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Highlights Impact and Implications

� The performance of existing transcriptomic prognostic bio-

markers of HCC is vulnerable to intratumour heterogeneity
(ITH).

� An ITH-free expression biomarker (AUGUR) overcoming clinical
sampling bias was developed by interrogating heterogeneity.

� AUGUR exhibited prognostic reproducibility and generalisability
across multiple HCC patient cohorts from different commercial
platforms.

� AUGUR compared favourably to the discriminative ability,
prognostic accuracy and patient risk concordant rate of 13 ana-
lysed signatures.

� We established a well-calibrated quantitative nomogram that
provides reliable prognostic information tailored to the indi-
vidual patient.
https://doi.org/10.1016/j.jhepr.2023.100754
Intratumour heterogeneity (ITH) is prevalent in hepatocellu-
lar carcinoma (HCC), and is regarded as an unaddressed
confounding factor for biomarker design and application. We
examined the confounding effect of transcriptomic ITH in
patient risk classification, and found existing molecular bio-
markers of HCC were vulnerable to tumour sampling bias. We
then developed an ITH-free expression biomarker (a utility
gadget using RNA; AUGUR) that overcame clinical sampling
bias and maintained prognostic reproducibility and general-
isability across multiple HCC patient cohorts from different
commercial platforms. Furthermore, we established and
validated a well-calibrated nomogram based on AUGUR and
tumour-node-metastasis (TNM) stage that provided an indi-
vidualised prognostic information for patients with HCC.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhepr.2023.100754&domain=pdf
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Background & Aims: Intratumour heterogeneity (ITH) fosters the vulnerability of RNA expression-based biomarkers derived
from a single biopsy to tumour sampling bias, and is regarded as an unaddressed confounding factor for patient precision
stratification using molecular biomarkers. This study aimed to identify an ITH-free predictive biomarker in hepatocellular
carcinoma (HCC).
Methods: We interrogated the confounding effect of ITH on performance of molecular biomarkers and quantified tran-
scriptomic heterogeneity utilising three multiregional HCC transcriptome datasets involving 142 tumoural regions from 30
patients. A de novo strategy based on the heterogeneity metrics was devised to develop a surveillant biomarker (a utility
gadget using RNA; AUGUR) using three datasets involving 715 liver samples from 509 patients with HCC. The performance of
AUGUR was assessed in seven cross-platform HCC cohorts that encompassed 1,206 patients.
Results: An average discordance rate of 39.9% at the level of individual patients was observed applying 13 published prog-
nostic signatures to classify tumour regions. We partitioned genes into four heterogeneity quadrants, from which we
developed and validated a reproducible robust ITH-free expression signature AUGUR that showed significant positive asso-
ciations with adverse features of HCC. High AUGUR risk increased the risk of disease progression and mortality independent
of established clinicopathological indices, which maintained concordance across seven cohorts. Moreover, AUGUR compared
favourably to the discriminative ability, prognostic accuracy, and patient risk concordant rates of 13 published signatures.
Finally, a well-calibrated predictive nomogram integrating AUGUR and tumour-node-metastasis (TNM) stage was established,
which generated a numerical probability of mortality.
Conclusions: We constructed and validated an ITH-free AUGUR and nomogram that overcame sampling bias and provided
reliable prognostic information for patients with HCC.
Impact and Implications: Intratumour heterogeneity (ITH) is prevalent in hepatocellular carcinoma (HCC), and is regarded as
an unaddressed confounding factor for biomarker design and application. We examined the confounding effect of tran-
scriptomic ITH in patient risk classification, and found existing molecular biomarkers of HCC were vulnerable to tumour
sampling bias. We then developed an ITH-free expression biomarker (a utility gadget using RNA; AUGUR) that overcame clinical
sampling bias and maintained prognostic reproducibility and generalisability across multiple HCC patient cohorts from different
commercial platforms. Furthermore, we established and validated a well-calibrated nomogram based on AUGUR and tumour-
node-metastasis (TNM) stage that provided an individualised prognostic information for patients with HCC.
© 2023 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction
Primary liver cancer is the sixth most commonly diagnosed
cancer and the third leading cause of cancer-related death
worldwide in 2020, with approximately 906,000 new cases and
830,000 deaths.1 Hepatocellular carcinoma (HCC) is the most
frequent form of liver cancer, accounting for 75–85% of cases.1,2

Although advancements have been made in the treatment of
HCC in the past two decades, the prognosis of patients with HCC
is dismal and varies significantly among individuals, with a
relative 5-yr survival rate of approximately 18%.2 An accurate
stratification reflecting the prognosis of patients with HCC is

https://doi.org/10.1016/j.jhepr.2023.100754
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crucial for disease surveillance and treatment strategies selec-
tion, thus considerable effort has been devoted to establishing
such a stratification model for HCC using patient clinical and
pathological characteristics. Currently, several classification sys-
tems, such as the American Joint Committee on Cancer TNM
(tumour-node-metastasis) system, the Cancer of the Liver Italian
Program (CLIP) and the Barcelona Clinic Liver Cancer (BCLC)
staging, have been developed and used in clinics. These assess-
ment approaches have proved useful,3 although they have
various limitations in patient stratification and provide limited
predictive accuracy.4 Besides, they failed to provide biological
characteristics of HCC that might account for the clinical het-
erogeneity, thus requiring improvement.

Over the past two decades, advances in genome-wide expres-
sion profiling technology have considerably enhanced our un-
derstanding of cancer biology. With the hope that the proposed
gene-lists can aid clinicians in cancer therapy decisions, many
studies have assessed the prognostic abilities of gene signatures
established from high-throughput expression data of HCC tu-
mours and/or adjacent non-tumour tissues.5–9 These in-
vestigationshave identified awide variety ofmultigene signatures
that were able to predict prognosis, however, none has entered
clinical practice, perhaps because of their poor reproducibility in
independent patient cohorts and lack of standardised determi-
nationmethods.10,11 Intratumour heterogeneity (ITH) is one of the
main causes of failure in clinical practice in most types of cancers
including HCC.11,12 Previous investigations focused on tran-
scriptomes using multiregional or single-cell analyses, revealing
astonishing ITH of gene expression.13–15 However, these attempts
are not directly considered and translated to the clinical setting of
HCC. Transcriptomic ITH has been shown to confound existing
expression-based biomarkers across multiple cancer types,16–18

and can lead to sampling biases that may account for the lack of
clinically qualified biomarkers in HCC. Therefore, addressing ITH
as a confounding factor for prognostic signature design is crucial
for precision medicine.

In the current study, through multiregional transcriptomic
data of HCC, we examined the confounding effect of tran-
scriptomic ITH in patient risk prediction, and found existing
prognostic gene expression signatures of HCC are vulnerable to
tumour sampling bias. We then devised a de novo strategy to
develop an ITH-free expression biomarker that overcomes clin-
ical sampling bias and provides more reliable risk estimates for
patients with HCC by integrating three RNA sequencing (RNA-
seq) expression datasets with different features that encompass
715 liver tissue samples from 509 patients with HCC. We
assessed and validated the prognostic and predictive accuracy of
this classifier in six independent cohorts totally involving 883
patients with HCC, including three RNA-seq-based and three
microarray-based transcriptome datasets. We also compared its
prognostic and predictive efficacy with 13 previously reported
HCC prognostic models, and established and validated a well-
calibrated nomogram based on this classifier and TNM staging
system to provide a more individualised method to predict
prognostic information for patients with HCC.
Materials and methods
Multiregional gene expression data of HCC
RNA-seq data of multiregional samples from 11 patients with HCC
in total involving 42 tumoural regions (denoted as the Multi-
RRnaSeq1 cohort; median of five tumour regions per patient
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[range: two to six regions]; Table S1) were collected from a pre-
vious study.14 For validation, the RNA-seq data of 75 tumour re-
gions from 14 patients with HCC (denoted as the MultiRRnaSeq2
cohort, median of five tumour regions per patient [range: three to
10 regions]; Table S2) and the Agilent mRNA transcriptome pro-
files of 25 tumour samples fromfivepatientswithHCC (denoted as
the MultiRArray cohort; five regions per patient, Table S3) were
curated from another two studies.15,19 Details of data collection,
filtering, and normalisation are available in the Supplementary
materials.

Acquisition of HCC cohorts with survival information
Seven HCC cohorts with clinical follow-up information involving
in total 1,177 HCC specimens and 693 normal specimens from
1,206 patients (i.e. TCGA-LIHC,20 ICGC-LIRI-JP,21 CHCC-HBV,22

Mongolia-HCC,23 FULCI-HCC,24 NCI-HCC,25 INSERM-HCC26;
Table S4) were collected. Transcriptome data of TCGA-LIHC, ICGC-
LIRI-JP, CHCC-HBV, and Mongolia-HCC were RNA-seq data,
whereas transcriptomedata of FULCI-HCC, NCI-HCC, and INSERM-
HCCweremicroarray data. Details of data collection, filtering, and
normalisation are available in the Supplementary materials.

Collection of previously published HCC prognostic gene
expression signatures
Thirteen previously published HCC prognostic gene expression
signatures (ProGESigs) were collected. Each of the 13 signatures
is associated with a specific formula. The detailed information of
each signature and the detailed strategy to apply it is presented
in Table S5 and in the Supplementary material.

Establishment and validation of the ITH-free prognostic
signature
A five-step analysis pipeline was developed to construct and
validate an ITH-freeprognosticmodel basedon three independent
RNA-Seq HCC cohorts. First, to restrict gene-ITH, gene heteroge-
neity scores were calculated using data from the MultiRRnaSeq1
cohort (see the Supplementary materials for detailed methods),
and genes with high inter- and low intratumour heterogeneity
scores were selected. Second, dysregulated genes were identified
using 175 paired tumour-normal samples from the ICGC-LIRI-JP
cohort. Differential expression analysis was performed using R
package DESeq2 (version 1.28.1, University of North Carolina,
Chapel Hill, United States), wherein geneswith absolute log 2-fold
change >1.0 and adjusted p value <0.05 were considered differ-
entially expressed. Third, univariate Cox regression analysis was
used to identifygenes significantlyassociatedwithoverall survival
(OS) in the TCGA-LIHC cohort using R package survival (version
3.2.10, Mayo Clinic, Rochester, United States). A value of p <0.05
was considered statistically significant. Last, least absolute
shrinkage and selection operator (LASSO) penalised Cox regres-
sion against OS based on the TCGA-LIHC training cohort was uti-
lised to construct the ITH-freeprognostic signature fromthe genes
selected by above three criteria using the R package glmnet
(version 4.1.1, Stanford University, Stanford, United States). The
risk score for each patient was calculated as a linear combination
of gene expression values, weighted by the model coefficients
fitted in the training cohort. Patients were subsequently median-
dichotomised into high- and low-risk groups based on the risk
scores in each cohort. The internal (ICGC-LIRI-JP), external RNA-
Seq (CHCC-HBV and Mongolia-HCC) and external microarray
(FULCI-HCC, NCI-HCC, and INSERM-HCC) cohorts were used to
assess the predictive performance of signature via the Harrell’s
2vol. 5 j 100754



concordance index (C-index) and time-dependent receiver oper-
ating characteristic (ROC) curve analysis.

Statistical analysis
Contingency table variables were analysed by the Fisher’s exact
test. Pearson’s and Spearman’s correlation test were used to
assess correlation between two variables, as appropriate. Sur-
vival analysis was conducted using the Kaplan–Meier method
in the R package survival (version 3.2.10, Mayo Clinic, Roches-
ter, United States), with p values determined using the log-rank
test. Hazard ratio, univariate analysis, and multivariate analysis
adjusting for age, gender, AJCC stage, cirrhosis, alpha-
foetoprotein (AFP) and histological grade (if available) were
determined through a Cox proportional hazards model. The
nomogram and corresponding calibration maps were con-
structed via R software rms (version 6.2.0, Vanderbilt Univer-
sity Medical Center, Nashville, United States). Calibration plots
calculated via a bootstrap method with 1,000 re-samples were
drawn to evaluate the concordance between actual and pre-
dicted survival. The C-index was calculated using the R package
Hmisc (version 1.38.0, Vanderbilt University Medical Center,
Nashville, United States). Time-dependent receiver ROC anal-
ysis and the AUC values were calculated using the R package
timeROC (version 0.4, University of Copenhagen, Copenhagen,
Denmark). The frequencies and types of mutations were ana-
lysed and visualised using the R package Maftools (version
2.10.5, National University of Singapore, Queenstown,
Singapore). All statistical analyses were two-tailed and per-
formed using the R statistical software (version 4.0.2), a value
of p <0.05 was considered statistically significant.
Results
Intratumour heterogeneity broadly affects signature
performance
Multiregional tumour sequencing could help to characterise
the tumour spectrum more adequately than using a single bi-
opsy, including clonality, ITH, and tumour evolution.14 Unsu-
pervised hierarchical clustering on the most variant genes
across 42 multiregion primary HCC samples from 11 patients14

(MultiRRnaSeq1 cohort), 75 multiregion primary HCC samples
from 14 patients19 (MultiRRnaSeq2 cohort), or 25 multiregion
primary HCC samples from 5 patients15 (MultiRArray cohort)
all exhibited separate clusters by patients, which suggested
clustering concordance in regions from the same tumour, and
revealed stronger RNA inter-tumour heterogeneity than ITH
(Fig. 1A, Fig. S1A and B). Nevertheless, dimensionality reduction
for the entire transcriptome profiles clearly revealed RNA ITH
between different regions of the same HCC, such as samples
from H2, H3, H9, and H11 in MultiRRnaSeq1 cohort that
without peculiar geographic distribution of sampling14 (Fig. 1B,
Fig. S1C and D).

ITH could cause the bias of clinical strategies when using
molecular features derived from a single biopsy, including biopsy
strategy, molecular pathological diagnosis, target therapy, and
prognosis prediction.14,27 To assess the influence of RNA ITH on
performance of molecular biomarkers, we firstly investigated
patient risk bias using previously published epithelial-8 (Fig. 1C)
and immune-related7 (Fig. S1E) HCC ProGESigs in the Multi-
RRnaSeq1 cohort. Using the same risk score calculating methods
executed in the original studies to dichotomise tumour regions
as either high risk or low risk, 55% and 46% of patients,
JHEP Reports 2023
respectively, exhibited discordant risk classification. Similarly,
using pyroptosis-related,28 DNA methylation-driven,9 mutation-
derived,29 microvascular invasion-related,30 neoangiogenesis-
related,6 the most extensively cited five-gene signature31 and
other HCC ProGESigs, an average discordance rate of 39.9%
(range: 18–73%) was observed (Fig. 1D). The discordant risk
classification rate was not significantly correlated with the gene
size of the signature (rho = -0.02, p = 0.95 in the MultiRRnaSeq1
cohort; rho = 0.13, p = 0.68 in the MultiRRnaSeq2 cohort). These
results indicated that prognostic risk of patients with HCC
evaluated by ProGESigs without considering tumour heteroge-
neity were frequently influenced by sampling bias, which might
contribute to the limited validity and reproducibility of ProGE-
Sigs in independent cohorts,17 thus potentially limiting the
clinical utility of ProGESigs and emphasising the importance of
considering ITH in signature design.

A de novo strategy to develop ITH-free HCC prognostic
signature
We hypothesised that circumventing RNA ITH and magnifying
RNA inter-tumour heterogeneity might improve the ability to
discriminate between patients and simultaneously maintain the
stability of biomarker risk prediction for each patient when using
different tumour regions. Thus, we devised a de novo five-step
strategy to construct and validate a HCC prognostic RNA
marker to test this hypothesis (Fig. 2A). In the discovery phase,
three RNA-seq-based expression datasets with different features
that encompass 715 liver tissue samples from 509 patients with
HCC were used: (1) the aforementioned MultiRRnaSeq1 dataset,
to derive candidate RNA molecules with high inter-tumour het-
erogeneity and low ITH; (2) the ICGC-LIRI-JP HCC dataset (350
samples from 175 paired tumour-normal tissues), to calculate
differentially expressed genes; and (3) the TCGA-LIHC dataset
(323 HCC patients with prognostic information), to deduce genes
associated with survival. In the validation phase, a total of 883
patients with HCC from six cohorts were utilised, including three
RNA-seq-based (ICGC-LIRI-JP, CHCC-HBV, and Mongolian-HCC
cohorts; n = 226, 159, and 70 patients, respectively) and three
microarray-based (FULCI-HCC, NCI-HCC, and INSERM-HCC co-
horts; n = 231, 140, and 57 patients, respectively) transcriptome
datasets (Fig. 2A, Table S4).

To define RNA heterogeneity, we derived inter- and intra-
tumour heterogeneity metrics for each gene using multiregion
HCC samples, and split both heterogeneity metrics into a high or
low group by their mean, which resulted in four RNA heteroge-
neity quadrants for HCC (Fig. 2B).16 Genes in the Q4 Set (1,477
genes with high inter-tumour heterogeneity and low ITH)
exhibited highly variable between tumours and highly homo-
geneous within tumours, thus restricting sampling bias and
potentially facilitating patient stratification (Fig. 2B). To obtain
genes with reproducible survival associations in the Q4 gene set,
we combined differentially expressed genes and prognostic
genes of HCC obtained from two independent datasets (ICGC-
LIRI-JP and TCGA-LIHC, respectively), which resulted in a candi-
date gene set containing 34 genes (Fig. 2C). Differential expres-
sion analysis in five cohorts containing paired HCC and normal
liver tissues showed that all 34 genes were significantly differ-
entially expressed in all cohorts (a total of 660 paired tumour-
normal tissues), including four RNA-seq-based and one
microarray-based dataset (Fig. 2D, Fig. S2, Tables S6–S10), vali-
dating these genes were generally dysregulated in HCC regard-
less of the original profiling platform, thus they might play
3vol. 5 j 100754
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Fig. 1. ITH disturbs HCC molecular biomarkers. (A) The heat map (top) shows the unsupervised hierarchical clustering of HCC samples (columns) in the
MultiRRnaSeq1 cohort according to the top 50 variable expression genes (rows). The sparse heat map (bottom) shows HCC samples per patient. (B) Principal
component analysis (PCA) of the entire transcriptome profiles of the MultiRRnaSeq1 cohort. (C) A published epithelial-related prognostic signature for HCC is
evaluated in the MultiRRnaSeq1 cohort. Each point represents a single tumour sample (left). Points are coloured according to the concordance of risk classification
for samples from each patient: concordant low, concordant high, and discordant risk are marked in violet, green, and grey, respectively. The horizontal dashed
line represents median of risk scores of these samples. The bar chart (right) represents the percentage of patients who are classified as concordant low,
concordant high, and discordant risk. (D) The bar chart represents the percentage of patients who are classified as concordant low, concordant high, and
discordant risk using 13 published HCC prognostic signatures in the MultiRRnaSeq1 cohort. The x-axis shows the corresponding articles (PubMed ID). HCC,
hepatocellular carcinoma; ITH, intratumour heterogeneity.
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critical roles in HCC progression. Subsequently, we used the
elastic-net algorithm that was proved to be more robust than
other algorithms16 to narrow down the 34 candidate genes to
remove redundancies and select the most useful prognostic
markers of HCC, which generated a 12-gene prognostic signature
that was ITH-free and we termed a utility gadget using RNA
(AUGUR) (Fig. 2E, Table S11 presents the ingredients of AUGUR).

ITH-free signature AUGUR performs robust prognostic
efficacy in HCC
To investigate the prognostic performance of AUGUR, we first
dichotomised TCGA-LIHC patients (training cohort of AUGUR)
using the median risk score, and found that the AUGUR risk
score was significantly positively associated with mortality
JHEP Reports 2023
(n = 323 patients, log rank: p <0.0001; univariate Cox regression:
p <0.0001, HR = 2.5, Fig. 3A, Table S12). The median OS interval
of patients with HCC in the high AUGUR group was 3.48 yr (95%
CI: 2.07–5.07), whereas that of patients with low AUGUR scores
was 6.72 yr (95% CI: 4.90–NA). Subsequently, we applied AUGUR
weights trained in the TCGA-LIHC cohort to three additional
independent RNA-seq-based HCC datasets, and the same results
were observed in all three datasets that patients with HCC in the
high AUGUR risk group had a shorter median survival time
(Fig. 3B–D, Tables S13–S15, log rank: p < 0.0001; univariate Cox
regression: p = 0.0003, HR = 4.38 in the ICGC-LIRI-JP cohort; log
rank: p = 0.0011; univariate Cox regression: p = 0.0016, HR = 2.47
in the CHCC-HBV cohort; log rank: p = 0.02; univariate Cox
regression: p = 0.026, HR = 2.74 in the Mongolian-HCC cohort).
4vol. 5 j 100754
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Moreover, three microarray-based HCC expression datasets were
also included to evaluate the prognostic power of AUGUR. We
expected the performance of AUGUR to be poorer, considering
the cross-platform usage of weights trained in TCGA-LIHC
transcriptome sequencing data. However, AUGUR significantly
associated with survival in all three microarray datasets (Fig. 3E,
Fig. S3A and B, Tables S16 and S17, log rank: p = 0.00013; uni-
variate Cox regression: p = 0.0002, HR = 2.33 in the FULCI-HCC
cohort; log rank: p = 0.00044; univariate Cox regression: p =
0.0006, HR = 2.33 in the NCI-HCC cohort; log rank: p = 0.015;
univariate Cox regression: p = 0.02, HR = 3.18 in the INSERM-HCC
cohort). In the meta-analysis considering all training and testing
cohorts (combined: n = 1,127 HCC patients), AUGUR also showed
significant association with outcome (Fig. 3F, univariate Cox
regression: p = 8.66 × 10-19; HR = 2.56 [2.08–3.15]). These results
demonstrate the prognostic reproducibility and concordance of
JHEP Reports 2023
AUGUR across multiple cohorts from different profiling
platforms.

In five out of six training and validation datasets with clinico-
pathological factors, AUGUR was significantly associated with OS
in multivariate Cox proportional hazards analysis adjusting for
age, sex, TNM stage, histological grade, cirrhosis, and AFP
(Tables S12–S17, TCGA-LIHC: p = 0.0006, HR = 3.23 [1.66–6.29];
ICGC-LIRI-JP: p = 0.0031, HR = 3.52 [1.53–8.12]; CHCC-HBV:
p = 0.0175, HR = 2.02 [1.13–3.61]; FULCI-HCC: p = 0.014, HR = 1.81
[1.13–2.91]; and INSERM-HCC: p = 0.0099, HR = 3.86 [1.38–10.75]).
The insignificant results obtained in the Mongolian-HCC cohort
might be a result of the small sample sizewhenmultiple variables
were considered (less than 50 samples when considering multi-
variate). AUGUR remained a significant prognostic model when
replacing TNM stage with BCLC stage or CLIP stage that were
collinear with TNM stage (Tables S18–S20). This analysis
5vol. 5 j 100754
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suggested that AUGUR could provide independent prognostic
values from established clinicopathological indices.

Furthermore, we found that HCC patients with higher AUGUR
risk scores showed significantly faster disease progression than
those with lower scores in four datasets (Fig. S3C–F, log rank: p
<0.05 in TCGA-LIHC, CHCC-HBV, FULCI-HCC, and INSERM-HCC
cohorts). Taken together, these results indicate that high
AUGUR score can increase the risk of disease progression and
mortality independently in patients with HCC regardless of the
original profiling platform, implying that a prognostic signature
resistant to differences in cohort and expression profiling tech-
nology could be achieved by restricting transcriptomic ITH.
JHEP Reports 2023
Comparison of ITH-free signature AUGUR with other gene
expression signatures
As previously reported expression signatures nominally have
excellent performance in predicting the outcomes of patients
with HCC, we evaluated the discrimination and prognostic ac-
curacy of 13 established multigene signatures5–9,28–35 and our
AUGUR in parallel. The results of time-dependent ROC curves
and C-index showed AUGUR was superior or comparable to the
other 13 models (the majority of them [10/13] were also
developed using TCGA-LIHC as a training cohort [Table S5]) in
terms of 1-, 3-, and 5-yr survival prediction (Fig. 4A–C,
Table S21), especially in AUC for 1-yr survival and C-index,
6vol. 5 j 100754



AUGUR unequivocally outperformed the others (Fig. 4A,
Table S21, AUC for 1-yr survival of AUGUR: 0.81, 95% CI:
0.75–0.88; C-index of AUGUR: 0.72, 95% CI: 0.67–0.77). Addi-
tionally, only 9% (1/11) of MultiRRnaSeq1-enrolled (Fig. 4D and
E) and 14% (2/14) of MultiRRnaSeq2-enrolled (Fig. S4A and B)
patients with HCC exhibited discordant risk classification using
AUGUR, which was even lower than the most extensively cited
five-gene signature developed by Nault et al. (18% (2/11) in
MultiRRnaSeq1 and 36% (5/14) in MultiRRnaSeq2 cohort, Fig. 1D,
Fig. S4C). Also, AUGUR predicted the lowest median risk bias of
multiregional samples from the same patient, which compared
to the other signatures (Fig. 4F). We corroborated this result in
two other multiregional samples datasets – the MultiRRnaSeq2
and the MultiRArray cohorts (Fig. 4G, Fig. S4D). These results
suggested that AUGUR compares favourably to the concordant
rates of established ProGESigs (Fig. 4E, Fig. 1D, Fig. S4A–C, 91%
and 86% concordant rates for AUGUR in MultiRRnaSeq1 and
MultiRRnaSeq2 cohorts), overcomes sampling bias more
powerfully, and can be applied to a single biopsy to perform
patient risk classification.

Given that the size of the signature was not correlated with
the discordant risk classification of a patient, we asked what
makes a signature more or less sensitive to intratumour het-
erogeneity. Considering that the components of AUGUR are
derived from the Q4 quadrant, we wondered in which quadrant
are the genes of other signatures mainly distributed? We eval-
uated the inter- and intratumour heterogeneity of all genes in
the 13 signatures (n = 134 genes) using the MultiRRnaSeq1
cohort (Fig. 4H) and found that 60% (80/134) of the genes that
significantly exceeded the expected number (28% [37/134], p =
2.31 × 10-7) were located in the Q1 quadrant, in which genes
exhibited high inter- and intratumour heterogeneity (Fig. 4I). The
mutation-derived signature29 and the ceRNA regulatory
network-related signature34 comprising 100% (9 of 9) and 75% (6
of 8) Q1 genes, respectively, exhibited 46% and 55% discordant
risk classification (Fig. 1D, Fig.4H) that are higher than AUGUR
that comprises 100% Q4 genes (low ITH) (Fig. 4D and E), which
suggested that the ITH levels of the genes in the signature
affected the sensitivity of a signature to ITH. These phenomena
can explain that the reported HCC ProGESigs possess strong
discrimination abilities for patients, however, they also possess
strong discrimination abilities for intratumour multiregional
samples (vulnerable to sampling bias) because of the lack of
circumvention of ITH, which may contribute to the low repro-
ducibility rate in independent patient cohorts or using tumour
samples from different regions of the same patient.

To further determine what biological pathways are likely to
be lost in AUGUR compared with other signatures, we performed
pathway enrichment analysis on genes in Q1 and Q4 quadrants
(Tables S22 and S23). We found that Q1 genes were significantly
enriched for pathways involved in cell adhesion (e.g. regulation
of cell–cell adhesion; cell–substrate adhesion), extracellular
matrix organisation, and immune system process (e.g. regulation
of immune effector process; activation of immune response),
while the top pathways enriched in Q4 showed involvement in
regulation of small GTPase mediated signal transduction. The
characteristics of high ITH and significant enrichment for
immune-related pathways of Q1 genes are consistent with a
previous study,13 which demonstrated significant immune-ITH
within HCC tumours. Cell adhesion and extracellular matrix
organisation are associated with invasion and metastasis which
are considered as late events in tumorigenesis.36 Hence, the
JHEP Reports 2023
genes in Q4 seem to lose the regulation of tumoural evolutionary
late-related and immune-related biological pathways. The small
GTPase mediated signal transduction functions as signalling hubs
that regulate many important physiological and pathophysio-
logical processes such as cancer.37 Thus, the genes in Q4 are
likely to function as nodal points that integrate broad upstream
regulatory inputs and disseminate broad effector outputs.
Further studies should be conducted to explore whether bio-
markers developed from signalling hubs in Q4 were more robust
to clinical sampling bias, and whether immune signatures were
essentially heterogeneous.

AUGUR is associated with tumour adverse features
Exploring the clinicopathological and biological underpinnings
of the AUGUR signature using TCGA-LIHC HCC cohort (Table S24,
Fig. 5A), we observed that higher TNM stage (Fig. 5B, proportion
of patients at stage III/IV: 35% in high vs. 19% in low AUGUR risk
group, p = 2.07 × 10-3) and histological grade (Fig. 5C, proportion
of patients at grade 3/4: 50% in high vs. 26% in low AUGUR risk
group, p = 1.98 × 10-5) experienced significantly high enrichment
rates in the high AUGUR risk group. In the ICGC-LIRI-JP RNA-seq-
based (Table S25) and FULCI-HCC microarray-based (Table S26)
cohorts, we validated that patients with advanced HCC with high
histological grade, TNM stage, BCLC stage, or CLIP stage exhibited
a significant increase in AUGUR risk scores (Fig. S5A–D, p < 0.05).
Moreover, we found that AUGUR risk score was significantly
negatively correlated with HCC doubling times that were calcu-
lated based on imaging data in the GSE54236 cohort (R = -0.36,
p = 0.0014, Fig. 5D) and patients with high AUGUR scores had
significantly shorter HCC doubling times (log rank: p < 0.0001,
Fig. 5E).6 A high AUGUR risk score predicted a high risk of
vascular invasion (p = 2.07 × 10-2, Fig. 5F) and metastasis (p =
2.09 × 10-9, Fig. 5G) in the TCGA-LIHC cohort, and the same re-
sults were obtained in the ICGC-LIRI-JP cohort (Fig. S5E and F,
Table S25). The serum level of AFP, a well-established HCC
biomarker, was also significantly positively associated with
AUGUR risk score in both training and validation datasets and in
both RNA-seq-based and microarray-based platforms (Fig. 5H,
Fig. S5G and H, Table S24, Tables S26–S28, p < 0.01 for TCGA-
LIHC; CHCC-HBV, and FULCI-HCC cohorts). These results indi-
cated aggressive characteristics including advanced tumour sta-
tus, faster tumour growth rate and high invasive and metastatic
potential in HCC patients with high AUGUR scores.

Significantly mutated gene (SMG) analysis was performed in
the TCGA-LIHC cohort. The mutational landscapes revealed that
TP53 (31%) and CTNNB1 (27%) were the two most frequently
mutated genes in HCC (Fig. 5A). Intriguingly, patients with high
AUGUR scores had a significantly higher mutation probability of
TP53 (47% in the high vs. 15% in the low AUGUR risk group, p =
1.14 × 10-9), whereas patients with low scores had a significantly
higher mutation probability of CTNNB1 (34% in the low vs. 19% in
the high AUGUR risk group, p = 2.05 × 10-3). The significant
mutational differences were further confirmed in four indepen-
dent validation cohorts (Fig. S5I–L, Table S29, ICGC-LIRI-JP, CHCC-
HBV, Mongolian-HCC, and INSERM-HCC cohorts). These results
were consistent with previous studies that found TP53mutations
were significantly enriched in high-risk and poorly differentiated
HCC, whereas CTNNB1mutations were predominantly associated
with low-risk and well-differentiated HCC,5,38 which associated
high AUGUR risk with TP53mutation and high histological grade,
whereas it associated low AUGUR risk with CTNNB1 mutation
and low histological grade.
7vol. 5 j 100754
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Fig. 4. Comparison of prognostic accuracy and discrimination between AUGUR and established HCC signatures. (A–C) Time-dependent ROC curves are
compared between AUGUR and the other 13 signatures in terms of 1-yr (A), 3-yr (B), and 5-yr (C) survival prediction. (D) AUGUR is evaluated in the Multi-
RRnaSeq1 cohort. (E) The bar chart represents the percentage of patients in the MultiRRnaSeq1 cohort who are classified as concordant low, concordant high, and
discordant risk using AUGUR risk scores. (F and G) Boxplots showing the standard deviation of risk scores for multiregional samples per patient that derived from
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Construction and validation of an outcome predictive
nomogram integrating AUGUR and other independent
predictive factors
To provide clinicians with a quantitative model to predict the
survival probability of a particular patient with HCC, we con-
structed a nomogram that integrated both AUGUR and clinico-
pathological risk factors to predict 1-yr, 3-yr, and 5-yr outcomes
using the TCGA-LIHC dataset. AUGUR and TNM stage that also
demonstrated independent prognostic capacities in multiple
cohorts according to multivariate analysis (Tables S12, S13, and
S16) were incorporated (Fig. 6A). Calibration plots for the 1-yr,
3-yr, and 5-yr survival rates were generated and showed that the
outcomes predicted by the nomogram were approximated to
actuality in all TCGA-LIHC training (Fig. 6B) and three validation
cohorts (Fig. 6C–E, ICGC-LIRI-JP, CHCC-HBV, and FULCI-HCC co-
horts). The discriminative ability of the nomogram (C-index: 0.75
[0.69–0.80]; 0.74 [0.66–0.82]; 0.66 [0.59–0.73]; and 0.69
[0.63–0.74] for TCGA-LIHC, ICGC-LIRI-JP, CHCC-HBV, and FULCI-
HCC cohorts, respectively) was stronger than that of either
AUGUR or tumour TNM stage alone in multiple cohorts
(Table S30). Time-dependent ROC curves further demonstrated
that the specificity and sensitivity of the prognostic nomogram
were superior to any single independent predictive factor for 1-
yr (Fig. 6F, AUC: 0.84, 0.82, and 0.69 for nomogram, AUGUR, and
TNM stage, respectively), 3-yr (Fig. 6G, AUC: 0.76, 0.70, and 0.66
for nomogram, AUGUR, and TNM stage, respectively) and 5-yr
(Fig. 6H, AUC: 0.75, 0.70, and 0.63 for nomogram, AUGUR, and
TNM stage, respectively) survival, which were also validated in
three independent cohorts (Fig. S6A–G, Table S30). Taken
together, the cooperative nomogram based on AUGUR and TNM
stage could enhance the survival prediction compared with a
single prognostic factor.
Discussion
ITH, which is prevalent across cancer types,14,16,39,40 is regarded
as an unaddressed confounding factor for biomarker discovery
and application.16 Molecular biomarkers inferred by a single bi-
opsy without considering tumour heterogeneity could either
over- or underestimate the prognostic risk of a patient, as
recently described in lung cancer, breast cancer, and clear cell
renal cell carcinoma.17,18,41 Multiregional tumour analysis dem-
onstrates discordant prognostic risks derived from different
tumour regions assessed by established HCC ProGESigs from a
single biopsy, including epithelial-related, immune-related,
mutation-derived, epigenetic-related, the most extensively cited
five-gene signature and other signatures, which emphasises the
importance of multiregional sampling or spatial analyses and
incorporating ITH in tumour biomarker design. Here, we lever-
aged multiregional HCC transcriptome profiles to minimise the
confounding effects of ITH, and simultaneously combined
differentially expressed genes and genes with prognostic value
to develop a robust ITH-free RNA-based biomarker, from which
each signature, except for the signature of PMID23567350 (for this signature, the
MultiRRnaSeq1 cohort (F) and the MultiRArray cohort (G). Each point represents
shown. (H) Percentage of genes located in each heterogeneity quadrant corresp
signatures. (I) Stacked bar marked as ‘Observed’ represents percentage of merge
marked as ‘Expected’ represents expected percentage of genes in each heterogen
percentage in Q4 Set between ‘Observed’ and ‘Expected’. A value of p <0.05 is defin
ID; ROC, receiver operating characteristic.
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we defined a signature AUGUR that consists of 12 core genes and
maintains prognostic reproducibility and generalisability across
multiple HCC patient cohorts from different countries (e.g.
American [TCGA-LIHC and NCI-HCC], China [CHCC-HBV and
FULCI-HCC], France [INSERM-HCC], Japan [ICGC-LIRI-JP] and
Mongolia [Mongolia-HCC]) and across different commercial
profiling platforms.

Previous recommendations have suggested that multiregional
tumour sequencing may be more informative for prognostica-
tion, thus we evaluated the discrimination and prognostic ac-
curacy of AUGUR via comparing it with that of 13 established
multigene expression signatures. The results demonstrated
AUGUR was superior to the other 13 signatures. None of the 13
established signatures had overlapping genes with AUGUR.
Further, we collected another 52 reported ProGESigs (totally 65
signatures involving 390 unique genes, Table S31), and found
that only one gene (RACGAP1) in one signature overlapped with
the core gene set of AUGUR (Table S11). We also detected
whether core genes of AUGUR were included in the biomarkers
of the CancerLivER database that included more than 594 liver
cancer biomarkers,42 or appeared in all fields of a scientific
literature that included ‘hepatocellular carcinoma’ in the title
using CoCites (a citation-based method for searching scientific
literature).43 Three of 12 genes (CBFA2T3, S100A10, and RACGAP1)
are included in the CancerLivER database and six of 12 genes
(CDKN2B, MSRA, RAP2A, S100A10, RACGAP1, and TMCO3) co-occur
with HCC in the scientific literatures. Overall, although more
than half of core genes of AUGUR have been reported to be
associated with HCC, few of them have been reported as bio-
markers for HCC, which suggested the different layers of tumour
were mined when ITH was circumvented and inter-tumour
heterogeneity was amplified.

Intriguingly, we noticed that the signatures developed by Kim
et al.,5 Xu et al.,32 and Nault et al.31 exhibited the lowest discor-
dant risk classification rate (18%) among the 13 collected signa-
tures. However, the signatures developed by Kim et al. and Xu
et al. were two extreme cases that showed the highest and
lowest median risk bias of multiregional samples from the same
patient, respectively, and genes of these two signatures were
mainly located in Q1 quadrant and completely located in the Q3
quadrant, respectively. As we described in the results, although
signatures with high inter- and intratumour heterogeneity
possessed strong inter-patient discrimination, they were highly
susceptible to confounding by sampling bias, whereas signatures
with low inter- and intratumour heterogeneity could maintain
the concordant intratumour risk, but the ability to discriminate
between patients was also reduced, which was prone to
misclassification (e.g. patients H10 and H9 were respectively
classified as low risk and high risk in our AUGUR and the 65-gene
signature developed by Kim et al., whereas in the double low
heterogeneity signature developed by Xu et al., patients H10 and
H9 were classified as high risk and low risk, respectively; Fig. S7).
Our AUGUR neutralises the strengths and weaknesses of the
standard deviation of distance to good reference sample group is shown) in the
a patient, and each box represents a signature. The median of each signature is
onding to Fig. 2B. Each stacked bar in (H) represents one of the 13 collected
d genes of 13 signatures located in each heterogeneity quadrant. Stacked bar
eity quadrant calculated from Fig. 2B. The p value represents Fisher test of gene
ed as statistical significance. AUGUR, a utility gadget using RNA; PMID, PubMed
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Fig. 5. A comprehensive view of clinicopathological and molecular features of tumour samples with high or low AUGUR risk scores. (A) Waterfall plot
showing the SMGs with a mutation frequency higher than 3%, and the corresponding AUGUR risk and clinicopathological characteristics of HCC samples in the
TCGA-LIHC cohort. The bar chart on the right exhibits the mutation frequency of each gene in all analysed samples. (B and C) Bar charts showing the distribution
of HCC patients with different TNM stage (B) and histological grades (C) in AUGUR high- and low-risk groups of the TCGA-LIHC cohort. (D) Correlation of AUGUR
risk score and calculated tumour volume doubling time of HCC based on imaging data in the GSE54236 cohort. Correlation analysis applied Pearson’s product-
moment correlation test. (E) Kaplan–Meier analysis for tumour volume doubling time of HCC in the GSE54236 cohort according to the AUGUR risk. (F–H) Bar
charts showing the distribution of HCC patients with different vascular invasion status (F), different metastatic risk (G), and different serum levels of AFP (H) in
AUGUR high- and low-risk groups of the TCGA-LIHC cohort. (I) Stacked bar charts show genes with significantly different mutation frequencies between AUGUR
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as statistical significance. AUGUR, a utility gadget using RNA; SMG, significantly mutated gene; TNM stage, tumour-node-metastasis stage.

Research article
above two signatures, provides the strongest inter-patient
discrimination, and maintains intratumour stability.

Actually, tumour heterogeneity performs in multiple di-
mensions, including genomic, epigenetic modification, tran-
scriptomic and regulatory heterogeneity, etc. As we discussed in
our previous study, RNA is the next-level executor of DNA ac-
cording to the central dogma of genetics,44 thus the variations and
modifications at the DNA level will be manifested through RNA
expression, and genomic heterogeneity and DNA epigenetic
modification heterogeneity will naturally be reflected through
JHEP Reports 2023
RNA heterogeneity. In the past, scientists have primarily focused
on identifying the greatest level of mutation and copy number
variation heterogeneity that fostered tumour evolution, we
hypothesised that the transcriptomic heterogeneity might be
more likely to reflect the heterogeneity of biological phenotypes
and clinicopathological characteristics of tumours comparing to
genomic heterogeneity. Therefore, biomarker design based on
transcriptomic heterogeneity might be preferable, superior, more
straightforward, and more able to circumvent total tumour het-
erogeneity than using other upstream omics heterogeneity. Of
10vol. 5 j 100754
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course, protein is the ultimate function executor, and proteomic
heterogeneity has also been reported in tumours,45 however, the
measurement techniques of protein aremoreexpensive andnot as
sophisticated as transcriptome sequencing, which leads to the
relatively scarce proteomic data and its limited application. Thus,
we suggest AUGUR currently serves as a pragmatic solution for
predicting outcomes of patients with HCC using single-region
tumour samples, and biomarker design schemes based on pro-
teinheterogeneity shouldbe further investigated in future studies.

In summary, to the best of our knowledge, this study is the
first to introduce, quantify and integrate inter- and intratumour
heterogeneity, and circumvent ITH in HCC biomarker design. A
machine-learning algorithm was utilised to extract ITH-free
features that clonal expression in tumour and provided the
JHEP Reports 2023
greatest inter-patient discrimination, from which we developed
a prediction signature AUGUR that overcame sampling bias. The
higher AUGUR risk score was significantly associated with
tumour adverse features and mortality of patients with HCC,
which was validated in multiple cohorts and across profiling
platforms with robust prognostic significance. A quantitative
nomogram integrating AUGUR and TNM stage was generated
and performance validated, which might provide reliable prog-
nostic information tailored to the individual patient and help
clinicians select a personalised therapeutic regimen for patients
with HCC. Nevertheless, it will be necessary to further hone our
ITH-free AUGUR prognostic model and integrated nomogram in
a prospective study and a large cohort with multiregional
tumour samples.
11vol. 5 j 100754
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