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Fisher’s geometric model has been widely used to study the effects of pleiotropy and organismic complexity on phenotypic adapta-

tion. Here, we study a version of Fisher’s model in which a population adapts to a gradually moving optimum. Key parameters are

the rate of environmental change, the dimensionality of phenotype space, and the patterns of mutational and selectional correla-

tions. We focus on the distribution of adaptive substitutions, that is, the multivariate distribution of the phenotypic effects of fixed

beneficial mutations. Our main results are based on an “adaptive-walk approximation,” which is checked against individual-based

simulations. We find that (1) the distribution of adaptive substitutions is strongly affected by the ecological dynamics and largely

depends on a single composite parameter γ, which scales the rate of environmental change by the “adaptive potential” of the

population; (2) the distribution of adaptive substitution reflects the shape of the fitness landscape if the environment changes

slowly, whereas it mirrors the distribution of new mutations if the environment changes fast; (3) in contrast to classical models of

adaptation assuming a constant optimum, with a moving optimum, more complex organisms evolve via larger adaptive steps.
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Natural populations are constantly faced with environmental

changes that force them to either adapt or go extinct. In Ara-

bidopsis thaliana, Hancock et al. (2011) recently identified can-

didate single nucleotide polymorphisms scattered over the en-

tire genome that affect flowering time and vernalization and are

strongly correlated with climate variables. Likewise, annual cy-

cles of reproduction of various plants and animals have been

adjusted to the peak availability of food as a response to changing

environments (Gienapp et al. 2013). Conversely, migratory bird

species that fail to respond phenologically decline in population

size (Møller et al. 2008). The brood parasitic common cuckoo

(Cuculus canorus) population, for example, declined in size by

6% since 1980, as they failed to synchronize their reproductive

and migratory cycles with those of their particular host species,

to which they are adapted to in terms of egg size, coloration, and

spottiness (Antonov et al. 2010; Møller et al. 2011).

In recent years, numerous theoretical studies of the popula-

tion genetics of adaptation have attempted to provide a formal

framework for the observed empirical phenomena (for a review

see Orr 2005b). Central to these studies is the description of the

fundamental event during adaptation, that is, the substitution of

a resident allele (i.e., gene variant) by a beneficial mutation. The

statistical description of this process has been at the heart of evo-

lutionary biology (Charlesworth 1996), and is key to addressing

seemingly simple questions, such as: From the set of mutations

that emerge in a population, which are the ones that will get fixed

and what is their effect on phenotype or fitness? Will adaptation

proceed by many steps of small effect or just by a few adaptive

substitutions of large effect? Do simple organisms evolve faster

than complex ones?

One of the most influential models of adaptive phenotypic

evolution is Fisher’s geometric model (FGM) (Fisher 1930). In

this model, a phenotype is treated as a point in a multidimen-

sional trait space, and mutations are random vectors in this

space, which are beneficial if they bring the mutant phenotype

closer to a nearby local optimum. Thus, FGM implicitly assumes

2 5 7 1
C© 2014 The Authors. Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original
work is properly cited.
Evolution 68-9: 2571–2588



SEBASTIAN MATUSZEWSKI ET AL.

“universal pleiotropy” (each mutation affects every trait) and,

therefore, equates pleiotropy with “organismic complexity.” De-

spite its simplicity and the lack of a clear genetic context (Chevin

et al. 2010), FGM, more than 80 years after its proposal, has

yielded several robust predictions supported by growing empirical

evidence: First, the distribution of fitness effects of new mutations

is well approximated by a (displaced) negative gamma distribution

(Martin and Lenormand 2006a; for empirical support see Hietpas

et al. 2013). Second, the distribution of adaptive substitutions is

approximately exponential, meaning that most fixed mutations

are of small and only a few are of large effect (Orr 1998; for

empirical support see Rockman 2012, but see Bell 2009). Finally,

fixed mutational effects become on average smaller as organis-

mic complexity increases (Orr 2000; for empirical support see

Cooper et al. 2007)—a phenomenon that has been termed “the

cost of complexity” (Orr 2000; Welch and Waxman 2003; Wagner

and Zhang 2011).

The classical version of FGM, however, only addresses

the situation in which a population is confronted with constant

stabilizing selection after a sudden change in the environment

(e.g., Orr 2002; Martin and Lenormand 2006a). In nature, in con-

trast, environmental change may as often be gradual (Hairston

et al. 2005; Thompson 2005; Parmesan 2006; Perron et al. 2008).

Collins (2011b) recently emphasized that “using [models of] in-

stantaneous environmental change to understand adaptive evo-

lutionary responses to gradual change will not only underesti-

mate the amount of adaptation, but also predict the wrong geno-

typic and phenotypic changes.” Indeed, the necessity to include

gradual environmental change into studies of adaptive evolution

has long been recognized in quantitative genetics (e.g., Maynard

Smith 1976). A number of studies have focused on the so-called

moving-optimum model, in which the optimal values of a quan-

titative trait change over time (Lynch and Lande 1993; Bürger

and Lynch 1995; Waxman and Peck 1999; Bürger and Gimel-

farb 2002; Nunney 2003; Collins et al. 2007; Gordo and Campos

2013); extensions include multivariate phenotypes and the effects

of pleiotropic constraints (Jones et al. 2004; Gomulkiewicz and

Houle 2009; Jones et al. 2012; Chevin 2013; Lourenço et al.

2013). The focus of these studies was, however, on the rate of

adaptation (Lynch and Lande 1993; Bürger and Lynch 1995; Go-

mulkiewicz and Holt 1995; Nunney 2003; Hansen and Houle

2008; Chevin 2013; Kopp and Matuszewski 2014) and the evolu-

tion and maintenance of genetic variation (Bürger 1999; Waxman

and Peck 1999; Bürger and Gimelfarb 2002; Jones et al. 2004,

2012; Gomulkiewicz and Houle 2009). In contrast, characteris-

tics of individual substitutions have been addressed only recently

(Collins et al. 2007; Kopp and Hermisson 2007, 2009a,b). In par-

ticular, Kopp and Hermisson (2007, 2009a) employed the moving-

optimum model of a single quantitative trait to study the fixation

time of single mutations and the order in which mutations of dif-

ferent phenotypic effect sizes become fixed. Their latest study

(Kopp and Hermisson 2009b) addresses the distribution of adap-

tive substitutions during long-term adaptation. Specifically, they

showed that this distribution is almost entirely determined by a

scaled rate of environmental change γ, which combines ecolog-

ical and genetic factors (see below), and is unimodal (with an

intermediate mode) rather than exponential. That is, most substi-

tutions have an intermediate phenotypic effect, while small- and

large-effect substitutions are rare.

An obvious next question is how these results are affected

if phenotypic adaptation to gradual change is constrained by

pleiotropic correlations among the traits under selection (as fre-

quently observed in nature; Svensson et al. 2001; Guerreiro et al.

2012; Roff and Fairbairn 2012). This is the aim of the present

article. This way, we integrate two modeling traditions, which

have had little overlap so far: on the one hand, the multivariate

moving-optimum model as used by Jones et al. (2004, 2012),

and on the other hand, Fisher’s classical geometric model for the

study of adaptive effect sizes (Fisher 1930; Orr 1998, 2000). We

study how the expected distribution of adaptive steps is influenced

by the rate of environmental change, the number of traits under

selection (i.e., “organismic complexity”), and by selectional and

mutational correlations (i.e., the shapes of the fitness landscape

and the multivariate distribution of new mutations). Our analysis

shows that the genetic basis of adaptation crucially depends on

the tempo and mode of environmental change.

Model and Methods
MODEL DESCRIPTION

Phenotype, environmental change, and selection
We consider the evolution of n phenotypic traits z = (z1, . . . , zn)′,
each of which is under Gaussian stabilizing selection with regard

to a time-dependent optimum zopt(t):

w(z, t) = exp
[
− (

z − zopt(t)
)′

�−1
(
z − zopt(t)

)]
, (1)

where ′ denotes transposition and � (and thus also �−1) is an

n × n positive definite and symmetric matrix. Throughout this

article, we choose the linearly moving optimum,

zopt(t) = vt, (2)

where v = (v1, . . . , vn)′ is the vector of environmental change. In

the following, we will interchangeably refer to n as the “degree

of pleiotropy” or the “degree of complexity.”

The matrix � describes the shape of the fitness landscape

(including a contribution of environmental noise to the phenotype

z, which otherwise is not modeled explicitly; see Bürger 2000).

We will say that selection is isotropic if � is proportional to an

identity matrix, � = σ2I (σ2 > 0); and selection is correlated if
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� has nonzero off-diagonal entries. As a measure for the average

width of the fitness landscape, we define

σ̄2 = n
√

det(�), (3)

which is the geometric mean of the eigenvalues of � (if the fitness

landscape is represented by an ellipse, as in Figure S1_1 below,

the axes of the ellipse have length proportional to the square root

of the eigenvalues). Note that overall selection is strong if σ̄2 is

small.

Genotypes and mutation
In accordance with Fisher’s original model, we make the assump-

tion of “universal pleiotropy,” that is, each mutation affects every

trait. We denote by α the vector of the phenotypic effects of a

mutation, and we assume that its distribution p(α) (which we

will refer to as the distribution of new mutations) is multivariate

normal with mean 0 and covariance matrix M (thus, we assume a

continuum-of-alleles model), that is,

p(α) = 1√
2πn det(M)

exp

(
−1

2
α′M−1α

)
. (4)

Like �, M has dimensions n × n and must be symmetric and

positive definite. The diagonal elements of M are the variances of

the mutational effects for individual traits, whereas off-diagonal

elements are the mutational covariances. We will say that mu-

tation is isotropic if M is proportional to an identity matrix,

M = m2I (m2 > 0), and mutation is correlated if M has nonzero

off-diagonal entries. A measure for the average variance of muta-

tional effects (in an arbitrary direction) is given by

m̄2 = n
√

det(M) (5)

When comparing different degrees of pleiotropy/complexity,

we typically assume that the distribution of mutational effects on a

given trait is independent of the total number of traits n (so-called

Euclidean superposition model; Turelli 1985; Wagner 1988;

Wagner and Zhang 2011). For example, with isotropic mutation

(see above), adding more traits does not change the parameter m̄2.

As a consequence, the average total effect of a mutation increases

with n.

In Supporting Information 2, we introduce a transforma-

tion that shows that the general model outlined above can al-

ways be reduced to a model with isotropic selection (� = σ2I)

and movement of the optimum along a single dimension (v =
(v1, 0, . . . , 0)′). In this transformed phenotype space, the effects

of selectional and mutational correlations are entirely captured

by the M-matrix (and, in particular, the orientation of its leading

eigenvector/first principal component) relative to the direction of

environmental change. Furthermore, all vectors (e.g., z, v,α) are

measured relative to the average width of the distribution of new

mutations m̄.

THE ADAPTIVE-WALK APPROXIMATION

The aim of this article is to investigate the distribution of adap-

tive substitutions φ(α), that is, the distribution of the effects of

those mutations that eventually go to fixation and contribute to

adaptation. Our main analytical tool will be the “adaptive-walk

approximation.” Following Kopp and Hermisson (2009b), this ap-

proximation is based on the simplifying assumption that whether

a new beneficial mutation goes to fixation or is lost by drift is de-

termined immediately after its appearance and that, in the former

case, fixation occurs instantaneously. Therefore, the population

can be considered monomorphic nearly all of the time, and adap-

tation occurs as a series of discrete “steps,” which together will

be referred to as an “adaptive walk” (Kauffman 1993; Orr 2000).

This approximation ignores interactions between cosegregating

mutations, such as epistasis, linkage, and Hill–Robertson inter-

ference (Hill and Robertson 1966).

Adaptive walks can easily be simulated using the following

algorithm: (1) draw the waiting time for a new mutation from

an exponential distribution with parameter �/2 (where � is a

standard measure for the population- and genome-wide mutation

rate); (2) draw the size of the mutation from its distribution p(α)

(eq. 4); (3) accept the mutation (i.e., perform an adaptive step)

with its fixation probability

pfix (x, y, t) ≈
{

2s (x, y, t) for s (x, y, t) > 0

0 for s (x, y, t) ≤ 0
(6)

(Haldane 1927), where y is the current population phenotype,

x = y + α is the mutant phenotype, and

s (x, y, t) = w(x, t)

w(y, t)
− 1 (7)

denotes the selection coefficient of the mutant x in a wild-type

population with phenotype y at time t . Note that equation (6) as-

sumes s to be small and neglects chance fixations of deleterious

mutations. In some simulations, we also used the slightly more ac-

curate approximation pfix ≈ max(0, 1 − exp(−2s)). (Even more

accurate approximations exist that account for the change in the

selection coefficient during the fixation process due to the en-

vironmental change, see Uecker and Hermisson 2011; however,

within the simple framework of the adaptive-walk model we do

not obtain further improvement.)

The distribution of adaptive substitutions
In the following we derive an analytical expression for the distri-

bution φ(α|y) of the size α = x − y of the next adaptive substitu-

tion given an initial phenotype y at time t = 0. First, equation (7)
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can be approximated by

s (x, y, t) ≈ (y − vt)′ �−1 (y − vt) − (x − vt)′ �−1 (x − vt)

= λx,y
(
t − τx,y

)
, (8a)

with

λx,y = 2(x − y)′�−1v (8b)

τx,y = (x − y)′�−1(x + y)

2(x − y)′�−1v
(8c)

(provided λx,y �= 0). That is, with a linearly moving optimum, the

selection coefficient increases or decreases approximately linearly

over time, where λx,y is the rate of change and τx,y is the time

when s reaches zero (the “lag time” in the terminology of Kopp

and Hermisson 2007). This time dependence of the selection coef-

ficient is illustrated in Supporting Information 1. The distribution

φ(α|y) can then be calculated in four steps.

The instantaneous rate of substitutions. We denote by g(t, y) the

rate at which substitutions of any kind happen at time t . g(t, y) is

given by

g(t, y) = �

∫
χ(t,y)

p(x − y)s(x, y, t)dx, (9)

where χ(t, y) = {x | s (x, y, t) > 0} is the set of all mutant pheno-

types with positive selection coefficient at time t . The integrand

in (9) is simply the product of the probability that a mutation

with phenotype x arises (�p(α)/2) and its probability of fixation

approximated as (2s(x, y, t), see eq. 6).

The waiting-time distribution
We denote by F(t |y) the probability that no fixation has happened

before time t (thus, 1 − F(t |y) is the cumulative distribution func-

tion of the waiting time to the next fixation). From the theory of

Poisson processes,

F(t |y) = exp

(
−

∫ t

0
g(τ, y)dτ

)
. (10)

The conditional distribution of step sizes
The distribution of step sizes, given that the step occurs at time t , is

simply proportional to the distribution of new mutations weighted

by the selection coefficient (Gillespie 1983; Kopp and Hermisson

2009b):

φ(α|t, y) =
⎧⎨
⎩

�p(α)s(y + α, y, t)

g(t, y)
if s > 0

0 otherwise.
(11)

The distribution of step sizes
Finally, the unconditional distribution of the size of the next adap-

tive step can be calculated by integrating over all possible waiting

times (see Kopp and Hermisson 2009b), yielding

φ(α|y) =
∫ ∞

0
φ(α|t, y) f (t |y)dt, (12a)

where f (t |y) = (1 − F(t |y))′ is the density of the waiting-time

distribution. Equation (12a) can also be written as

φ(α|y) =
{

�
∫ ∞

max(0,τx,y) p(α)s (x, y, t) F(t |y)dt if λx,y ≥ 0

�
∫ max(0,τx,y)

0 p(α)s (x, y, t) F(t |y)dt if λx,y < 0,
(12b)

where τx,y is given by equation (8c).

The parameter γ

Supporting Information 3 shows that the distribution of step sizes

in the adaptive-walk approximation depends only on the distribu-

tion of new mutations and the composite parameter

γ =
√

v′�−1v

� (σ̄/m̄)−3/2 , (13)

where the term in the numerator can be interpreted as the rate of

environmental change relative to the width of the fitness landscape

in the direction of the moving optimum. If selection is isotropic,

equation (13) reduces to

γ =
‖v‖
m̄

� (σ̄/m̄)−2 , (14)

which is equivalent to the γ defined by Kopp and Hermisson

(2009b) for the single-trait case, except for differences in nota-

tion, and is independent of n. Here, σ̄/m̄ describes the mean width

of the fitness landscape relative to the mean effect size of new mu-

tations, and (σ̄/m̄)−2 can be seen as a scale-free measure for the

strength of stabilizing selection. The product of this term and the

population-wide mutation rate � determines the “adaptive poten-

tial” of the population, γ can, thus, be interpreted as a scaled rate

of environmental change (how fast the population needs to adapt

relative to how readily it can adapt). In particular, it can be used

to distinguish two limiting cases (Kopp and Hermisson 2009b).

If γ is small, the population can easily follow the optimum. The

adaptive process is, therefore, environmentally limited, and the

distribution of adaptive substitutions is primarily determined by

the lag time τx,y, which determines when a mutation of effect

α = x − y becomes beneficial (“dynamic sieve” sensu Kopp and

Hermisson 2009b). If γ is large, the population will follow the

optimum with a large lag. In this case, the adaptive process is

genetically limited, and the distribution of adaptive substitutions

is largely determined by the distribution of new mutations p(α)

(“static sieve” sensu Kopp and Hermisson 2009b). Numerical
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values for γ in these two regimes are discussed in Supporting

Information 3.

The environmentally limited regime
In the environmentally limited regime, the Gaussian distribution

of new mutations, p(α), can be approximated by a uniform dis-

tribution pu(α) with the same density at α = 0, that is,

p0 = pu(α) = p(0) =
(

1√
2πm̄2

)n

(15)

(see Kopp and Hermisson 2009b). This approximation is justified

if the optimum moves so slowly that all beneficial mutations are

small (α close to 0). It allows to directly calculate several prop-

erties of the distribution of adaptive substitutions. In particular,

if the wild-type phenotype y = 0 (i.e., the population is perfectly

adapted at time t = 0), the distribution of the “first” substitution

(and all its moments) can be calculated analytically (Supporting

Information 4).

INDIVIDUAL-BASED SIMULATIONS

In addition to our adaptive-walk approximation, we conducted

individual-based simulations (implemented in C++, available at

doi:10.5061/dryad.534f0; see Bürger 2000; Kopp and Hermisson

2009b), which allow multiple mutations to segregate simultane-

ously, while making additional assumptions about the genetic

architecture of the selected traits, the life cycle of individuals and

the regulation of population size.

The simulations follow the evolution of a population of in-

dividuals with discrete and nonoverlapping generations. Individ-

uals are characterized by L unlinked diploid loci, which addi-

tively determine the n-dimensional phenotype z. According to

the universal-pleiotropy assumption, each allele at each locus is

specified by a vector of contributions to the n traits. We neglect

environmental variance and, therefore, equate genotypic and phe-

notypic values. Mutations occur at rate u per (diploid) locus and

have effects drawn from the distribution p(α) (eq. 4). Each gen-

eration, the following steps are performed:

(1) Viability selection: Individuals are removed with probability

1 − w(z) (eq. 1).

(2) Population regulation: If, after selection, the population size

N exceeds the carrying capacity K , N − K randomly chosen

individuals are killed (Bürger 2000).

(3) Reproduction: The surviving individuals are randomly as-

signed to mating pairs, and each mating pair produces exactly

B offspring (typically, B = 4). Note that, with this proce-

dure, the effective size of a well-adapted population exceeds

the census size (e.g., for B = 4, Ne = 4/3N ; Bürger 2000,

p. 274). The offspring genotypes are derived from the parent

genotypes by taking into account segregation, recombina-

tion, and mutation.

To monitor adaptive substitutions, the program keeps track

of the genealogical relationship between the alleles at a given

locus. A substitution is recorded whenever there is a change in

the root of such an “allele tree” (i.e., when the surviving alleles

get a new most recent common ancestor). This is equivalent to

calling an allele fixed if the entire population has been taken over

by that allele or its descendants (e.g., Gillespie 1993; Park and

Krug 2007).

In all simulations, the initial population contained K = 1000

identical, homozygous individuals with phenotype 0 (i.e., the

population was perfectly adapted at time 0). The number of

loci was set to L = 10 and the mutation rate per diploid locus

to μ = 5 × 10−6 per generation. This yields a population- and

genome-wide mutation rate � = 2N Lu = 0.2. We chose this

value to limit complications from interference between alleles

cosegregating at the same locus, which have been thoroughly

studied for the one-trait case in Kopp and Hermisson (2009b)

(see Discussion). When comparing individual-based simulations

to adaptive-walk simulations with differing �, the speed of envi-

ronmental change v was adjusted accordingly to reach the same

value of γ (eq. 13). Simulations were stopped after 1000 substitu-

tions had been recorded. Alternatively, we only recorded the first

adaptive substitution for 1000 replicate runs to study the initial

phase of the adaptive process. Finally, for some parameter combi-

nations, the simulations terminated because the population went

extinct (e.g., if the environmental change was too fast).

Results
Our primary interest is the distribution of adaptive substitutions,

that is, the distribution φ(α) of the effects of those mutations that

go to fixation and contribute to adaptation (eq. 12).

THE DISTRIBUTION OF ADAPTIVE SUBSTITUTIONS

AND PHENOTYPIC COMPLEXITY

Key properties of the distribution of adaptive substitutions can

already be seen from a simplified model in which both mutation

and selection are isotropic. Note that any model in which the

two matrices M and � are proportional to each other, that is,

have the same shape and orientation, can be reduced to this case

via the transformation described in Supporting Information 2.

The same holds true for any model under the environmentally

limited regime, in which the shape of the M-matrix is irrelevant

(because any distribution of new mutations can be approximated

by a uniform distribution).

In the isotropic model, the distribution of adaptive sub-

stitutions is symmetric around the direction of the moving
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Figure 1. The multivariate distribution of the first adaptive substitution (left) and for the entire adaptive walk (right) for n = 2 traits,

when the optimum moves slowly in the direction of the first trait. In the top-left figures on each side, shades of gray indicate the

frequency of a given step size in adaptive-walk simulations with normally distributed mutational effects (with dark gray corresponding

to high frequency), with the white cross showing the observed mean. The contour lines on the left represent the probability density

predicted for a uniform distribution of new mutations (environmentally limited regime, eq. S19; highest probability density intervals

for 0.25, 0.5, 0.75, 0.95 from inside out). Histograms show the marginal distribution of the first and second trait, α1 and α2, and

the distribution of the total step size ‖α‖. Parameter values are v1 = 10−5, � = 1, σ2 = 10, ρ� = 0, m2 = 1, ρM = 0; the scaled rate of

environmental change γ = 10−4.

optimum. Figure 1 shows this distribution in adaptive-walk sim-

ulations with n = 2 traits. The marginal distribution in the direc-

tion of the optimum has an intermediate mode and resembles a

gamma distribution, in accordance with previous results for the

one-dimensional moving-optimum model (Kopp and Hermisson

2009b), and in contrast to the exponential pattern predicted for

the classical Fisher model with constant selection (Orr 1998). Al-

though the population always follows the optimum, pleiotropic

side effects of fixed mutations frequently lead to maladaptation

of the traits under pure stabilizing selection. The distribution of

these deviations is bell-shaped and centered around zero (Fig. 1).

For small γ, explicit analytical results can be obtained for

the distribution of the first adaptive substitution in the environ-

mentally limited regime (Supporting Information 4, eq. S19). In

particular, assuming v = (v1, 0, . . . , 0), the mean and variance in

the direction of the optimum are given by

E(α1|0) = m̄

(
γ

η(n)(2π)−
n
2

) 1
n+3

�

(
n + 4

n + 3

)
(16)

Var(α1|0) = m̄2

(
γ

η(n)(2π)−
n
2

) 2
n+3

[
n + 5

n + 4
�

(
n + 5

n + 3

)

− �

(
n + 4

n + 3

)2
]

, (17)

where η(n) = π
n
2

(n+3)�(2+ n
2 ) and �(•) denotes the gamma function.

Interestingly, the coefficient of variation
√

Var(α̃1|0)/E(α̃1|0) de-

pends only on n (see Fig. S4 2). The variance in directions or-

thogonal to the optimum is given by

Var(α2|0) = m̄2

n + 4

(
γ

η(n)(2π)−
n
2

) 2
n+3

�

(
n + 5

n + 3

)
. (18)

Additional results regarding higher moments of α1 and α2,

the total step size ‖α‖ and the magnitude of pleiotropic deviations

are given in Supporting Information 4.

In accordance with previous findings (Collins et al. 2007;

Kopp and Hermisson 2007, 2009a, b), equations (16)–(18) show

that the mean step size in the direction of the optimum increases

with the scaled rate of environmental change γ, and so does the

magnitude of pleiotropic deviations (Figs. S4 1, S5 1). This fun-

damental relationship also holds true over the entire adaptive walk

and beyond the environmental limit (Figs. 2, S5 2, S5 3).

Some discussion is warranted regarding the dependence of

the mean step size on the average variance of mutational effects

m̄2. Increasing m̄2 decreases γ and, consequently, leads to a re-

duced mean step size in the transformed phenotype space (see

Supporting Information 2, eq. S28), where phenotypes are mea-

sured relative to m̄. When phenotypes are measured in arbitrary

units, however, the mean step size increases with m̄ (eq. 16, see
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Figure 2. Distribution of the size α1 of the first adaptive substitution (left) and for the entire adaptive walk (right) in the direction of the

moving optimum, as a function of phenotypic complexity n for different rates of environmental change v1. Symbols in the left-hand panel

show the predicted mean of the first adaptive substitution when assuming a uniform distribution of mutational effects (environmentally

limited regime, eq. 16). This approximation produces a good match as long as the predicted ᾱ1 does not exceed the (mean) standard

deviation of the effects of new mutations (m̄ = 1). Beyond this mark, the realized step size is reduced due to limited availability of

large-effect mutations. Compared to the first step, the increase of ᾱ1 with n is less pronounced when considering the entire adaptive

walk. The reason is that subsequent substitutions will often compensate for pleiotropic side effects of previous steps rather than follow

the moving optimum. Boxplots are based on 10, 000 replicated adaptive-walk simulations. The box contains 50% of the data. Horizontal

white bars indicate the mean step size ᾱ1. Whiskers extend to maximally 1.5 times the size of the box. Outliers are not shown. Parameters:

σ2 = 10, ρ� = 0, � = 1, m2 = 1, ρM = 0; the scaled rate of environmental parameter γ = 10 × v1.

also Kopp and Hermisson 2009b). The reason is that an increase

in m̄ reduces the rate of appearance of small mutations (and,

hence the parameter p0 in the environmental limit, see eq. 15),

which reduces the ability of the population to follow the optimum

closely.

A key result of our analysis is that, for a given speed of envi-

ronmental change, the mean step size in direction of the optimum

increases with the number of traits under selection, that is, with

the level of pleiotropy or organismic complexity (eq. 16, Figs. 2,

S4 1, see also Figs. S5 2 and S5 3), and a similar result also holds

for fitness (Fig. S5 4). At first, this result seems to contradict the

“cost of complexity” argument from Fisher’s model, which states

that, in complex organisms, large mutations are unlikely to con-

tribute to adaptation. The explanation is that, precisely because

fewer mutations are beneficial if n is large (because there are

more directions in which they can “go wrong”; Orr 1998), the

time to the first step increases (see Supporting Information 4).

By this time, the optimum has already moved considerably, such

that also large mutations are beneficial (see Supporting Informa-

tion 1 and Fig. S1 1), even if they have significant pleiotropic

effects. These effects—in particular, the increased waiting time

between adaptive substitutions—also affect population persis-

tence: as shown in Figure S5 5, the mean time to extinction de-

creases with organismic complexity, and so does the maximal rate

of environmental change a population can tolerate (Bürger and

Lynch 1995).

SELECTIONAL AND MUTATIONAL CORRELATIONS

To study the orientation of the distribution of step sizes in the

n-dimensional phenotype space, we now consider a model with

correlated selection and correlated mutations. We will assume that

the angle between the direction of the optimum v and the leading

eigenvector of � and/or M is 45◦. More precisely, the optimum

moves along the first trait axis (v = (v1, 0, . . .)′), whereas the

fitness landscape and/or the distribution of new mutations are

concentrated along the main diagonal: All diagonal elements of

� (M) are equal to σ2 (m2) and all off-diagonal elements have

magnitude ρ�σ2 (ρM m2), where 1 > ρ� ≥ 0 (1 > ρM ≥ 0 ) is the

magnitude of selectional (mutational) correlation. In this case, the

fitness landscape (distribution of new mutations) is symmetric

around the leading eigenvector of � (M), ν = (1, 1, 1, . . .). We

first study the effects of mutational and selectional correlation

separately. Exemplary adaptive walks for strong correlations are

shown in Figure 3.

Figure 4 shows the multivariate distribution of adaptive sub-

stitutions, φ(α), for different strengths of selectional and muta-

tional correlations under varying speeds of environmental change

for n = 2 traits. As in the isotropic case (Fig. 1), the distribu-

tion φ(α) is biased toward the direction of the optimum, with

pleiotropic side effects of fixed mutations on average being neu-

tral (Figs. S5 6, S5 7). The shape of the distribution, however,

critically depends on the interaction between the type and strength

of correlations and the rate of environmental change. Mutational
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Figure 3. Example trajectories of the mean phenotype z̄ = (z̄1, z̄2) from adaptive-walk simulations with n = 2 traits and strong mutational

or selectional correlation for three different rates of environmental change v1 (Fig. 4). Open circles mark the state of the population after

10, 20, 30, 40, and 50 adaptive substitutions. Closed circles give the corresponding positions of the moving optimum. The bottom row

illustrates the flying- and diving-kite effect, respectively. Other parameters: � = 1, σ2 = 10, m2 = 1.

correlations tend to align the distribution of adaptive substitutions

along the leading eigenvector of M, with stronger mutational cor-

relations leading to stronger correlation in step sizes (Figs. 4, 5,

and S5 8 top left). This effect is strongest in fast-changing envi-

ronments and gradually gets weaker as the rate of environmen-

tal change decreases (Fig. 5), until becoming almost unnotice-

able. Selectional correlations similarly orientate the distribution

of adaptive substitutions along to the leading eigenvector of �

(Figs. 4, 5 bottom left, S5 8). In contrast to mutational correla-

tions, however, their impact is strongest if environmental change

is slow (for small γ and the first step, the correlation is given by

ρ�

√
Var(α2|0)
Var(α1|0) ≈ ρ� , see eq. S36). Correlations in step sizes remain

almost unchanged for a broad range of rates v1, before dropping

off sharply once environmental change gets sufficiently fast.

These results still hold true when mutational and selectional

correlations are both present but with opposite signs. As shown

in Figure 6, the correlations in step sizes resemble the selectional

correlations if environmental change is slow and resemble the

mutational correlations if environmental change is fast. At inter-

mediate rates of environmental change, the two effects cancel,

and correlations in step sizes are close to zero.

Mutational and selectional correlations depend on the coordi-

nate system in which multivariate phenotypes are measured (i.e.,

on the definition of traits). As shown in Supporting Information 2,

there is always a transformation to coordinates in which selec-

tion (but not necessarily mutation) is isotropic. The key question,

therefore, is whether the distribution of new mutations is aligned

with the fitness landscape (in terms of the eigensystems/principle

components of the matrices M and �). Our results can, thus, be

reformulated as follows: The distribution of adaptive substitutions

reflects the shape and orientation of the fitness landscape if adap-

tation is environmentally limited (i.e., if the optimum changes

slowly), whereas it mirrors the distribution of new mutations (but

with a mean shifted in the direction of the optimum) if adaptation
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Figure 4. The distribution of adaptive substitutions for n = 2 traits under mutational or selectional correlation and their dependence

on the speed of environmental change v1. Shades of gray indicate the frequency of a given step size in adaptive-walk simulations, and

dark ellipses are the corresponding 90% confidence ellipses (based on the empirical covariance matrix). Light ellipses are 90% confidence

ellipses for the step-size distribution from individual-based simulations (absent for v1 = 0.1 because simulated populations went extinct).

The white dots mark the origins of the coordinate systems. Columns 1 and 2 are for weak and strong mutational correlations, respectively,

with uncorrelated selection (ρ� = 0). Columns 3 and 4 show results for selectional but no mutational correlation (ρM = 0). Remaining

parameters: � = 1, σ2 = 10, m2 = 1.

is genetically limited (i.e., if the environment changes fast). Intu-

itively, as long as environmental change is slow, the population

is close to the optimum and the shape of the distribution of new

mutations is practically irrelevant, because only a small subset of

new mutations from the center of their distribution can pass the

selective sieve (Kopp and Hermisson 2009b). In contrast, if envi-

ronmental change is fast, the population is far from the optimum,

and the selective sieve has less impact on the adaptive process

than the supply with new mutations. In the limit, pleiotropic side

effects become negligible and the selection coefficient of new

mutations depends only on their effect in the direction of the

optimum.

Finally, mutational and selectional correlations also impact

the trajectory of the mean phenotype (Figs. 3, 5, S5 8; see also

Jones et al. 2004). In particular, strong mutational correlations can

cause the mean phenotype to trail above and behind the moving

optimum—an effect that has been phrased the “flying-kite effect”

(Jones et al. 2004). Conversely, with strong (positive) selectional

correlation, the phenotypic mean follows the optimum behind

and below. In analogy to the flying-kite effect, we call this phe-

nomenon the “diving-kite effect.” Both effects can be explained

by a deterministic model in which the change in the mean pheno-

type depends primarily on the leading eigenvector of M and the

selection gradient β(t) (Fig. 7). Under strong mutational correla-

tion, the change in mean phenotype is initially dominated by the

leading eigenvector of M, causing the “rise of the kite,” until it is

balanced by the selection gradient pointing toward the optimum.

Under strong selectional correlation, however, the selection gra-

dient is initially orthogonal to the leading eigenvector of � (i.e.,

the “ridge” of the fitness landscape), causing the mean phenotype
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Figure 5. The impact of mutational and selectional correlations on the distribution of adaptive substitutions for n = 2 traits. The left-

hand column shows the correlation ρα1,α2 between step sizes in the direction of the moving optimum (α1) and in an orthogonal direction

(α2) for different values of mutational (top row) and selectional (bottom row) correlation ρ� and ρM, plotted as a function of the

rate of environmental change v1. The right-hand column shows δ̄2, that is, the mean phenotypic lag in the direction orthogonal to the

moving optimum, demonstrating the flying- and diving-kite effects (top and bottom, respectively). Lines show results from adaptive-walk

simulations, whereas symbols are from individual-based simulations. Remaining parameters: � = 1, σ2 = 10, m2 = 1.

to “dive.” Again, the trajectory will gradually change until it is

aligned with the direction of the moving optimum (where it is

aligned with the axis of largest width of the fitness landscape).

Observing either the flying or the diving kite requires a sufficiently

fast-changing environment (the kite needs to be pulled strongly

enough) and at least intermediate levels of mutational or selec-

tional correlations (right column Figs. 5, S5_8). As the number of

traits increases, the strength of both effects decreases on a per-trait

basis, but their total strength increases (Supporting Information 4

and Fig. S4_1). Independently of the number of traits, the popula-

tion on average takes smaller steps in the direction of the optimum

as correlations (either selectional or mutational) become stronger

(Figs. S5_2, S5_3).

ACCURACY OF THE APPROXIMATIONS

Our main analytical tool has been the adaptive-walk approxi-

mation with normally distributed mutational effects. When com-

pared to individual-based simulations of an explicit genetic model,

its performance is often surprisingly good (e.g., Figs. 4, 5,

S5_2, S5_3, S5_8). Significant deviations occur mainly if the

population-wide mutation rate � is high (� � 1), which, in vio-

lation of the adaptive-walk assumption, increases the probability

of cosegregating beneficial mutations (Discussion and Figs. S5_9,

S5_10). Because the adaptive-walk approximation does not ac-

count for population dynamics, it cannot be used to predict popula-

tion persistence or extinction. Individual-based simulations show
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Figure 6. Correlation between steps in direction of the moving

optimum and in a direction orthogonal to the moving optimum,

ρα1,α2 , as function of the rate of environmental change v1, for

strong and antagonistic mutational and selection correlation. The

black line shows results from adaptive-walk simulations, while the

stars give the corresponding individual-based simulation results.

Insets give the distribution of adaptive substitutions retrieved

from the adaptive-walk simulations for v1 = 10−5, v1 = 0.0032,

and v1 = 0.1, with shades of gray indicating the frequency of a

specific step size (dark gray indicating high frequency). The black

and gray ellipses show the shape of the fitness landscape and the

shape of the distribution of new mutations, respectively. Note that

individual-based simulations died out for v1 > 0.0032. Remaining

parameters: � = 1, σ2 = 10, ρ� = 0.9, m2 = 1, ρM = −0.9.

that long-term persistence is often impossible if the scaled rate of

environmental change γ exceeds 0.1 (corresponding to v1 = 0.01

in Figs. 6, S5_2, S5_3).

For slow environmental change, the normal distribution of

new mutations can, furthermore, be approximated by an appro-

priate uniform distribution. The resulting approximation for adap-

tive walks works well for a broad range of small to intermediate

rates of environmental change (see insets in Fig. S5_2). Naturally,

this approximation cannot capture mutational correlations (see the

poor fit for high values of ρM and v1 in Fig. S5_3). Note, how-

ever, that for sufficiently small rates of environmental change,

mutational correlations can, indeed, be ignored (see above,

Figs. 4, 5).

Finally, we have attempted to approximate the distribution

of adaptive substitutions over an entire adaptive walk by the dis-

tribution of the first step. This approximation works well in the

one-trait case (Kopp and Hermisson 2009b), and in combina-

tion with a uniform distribution of new mutations, it is the only

approach that allowed significant analytical progress (Support-

ing Information 4). With multiple traits, however, the first step

makes a larger progress toward the optimum than the subsequent

steps (Figs. 2, S5_2, S5_3). The reason is that the first step will
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Figure 7. Schematic illustration of the flying-kite (top) and

diving-kite effects (bottom) in a deterministic approximation, with

snapshots taken at the initial (left), intermediate (middle), and

equilibrium (right) phases. For each snapshot, the black ellipse

represents the fitness landscape (defined by the �-matrix), the

gray ellipse gives the shape of the distribution of new muta-

tions (the M-matrix), the white triangle gives the current po-

sition of the mean phenotype, and dots show its trajectory.

Gray arrows represent hypothetical trajectories toward a con-

stant optimum if the population were placed at the beginning

of the arrow. Results are based on the “canonical equation” of

adaptive dynamics (Dieckmann and Law 1996), which states that

the mean phenotype z̄ changes according to �z̄ = Mβ(t), where

β(t) = (� + M)−1 (
zopt(t) − z̄(t)

)
(Jones et al. 2004) is the selection

gradient (which points in the direction of steepest ascent on the

fitness landscape). (Note that the canonical equation is struc-

turally identical to the Lande equation from quantitative genet-

ics [Lande 1979, 1980; Jones et al. 2004] if the M-matrix is re-

placed by the G-matrix of standing genetic variation.) Without

selectional correlation (top row), the selection gradient always

points toward the current optimum. Without mutational correla-

tion (bottom row), the selection gradient is parallel to the gray

arrows.

always introduce maladaptive pleiotropic side effects, which be-

come compensated for by subsequent substitutions. Some of these

compensatory substitutions are “backward steps,” which are ben-

eficial, despite their effect being opposite to the direction of the

optimum (e.g., Supporting Information 1, gray ellipse in Fig.

S1_1 and “backward steps” in Figs. 1 and 4). Consequently, the

first-step approximation works less well as the number of traits

increases (Fig. S5_1). Furthermore, with mutational or selectional

correlations, the direction of the first step systematically deviates

from the distribution of step sizes over the entire adaptive walk

(see flying- and diving-kite effects above; for the case of selec-

tional correlation, see Fig. S5_11).
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Discussion
Environmental change forces populations to either adapt to the al-

tered conditions or go extinct. In the absence of standing genetic

variance for fitness, the outcome crucially depends on mutations,

which provide the “genetic fuel” for adaptation, and selection

that converts this resource into adaptive substitutions. Here, we

have used analytical approximations and individual-based sim-

ulations to study the effects of pleiotropy or “organismic com-

plexity” on the genetic basis of adaptation in gradually changing

environments. In particular, we have investigated the distribution

of adaptive substitutions (i.e., the distribution of the phenotypic

effect sizes of fixed mutations) in populations following a mov-

ing optimum. Our results confirm and extend previous analysis

of “adaptive walks” for single traits (Collins et al. 2007; Kopp

and Hermisson 2007, 2009a,b). We show that the distribution of

adaptive substitutions is largely determined by a single compos-

ite parameter γ, which scales the rate of environmental change

relative to the “adaptive potential” of the population and defines

a continuum between environmentally and genetically limited

adaptation (Kopp and Hermisson 2009b). In the environmentally

limited regime (slow environmental change), the population fol-

lows the optimum closely, adaptive steps are small and their mul-

tivariate distribution mirrors the shape of the fitness landscape.

In the genetically limited regime, in contrast, the population fol-

lows the optimum with a large gap, adaptive steps are large and

their distribution is determined primarily by the distribution of

new mutations. We furthermore show that the mean effect size of

fixed mutations increases with the degree of pleiotropy, in contrast

to classical predictions from FGM under sudden environmental

change. We now discuss these results in greater detail.

THE EFFECT OF PHENOTYPIC COMPLEXITY ON THE

GENETICS OF ADAPTATION

In complex organisms, pleiotropy is widespread—that is, most

mutations affect multiple traits simultaneously. Different traits,

therefore, do not evolve independently (Lande 1979; Agrawal and

Stinchcombe 2009; Walsh and Blows 2009). With this basic fact

in mind, Fisher (1930) used his classical geometric model to ar-

gue for a predominance of small mutations in adaptive evolution.

Although theoretical studies later pointed out that large benefi-

cial mutations may, nevertheless, play an important role (Kimura

1983; Gillespie 1993; Orr 1998, 2005a), they also confirmed that

organisms pay a “cost of complexity” (Orr 1998, 2000; Welch and

Waxman 2003) in the form of a reduced rate of adaptation. With

regard to individual substitutions, Orr (2000) found that more

complex organisms make smaller steps when adapting toward a

fixed optimum (with step size measured as the decrease in the

absolute distance to the optimum, which is closely related to the

fitness effect of a fixed mutation). This is in direct contrast to our

results for a moving optimum, where increased complexity leads

to larger step sizes, with respect to both phenotype and fitness

(Figs. 2, S5_4).

The main reason for this finding arises from the ecological

differences between the classical FGM and the moving-optimum

model (consequences of different mutation models are discussed

below). In the classical Fisher model, the proportion of beneficial

mutations decreases with organismic complexity. Thus, the more

phenotypic traits, the longer one has to wait for a beneficial muta-

tion to appear (as adding another trait adds yet another dimension

where mutations can go wrong; eq. S18). Of course, this argu-

ment still holds true under a moving optimum. As more complex

organisms have to wait longer for a beneficial mutation to appear,

the optimum has already traveled farther, enabling larger muta-

tions to become fixed. Thus, the moving-optimum model does

not contradict the “cost of complexity” argument, but reveals yet

another aspect of it.

ADAPTATION UNDER MUTATIONAL AND

SELECTIONAL CORRELATIONS

The impact of mutational and selectional correlations on the dis-

tribution of adaptive substitutions is a direct consequence of the

general principle that the shape of this distribution depends on the

scaled rate of environmental change (see above). In particular, if

the rate of environmental change is slow, only mutations from the

very center of the mutational distribution can pass the selective

sieve (Kopp and Hermisson 2009b), making mutational correla-

tions irrelevant relative to the shape of the fitness landscape. Con-

versely, if adaptation is genetically limited, the selective sieve has

less impact on the adaptive process than the supply with new mu-

tations. Between these two extremes, the distribution of adaptive

substitutions will progressively take the orientation of the muta-

tional distribution as the rate of environmental change increases

(Fig. 6).

Our results reveal strong parallels between the distribu-

tion of adaptive substitutions and the evolution of the G-matrix

describing standing genetic variation (see also below). Recent

quantitative-genetic studies have shown that both mutational and

selectional correlations can induce correlations in the G-matrix,

under both constant stabilizing and moving-optimum selection

(Jones et al. 2003, 2004). A link between selectional correlation

and genetic correlation has also been confirmed empirically (see

Roff and Fairbairn 2012 for a recent meta-analysis). As shown

in Figure S5_13, the distribution of adaptive substitutions closely

matches the shape and orientation of the G-matrix. While this

seems intuitive, it had not been shown by any previous study, and

little is known about the relation between alleles in the standing

variation and those that ultimately reach fixation (but see Hill

1982; Hill and Rasbash 1986a,b). This close correspondence be-

tween standing variation and fixed mutations might explain why
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the adaptive-walk approximation works surprisingly well even in

populations with a high mutation rate (see Kopp and Hermisson

2009b). Quantitative-genetic studies have, so far, not systemati-

cally investigated how correlations in the G-matrix are affected by

the rate of environmental change. It would be interesting to know

whether the effects of mutational and selectional correlations on

the G-matrix are similar to those on the distribution of adaptive

substitutions.

Confirming previous results by Jones et al. (2004), our sim-

ulations showed that mutational and selectional correlations can

cause systematic maladaption in traits under purely stabilizing

selection (i.e., in directions orthogonal to the direction of the

optimum). These “flying-” and “diving-kite” effects require that

correlations are strong and the environmental change is suffi-

ciently fast (i.e., in the genetically limited regime, see Figs. 3 and

5). Strong effects are, therefore, likely to be restricted to a narrow

parameter range, where populations might often be on the brink

of extinction.

DISCUSSION OF THE MODEL ASSUMPTIONS AND

FUTURE DIRECTIONS

Like all models, our study is based on a number of simplifying

assumptions, which might constrain the generality of our results.

In the following, we discuss the likely consequences of these

assumptions, potential extensions of the model, and ways to test

our predictions empirically.

First, our model is based on the assumption of universal

pleiotropy (Kacser and Burns 1981; for a review see Paaby and

Rockman 2013). This assumption has been challenged recently,

both because empirical levels of pleiotropy are rather low (me-

dian 1–7; Wang et al. 2010) and because true universal pleiotropy

would induce unsustainably high costs (“the cost of complex-

ity [...] should be more properly called the cost of pleiotropy”;

Wagner and Zhang 2012, but see Hill and Zhang 2012a). Alter-

native approaches have, therefore, suggested modularity (Wag-

ner and Altenberg 1996; Welch and Waxman 2003) or partial

pleiotropy (Chevin et al. 2010; Lourenço et al. 2011) as a solution

to this problem. Indeed, our model might be best interpreted as

applying to a given module with a moderate level of pleiotropy.

In any case, the relatively low number of traits assumed in most

parts of this article is consistent with the degree of pleiotropy

observed in natural populations (Martin and Lenormand 2006a,b;

Wang et al. 2010). Thus, we expect our results to apply across a

wide range of species facing environmental change.

Second, we assume the so-called Euclidean superposition

model (Turelli 1985; Wagner 1988), where the distribution of

mutational effects on a given trait is independent of complexity

(see also Welch and Waxman 2003; Lourenço et al. 2011; Zhang

2012). Other studies (Orr 1998, 2000; Wingreen et al. 2003; and

an alternative model in Welch and Waxman 2003) have instead

used a “constant total-effects model,” in which the total mutational

effect size (‖α‖) is constant across levels of complexity and, in

consequence, the mean effect size on individual traits decreases.

Indeed, this assumption explains part of our differences to Orr

(1998, 2000). More generally, it raises the question of which factor

is more important in shaping the distribution of adaptive substi-

tutions at different levels of complexity: the “pleiotropic scaling”

of mutations (Wagner et al. 2008) or the mode of environmental

change. To address this issue, we conducted additional simula-

tions, which combined constant and moving-optimum selection

with the Euclidean superposition and constant total-effects mod-

els. These simulations yielded three main results (Fig. S5_12).

First, the moving-optimum model behaves qualitatively similarly

under both mutation models; in particular, average step size in-

creases with complexity (at least as long as adaptation remains

environmentally limited). This shows that our main results are

robust to considerable variation in the pleiotropic scaling of mu-

tational effects. Second, with a constant optimum, the mutation

model does make a qualitative difference for the mean step size

in the direction of the optimum (but not for total step size ‖α‖),

which decreases with complexity under the constant total-effects

model, but increases under the Euclidean superposition model.

Third, a fundamental difference between constant and moving-

optimum selection, which is independent of the mutation model,

is seen at the level of the selection coefficients of fixed mutations,

which decrease with complexity under a constant optimum but

increase with complexity under a moving optimum. In summary,

the mode of environmental change plays a fundamental role in

shaping the distribution of adaptive substitutions and, in many

cases, overrides the effects of pleiotropic scaling. Nevertheless,

a better understanding of pleiotropic scaling—both empirically

(Hermisson and McGregor 2008; Wagner et al. 2008; Wang et al.

2010; Wagner and Zhang 2011; Hill and Zhang 2012b) and with

respects to its theoretical consequences—clearly is an important

topic for future research.

Third, our adaptive-walk approximation assumes that evolu-

tion proceeds as a series of (hard) selective sweeps originating

from new mutations. This follows the tradition of models based

on a strong-selection–weak-mutation approximation (Gillespie

1983; Orr 1998, 2005a). In contrast, quantitative-genetic models

assume that virtually all adaptation stems from standing genetic

variation (in the context of the moving-optimum model, see, e.g.,

Bürger and Lynch 1995; Gomulkiewicz and Holt 1995; Jones et al.

2004, 2012; Zhang 2012; Chevin 2013; see also Fig. S5_13), and

the importance of standing variation is well documented empiri-

cally (Hermisson and Pennings 2005; Barrett and Schluter 2008;

Gomulkiewicz and Houle 2009; Teotónio et al. 2009; Jerome

et al. 2011; Domingues et al. 2012; Messer and Petrov 2013). So

far, quantitative-genetic models with a multidimensional mov-

ing optimum have focused either on the risk of population
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extinction (Gomulkiewicz and Houle 2009) or the maintenance

and structure of genetic variation (Jones et al. 2004, 2012). To our

knowledge, very little is known about the distribution of pheno-

typic effect sizes of adaptive substitutions when adaptation occurs

from standing genetic variation. Because in this case the adaptive

process is likely to have very different properties (e.g., adapta-

tion could be faster with on average smaller mutations becoming

fixed Barrett and Schluter 2008; Rockman 2012), this should be

an important topic for future research.

Fourth, in accordance with the adaptive-walk approximation,

most of our simulations (including those in Fig. 6) assumed a rela-

tively (but not unrealistically) low population-wide mutation rate

�. As such, we ignore effects of interactions between cosegregat-

ing beneficial mutations. For the one-dimensional case, Kopp and

Hermisson (2009b) showed that high mutation rates in combina-

tion with low recombination (or a small number of loci) lead to an

increase in the mean size of adaptive substitutions, due to Hill–

Robertson interference (Hill and Robertson 1966; Gerrish and

Lenski 1998). At high recombination rates (or with a large num-

ber of unlinked loci), in contrast, the mean step size decreases

as a result of epistasis for fitness (due to stabilizing selection).

Individual-based simulations suggest that these results also hold

true for the multivariate case (Figs. S5_9, S5_10). Note, how-

ever, that the strength of interference is expected to decrease with

increasing complexity, because the rate of beneficial mutations

decreases.

In addition, Hill–Robertson interference also influences how

the distribution of adaptive substitutions is affected by muta-

tional and selection correlations. In particular, correlations be-

tween adaptive substitutions increase with increased linkage in the

presence of mutational correlations (Fig. S5_9), but decrease with

linkage in the presence of selectional correlations (Fig. S5_10).

Thus, at high mutation rates, increasing linkage has a similar

effect as increasing the scaled rate of environmental change γ.

This makes intuitive sense, because interference weakens the ef-

ficiency of selection (Gerrish and Lenski 1998; Weissman and

Barton 2012), which brings the adaptive process closer to the

genetically limited regime.

Finally, our adaptive-walk approximation does not consider

population dynamics. By setting an arbitrary extinction thresh-

old with respect to mean fitness, we found that the maximal rate

of environmental change a population can tolerate (Bürger and

Lynch 1995), as well as the mean time to extinction, decreases

with the number of traits (Fig. S5_5; this result is also supported

by individual-based simulations). In particular, in complex organ-

isms, long-term persistence in the face of an indefinitely moving

optimum seems to be possible only in the environmentally limited

regime (γ � 0.1), that is, when adaptation is not limited by the

availability of new mutations. In the genetically limited regime, in

contrast, populations can only persist for a limited amount of time

(e.g., fast environmental change followed by a period of stasis).

Over shorter time scales and with high mutation rates (large �, as

in Jones et al. 2004), population persistence can also be facilitated

by adaptation from standing genetic variation (Bürger and Lynch

1995; Barrett and Schluter 2008; Gomulkiewicz and Houle 2009).

Indeed, our parameter γ is structurally similar to expressions de-

scribing the equilibrium phenotypic lag in quantitative-genetic

models of adaptation to a moving optimum (eq. 5 in Jones et al.

2004; see also eq. 8a in Bürger and Lynch 1995). The interpre-

tation is analogous: the lag increases with the speed of environ-

mental change, and decreases with the strength of selection and

the amount of (standing) genetic variation.

Our model makes a number of concrete predictions (Table 1)

that can be tested empirically, even though such tests will certainly

be challenging. The most direct approach is experimental evolu-

tion (for reviews see Elena and Lenski 2003; Kawecki et al. 2012;

Barrick and Lenski 2013). Although the majority of studies have

employed constant conditions (Reusch and Boyd 2013), Collins

(2011b) recently urged for more studies in gradually changing en-

vironments. Microorganisms such as bacteria, yeast, or algae can

be cultivated in media where an environmental factor such as tem-

perature (Hietpas et al. 2013), salinity (Bell and Gonzalez 2009;

Lachapelle and Bell 2012), pH (Hughes et al. 2007), the availabil-

ity of nutrients (Collins 2011a), or the concentration of stressors

such as antibiotics (Perron et al. 2008; Lindsey et al. 2013) or

pollutants (Adamo et al. 2012) is gradually changed. Until now,

these studies were mainly used to investigate the probability of

“evolutionary rescue” (Gonzalez et al. 2013). Recent advances in

sequencing technologies (reviewed in Metzker 2010), however,

make it possible to conduct real-time genome-wide analyses and

to map genetic changes to their effects on phenotype and fitness

(Barrick et al. 2009; Barrick and Lenski 2013), such that the dis-

tribution of adaptive substitution over entire adaptive walks can

be analyzed.

In natural populations, where only present-day data are avail-

able, the most promising approach for studying the genetic basis

of adaptation is the analysis of quantitative-trait loci (QTLs) in

diverging populations. For example, Langlade et al. (2005) iden-

tified QTLs for leaf shape in two species of Antirrhinum and

postulated a sequence of substitutions that can traverse the “al-

lometric space” between them. Albert et al. (2008) and Rogers

et al. (2012) analyzed genetic differences between ancestral ma-

rine and derived freshwater populations of sticklebacks (Gas-

terosteus aculeatus). Rogers et al. (2012) compared two sets of

freshwater populations and showed that those whose environment

(and presumably phenotypic optimum) is more different from

that of the marine populations (with respect to salinity and pres-

ence of predators) displayed a higher frequency of large-effect

QTLs. Albert et al. (2008) crossed an ancestral Pacific and a

highly derived benthic freshwater form and found a gamma-like
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Table 1. A summary of theoretical predictions of the moving-optimum model.

How does ... affect adaptation? Theoretical prediction

Mode of environmental change
Sudden change The distribution of adaptive substitutions is approximately exponential with respect

to phenotype and fitness. Accordingly, most fixed mutations are of small effect and
only a few large-effect alleles become fixed when approaching the constant
optimum. The farther the optimum is away (i.e., the harsher the sudden
environmental change) the larger the mutational effects that get fixed.

Gradual change The distribution of adaptive substitutions with respect to phenotype (in the direction
of the optimum or total effect) and fitness is gamma-like with an intermediate
mode (Figs. 1, S5_4). Thus, when following the moving optimum, most adaptive
substitutions are of intermediate effect with only a few large-effect alleles
becoming fixed.

Scaled rate of environmental change The faster the rate of environmental change relative to the adaptive potential, the
larger the mutational effects that become fixed. Holds true with respect to
phenotype and fitness (Figs. 2, S5_4). With increasing rate of environmental
change the distribution of fitness effects becomes more asymmetric.

Complexity/Pleiotropy Mean effect of adaptive substitutions with respect to phenotype and fitness increases
as the number of traits affected by a single mutation increases (Figs. 2, S5_12).

Mutational correlation If the rate of environmental change is fast, the distribution of adaptive substitution
mirrors the mutational distribution (Fig. 6).

Selectional correlation If the rate of environmental change is slow, the distribution of adaptive substitution
reflects the shape of the fitness landscape (Fig. 6).

distribution of QTL effect sizes with an intermediate mode. Tak-

ing into account the detection limits for small-effect QTLs (Otto

and Jones 2000), they interpreted this result as support for FGM

with constant selection (i.e., the difficulty in identifying small

QTLs would turn the predicted exponential distribution into an

observed gamma-like distribution). However, both studies could,

in principle, also be interpreted as showing the outcome of adap-

tation to a moving optimum (as briefly discussed in Schluter et al.

2010; Rogers et al. 2012), which directly predicts a distribution

of effect sizes with an intermediate mode. More stringent tests of

the present theory would require studying populations for which

a moving optimum can be assumed a priori (e.g., comparisons of

microalgae from pristine habitats with populations known to have

experienced gradual eutrophication). Even then, the difficulty in

detecting small-effect substitutions will remain a major challenge

(Otto and Jones 2000).

CONCLUSION

Natural populations are constantly forced to adapt to changing

environments, a process that takes place in a high-dimensional

phenotype and genotype space. Along with previous studies, our

analysis of the moving-optimum model shows that the genetic

basis of this process depends critically on the tempo and mode

of environmental change. In particular, our environmentally and

genetically limited regimes lead to qualitative differences in the

distribution of adaptive substitution, with respect to its mean,

shape, and correlation patterns. Long-term persistence is likely

restricted to the environmentally limited regime—where adapta-

tion proceeds “smoothly” in small steps—but the parameter range

for this regime is reduced in complex organisms.

ACKNOWLEDGMENTS
We thank R. Bürger, associate editor Ophélie Ronce, and two anonymous
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Figure S5_2. Mean size α̃ of adaptive substitutions in the direction of the moving optimum for the first step (lines) and over the entire adaptive walk
(symbols), as a function of the rate of environmental change v1, for n = 2 and three traits and different values of selectional correlation ρ� .
Figure S5_3. Mean size α̃ of adaptive substitutions in the direction of the moving optimum, for the first step (lines) and over the entire adaptive walk
(symbols), as a function of the rate of environmental change v1, for n = 2 and three traits and different values of mutational correlation ρM .
Figure S5_4. Mean selection coefficient of adaptive substitutions as a function of the rate of environmental change for various strengths of mutational
(dashed lines) and selectional (solid lines) correlations ρM and ρ� .
Figure S5_5. The mean time to extinction for different levels of phenotypic complexity n as a function of the rate of environmental change.
Figure S5_6. The multivariate distribution of the first adaptive substitution (left) and over the entire adaptive walk (right) for n = 2 traits, when the
optimum moves slowly in the direction of the first trait and the effects of new mutations are strongly correlated (ρM = 0.9).
Figure S5_7. The multivariate distribution of the first adaptive substitution (left) and over the entire adaptive walk (right) for n = 2 traits, when the
optimum moves slowly in the direction of the first trait and selection is strongly correlated (ρ� = 0.9).
Figure S5_8. The impact of mutational and selectional correlations on the distribution of adaptive substitutions for n = 3 traits. For details, see Figure 5
of the main text.
Figure S5_9. The effects of linkage and interference between cosegregating alleles on the mean step size in direction of the moving optimum α1 (left)
and the correlation between adaptive substitutions ρα1,α2 (right) under strong mutational correlations ρM = 0.9.
Figure S5_10. The effects of linkage and interference between cosegregating alleles on the mean step size in direction of the moving optimum α1 (left)
and the correlation between adaptive substitutions ρα1,α2 (right) under strong selectional correlations ρ� = 0.9.
Figure S5_11. The multivariate distribution of the first adaptive substitution in adaptive-walk simulations with strong selectional correlation (ρ� = 0.9),
illustrating the diving-kite effect (the negative bias in the α2-direction) present for fast (v1 = 0.1) but not for slow (v1 = 10−5) environmental change.
Figure S5_12. Comparison of the first adaptive substitution under the constant total effect (darker gray) and the Euclidean superposition model (lighter
gray) for Fisher’s geometric model with constant selection (left) and a moving optimum (right).
Figure S5_13. The G-matrix (gray ellipse) and the 90% confidence ellipse of the distribution of adaptive substitutions (dark ellipse) under strong mutational
(ρM = 0.9) and selectional (ρ� = 0.9) correlation for various rates of environmental change (v1).
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