification level at the lesion
site requires functional coordination among writer, eraser and
reader proteins, and the abnormal expression of each of these
proteins may contribute to exacerbating degeneration. Therefore,
the dynamic balance of m6A modifications is crucial for
degenerative musculoskeletal diseases. Unfortunately, the
current treatment options for degenerative musculoskeletal
diseases are not yet well understood, and most patients are
ultimately likely to receive surgical treatment. Research on the
relationship between m6A modifications and degenerative
musculoskeletal diseases will provide us with novel insights for
the diagnosis and treatment of these diseases to control their

progression and long-term prognosis by regulating m6A
modification.
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