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The current unsupervised domain adaptation person re-identification (re-ID) method aims to solve the domain shift problem and
applies prior knowledge learned from labelled data in the source domain to unlabelled data in the target domain for person re-ID.
At present, the unsupervised domain adaptation person re-ID method based on pseudolabels has obtained state-of-the-art
performance. This method obtains pseudolabels via a clustering algorithm and uses these pseudolabels to optimize a CNN model.
Although it achieves optimal performance, the model cannot be further optimized due to the existence of noisy labels in the
clustering process. In this paper, we propose a stable median centre clustering (SMCC) for the unsupervised domain adaptation
person re-ID method. SMCC adaptively mines credible samples for optimization purposes and reduces the impact of label noise
and outliers on training to improve the performance of the resulting model. In particular, we use the intracluster distance
confidence measure of the sample and its K-reciprocal nearest neighbour cluster proportion in the clustering process to select
credible samples and assign different weights according to the intracluster sample distance confidence of samples to measure the
distances between different clusters, thereby making the clustering results more robust. The experiments show that our SMCC
method can select credible and stable samples for training and improve performance of the unsupervised domain adaptation

model. Our code is available at https://github.com/sunburst792/SMCC-method/tree/master.

1. Introduction

Person re-identification (re-ID) is an image retrieval task
based on a given image of a person to identify the person in
other images captured by different cameras [1, 2]. At present,
person re-ID is widely used in the field of social security.
Although research on person re-ID in a single domain has
achieved satisfactory performance [3-5], manual annotation
costs considerable manpower and material resources, and it
is impractical to manually label new large-scale datasets [6].
Therefore, unsupervised person re-ID is proposed to solve
the problem of the high-cost manual annotation, as it does
not need labelled data, and thus, unnecessary costs are re-
duced. It is widely used on easily available unlabelled
datasets and applied to practical scenes [7].

Unsupervised person re-ID lacks labelled data for su-
pervision information [8, 9]. Moreover, cross-domain
person re-ID has a domain shift problem caused by the

differences in the fields of view, resolutions, and light oc-
clusion levels among different domains, which result in a
large performance drop for a model that performs well in the
source domain when applied to the target domain [10-13].
Therefore, an unsupervised domain adaptation (UDA)
method is proposed to solve the problem of domain shift in
different feature spaces. The UDA method combines the
given source domain data and target domain data to solve
the problem of domain shift between different domains so
that the model trained on the labelled data in the source
domain can be adapted to unlabelled data in the target
domain [14-17]. Among the different UDA methods, the
method based on clustering to obtain pseudolabels to op-
timize the model has obtained the most advanced perfor-
mance. This approach can be roughly divided into three
steps: (1) pretraining the model with labelled data in the
source domain; (2) performing feature extraction on the
unlabelled data in the target domain with the pretrained
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model; (3) clustering the feature vector and fine-tuning the
model according to the pseudolabels obtained by clustering
[18]. Since this method relies on clustering to assign the
same pseudolabel to samples belonging to the same cluster
and then optimizes the model with the pseudolabel as the
supervision information [19], the credibility of the pseu-
dolabel determines the performance of the model [20]. If we
have a highly credible pseudolabel, the model can be adapted
to the target domain data [21-23]. However, in the original
dataset, there may be some samples with label noise, and the
noisy samples interfere with the model training process
because of their incorrect information in the feature space.
Therefore, only by selecting credible samples can we reduce
the amplification of label noise during the training process
and effectively apply to person re-ID tasks in different
datasets.

To solve these problems, we propose a stable median
centre clustering (SMCC) method to reduce the damage
caused by potential label noise to the model and then obtain
more stable clustering results to ensure the accuracy of
pseudolabel assignment. Our SMCC method consists of two
parts: a new reliable sample selection method and a new
method for measuring the distances between clusters. First,
instead of calculating distances from the centre point of the
cluster to select credible samples, the SMCC method is more
stable when there are many outliers in the feature space. By
calculating the sum of the distances between the given
sample and all other samples in the cluster, the offset of the
median centre selected is smaller than the average centre
point when there are outliers, which can better reflect the
characteristics of the cluster. Furthermore, we select qual-
ified credible sample points by calculating the distances
between the current sample point and all other sample
points in the cluster and the cluster proportion between the
current sample point and its K-reciprocal nearest neighbour
samples.

Figure 1 shows the iterative model adjustment process
with credible sample selection. With the continuous
optimization of the model, the samples belonging to the
same cluster in the feature space become closer, and an
increasing number of credible samples are selected. When
the maximum number of iterations is reached, the
samples belonging to the same cluster are clustered into
the same cluster. We only select samples with high
confidence in the early stage, and we reduce the mis-
leading label noise during training to avoid the further
amplification of label noise; thus, the performance of the
model is improved to a certain extent. Second, compared
with the previous intercluster distance calculation ap-
proach in which all sample points are equally valued,
which leads to the damage of incorrect pseudolabel
samples to intercluster distance, we obtain a credibility
ranking list according to the intracluster distance among
the samples and assign different weights to them
according to the reliability of different sample points,
which is the distance measurement between different
clusters. For sample points with high confidence, we
assign high weights to them, and we assign small weights
to the sample points with low confidence that is still
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greater than the confidence threshold so that the model
can take all credible samples into consideration and pay
more attention to the feature information provided by the
samples with high confidence.

Our contributions are summarized as follows. (1) We
propose a stable median centre clustering (SMCC) method
for unsupervised domain adaptation person re-ID, which
uses the intracluster distances of samples and the cluster
proportion of the K-reciprocal nearest samples as the criteria
for obtaining credible samples. (2) We design a credibility
ranking list for the samples in a cluster according to the
intracluster distance and assign different weights to the
sample points according to the ranking order for intercluster
distance calculation. (3) Our experiments prove the supe-
riority of our SMCC method, which achieves state-of-the-art
performance on two popular person re-ID datasets, Market-
1501 [24] and DukeMTMC-RelD [25, 26].

2. Related Work

2.1. Unsupervised Person Re-ID. With the development of
deep learning, the existing person re-ID methods use
convolutional neural networks for feature extraction and
person retrieval [27-31]. In recent years, supervised person
re-ID has been extensively studied and has achieved great
performance [2, 32]. However, due to the large amount of
overhead caused by manual labelling of large-scale datasets
and because most of the data in practical applications are
unlabelled data, researchers have begun to focus on studying
unsupervised person re-ID. Different from supervised
person re-ID, unsupervised person re-ID lacks labelled data
as supervision information, which reduces the large cost of
manual labelling. Unsupervised person re-ID can be widely
used on easily available unlabelled datasets, which has great
significance for practical applications. Different domains do
not share the same feature space [33-36]; that is, there are
large gaps in the resolution, background, lighting, and field
of view of the original image in different domains, resulting
in the problem of domain shift, which makes the effect of
cross-domain person re-ID not ideal. Recently, an unsu-
pervised person re-ID method based on cross-domain
transfer learning was proposed to improve the performance
of the resulting model on the unlabelled target domain with
the labelled domain. Wang et al. proposed the TJ-AIDL
method to learn attributes from the source domain and
transfer them to the feature representation space of the
target domain [10]. Zhao et al. [23] proposed a collaborative
clustering and mutual instance selection method to enhance
the performance of a cross-domain person re-ID model. Ge
et al. [37] introduced a teacher-student model into an un-
supervised person re-ID method and achieved satisfactory
performance by refining the labels. Although unsupervised
domain adaptation can solve the cross-domain shift prob-
lem, the source domain and the target domain do not share
the same person identity in the re-ID problem, and the
unsupervised domain adaptation method cannot be directly
applied to the re-ID task effectively. Therefore, unsupervised
domain adaptation re-ID is a challenging task at present.



Computational Intelligence and Neuroscience

S Iteration 2 ) ! Clustering ! / Selection ) [ Optimization ) N

! ! 1! 1! S 1 \

o A Hg ' A By @ A ..\{ i oo

L A, mm A Eg A Em . S
1 -

LA T ad Ty TAN = m oAl me
\ 7

Lo T A o A o i Ne T, o

Vi Ae @ i D N L

! ;! ;! ;! i

P Iteration N \ [ Clustering \ { Selection _ __) { Optimization \ N { Final feature space |
[ L p® ! - gl gl . aml
L A A LA A ! [ N !
| | . Il . ! 1/ ! . /4 1 - i Lo A | !
Ay, mWiA a® A,  g®-a, gl——4a, N
i :A‘ :'A‘ CLAD NI A L AA ST ;
1 | 1 } STT AN | /

A 'I A 1 A/ Oq A 1 I A , 1
L AT @ @ A AL O OS ) IA Cxogl A /(DQS:
N e . SN I O R O R SV A N N O A

FIGURE 1: Iterative adjustment process for credible sample selection. As the number of iterations increases, the number of credible samples
gradually increases. The distances between samples belonging to the same cluster in the feature space are smaller, and the distances between
samples belonging to different clusters are larger. Finally, the credible samples are used for training to prevent the influence of label noise on

the model.

2.2. Unsupervised Domain Adaptation Person Re-ID. The
unsupervised domain adaptation (UDA) method was pro-
posed to apply prior knowledge acquired from the source
domain to an unlabelled target domain to reduce the impact
of domain shift [7, 38, 39]. The current UDA methods can be
roughly divided into three categories: GAN-based style
transfer methods, feature information alignment methods
between the source domain and target domain, and pseu-
dolabel prediction methods used to explore the feature
distributions of the unlabelled target domains. The first type
of method mainly solves the problem of domain shift by
narrowing the style difference between the source domain
and the target domain. With a generative adversarial net-
work, a labelled source domain image is transferred to an
image with a style similar to the target domain style, and
then, labelled data regarding the target domain style are
obtained [40, 41]. These images are regarded as training
samples for the model to adapt to the target domain [42, 43].
The second type of method aligns the feature information of
different domains to obtain a domain-invariant feature
space, thus reducing the influence of domain shifts between
different domains [44, 45]. The third method involves
clustering the unlabelled target domain data to explore the
spatial distribution of the feature representation. It uses a
pretrained model in the source domain to extract features in
the target domain, performs a clustering algorithm on the

obtained feature vectors, assigns the same pseudolabels to
samples belonging to the same cluster, and then uses the
pseudolabels as supervision information to fine-tune the
model [46-49].

2.2.1. GAN-Based Methods. In a previous study, Wei et al.
[50] proposed a person transfer generative adversarial
network (PTGAN), in which person images with labels were
transferred to other unlabelled domains with a style transfer
method to reduce the impact of domain shift. Similarly, on
the basis of CycleGAN, SPAGN [51] was proposed with self-
similarity and domain dissimilarity to avoid the loss of
identity information from the generated image. To obtain a
style transfer image similar to those of the target domain,
Chen et al. proposed instance-guided context rendering to
obtain a richer transfer image by transferring a person
identity in the source domain to the context of the target
domain [52].

2.2.2. Feature Alignment Methods. To alleviate the view
inconsistency between different domains, Yu et al. carried
out asymmetric metric feature mapping for images in the
source domain and target domain and mapped them to the
same feature space in different ways for learning [17]. Wu
et al. proposed a priori knowledge for learning cross-camera



differences from the source domain to solve the domain shift
caused by different camera views under the target domain
and a camera-aware similarity consistency loss to learn
cross-domain and cross-camera uniform pair similarity
distributions [16]. Zhong et al. adjusted the gaps between the
feature distributions of the source domain and target do-
main from the three perspectives of exemplar invariance,
camera invariance, and neighbourhood invariance and fully
explored the differences between cross-domain samples
[53].

2.2.3. Pseudolabel Prediction Methods. As an early cluster-
ing-based method, PUL [12] proposed by Fan et al. selects
trusted samples to fine-tune the model by calculating the
distances between sample points and cluster centre points.
To mine the distinctive information contained in samples,
Yang et al. proposed using PatchNet to generate multiple
subimages for an input image and used global features and
local features together for person re-ID [54]. Similarly, Fu
et al. proposed dividing an image into a whole image, an
upper part of the image, and a lower part of the image and
performed clustering on these three parts to seek the po-
tential similarities among the different parts [55]. The AD-
Cluster [46] method generates style transfer images under
different cameras with a GAN to increase the diversity of
samples so that the performance of the resulting model is
gradually improved throughout the adversarial learning
process involving an image generator and a feature encoder.
The PAST [20] method proposed by Zhang et al. divides the
model training process into a conservative stage and a
promoting stage to reduce the influence of label noise on the
model through continuous iteration.

Although pseudolabel prediction methods perform
better than the GAN-based methods and the feature
alignment methods due to their examination of the spatial
distribution of unlabelled samples, pseudolabel prediction
methods cannot be further improved due to the influence of
label noise in the dataset on clustering. If we select credible
samples for training and avoid the amplification of label
noise during the training process, a more reliable model can
be obtained. The SMCC method takes the sample intra-
cluster distance confidence (IDC) and the K-reciprocal
nearest neighbour cluster proportion (KCP) as the sample
credibility evaluation criteria and adds the samples that meet
these criteria into the credible dataset during each iterative
training process. Finally, a reliable pseudolabel dataset is
obtained for model optimization to avoid the influence of
noisy labels on the model.

3. Proposed Method

For UDA re-ID, we have a given label dataset {Xg, Y},
which contains N identities with Pg person images, where
each X§ corresponds to a unique identity label Y. Similarly,
the unlabelled target domain dataset {X,} is also given,
which contains N, person images, but their labels Y, are
unknown. The purpose of our SMCC method is to explore
the potential similarities between different samples in the
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target domain by clustering and combining the data of the
labelled source domain and unlabelled target domain. Next,
we expand on the SMCC method in further detail.

3.1. Overview. The overall framework of our proposed
SMCC method is shown in Figure 2. The SMCC method first
uses the style transfer model to obtain images, which are
regarded as the pretraining data that are used to obtain a
pretrained model that can adapt to the target domain. Then,
clustering is performed on the unlabelled data in the target
domain, and the sample points with higher confidence are
selected according to the clustering results to ensure the
pseudolabel correctness of the selected samples; thus, the
influence of noisy samples on the model is reduced.
Moreover, all the sample points are considered during the
process of cluster merging, and different weights are
assigned according to the obtained confidence degrees; this
process ensures the full exploration of the feature spatial
distribution and focuses on mining the potential differen-
tiated information from the credible sample points. With the
continuous optimization of the feature space, the number of
credible samples gradually increases, and an increasing
number of credible samples are used to fine-tune the CNN
model to improve its robustness. In each clustering oper-
ation, when there is outlier interference, the offset of the
median centre is smaller and is not affected as easily as the
average centre; thus, the credible samples selected by our
SMCC method avoid the inclusion of false pseudolabels.

3.2.  Intracluster Distance Credibility ~Measurement.
During the process of clustering, the sample points with
higher similarity tend to belong to the same cluster; however,
sample points belonging to the same cluster may be at the
edge of the cluster. These points may belong to the current
cluster or other clusters. To solve this problem, we propose
an intracluster distance confidence (IDC) metric, which
calculates the sum of the Euclidean distances from the
current samples to all other sample points in the cluster, as
the selection criterion for credible samples. We find that the
total intracluster distance of the sample closest to the median
cluster centre must be the smallest; that is, if the intracluster
distance of a sample is smaller than that of the whole cluster,
then it must be located near the median centre of the cluster,
while if the intracluster distance of a sample is larger than
that of the whole cluster, then it must be located at the edge
of the cluster. The calculation formula of the sample
intracluster distance is as follows:

Dy= ) E(CuCy) (1)

jeCoj#i

where E represents the Euclidean distance between two
samples, C, represents all sample points in cluster A, and
C,; and C,; represent a certain point and other different
sample points in cluster A, respectively, and the sum of the
Euclidean distances between a certain point and all other
sample points in this cluster is calculated. Compared with
the cluster centre points obtained by averaging all the



Computational Intelligence and Neuroscience

Ll e

A\
CNN : Feature
| Iﬁ’ | extraction
I
I
I
I
/

ST T T T T TN

———————————————

A ® . ! ®
AAg gl !
|
e \“!!___!!_!!_!!: k ______________ %
Credible sample
selection
S Gt e
1 4 \ ’
A .0"
Model optimization N A - ~ .

= Style transfer
- -+ Model pretraining
—— Forwardpropagation

Sample processing

—— Backpropagation

F1GURE 2: Overview of the SMCC method. First, we use SPGAN [51] to transfer the image style of the source domain to images with styles
similar to the target domain style while preserving the person identity, and we pretrain the CNN model on these data. After that, HDBSCAN
[56] is performed on the feature vectors obtained by feature extraction based on the target domain data of the CNN model. Due to the noise
in the labels, we select credible samples according to the IDC and KCP of the samples to optimize the CNN model by the batch hard triple

loss [57] and softmax cross-entropy loss.

feature vectors in the cluster, the points selected by our
SMCC method are near the median centre of the cluster
based on the sample’s IDC, and the median centre points
of the cluster are not greatly offset as the cluster centre
points by the interference of outliers. The median centre
point of a cluster is highly stable and reflects the central
characteristics of the cluster [58]. It is worth noting that
we do not directly calculate and sort the distances from
the different sample points to the median centre of each
cluster, but rather calculate the sum of the distances from
each sample point to all other sample points in the cluster
one by one because the distances obtained by the latter
method are more accurate and better reflect the position
information of the samples in the feature space. With this
characteristic, we can take the IDC as the measurement
criterion and select a sample located in the median centre
of the cluster. Different from selecting a fixed distance as
the threshold, we consider that the spatial distributions of
different clusters may be different, so there is no excellent
general distance threshold suitable for all clusters.
Therefore, we calculate the intracluster distances of all
samples in each cluster, establish a ranking list of intra-
cluster distances from small to large, and select the first M
samples from the ranking list as credible samples. In this

way, we finally obtain the number of clusters multiplied by
M credible samples for model training.

3.3. K-Reciprocal Nearest Neighbour Cluster Proportion.
In addition to taking the IDC of each sample as the credible
sample measurement criterion, we also take the spatial
distribution of the K-reciprocal nearest neighbour samples
of the current sample as another credible sample mea-
surement criterion. The K-reciprocal nearest neighbour list
of a sample can reflect the potential similarities of other
samples near the current sample and accurately judge the
confidence of the corresponding pseudolabels. Therefore, we
propose the K-reciprocal nearest neighbour cluster pro-
portion (KCP) to determine whether a given sample is
credible. The equation for the KCP is as follows:

Ryep (x) = Zx,vd;(v(x,)“i’ (2)

where K is the number of samples that are the K-reciprocal
nearest neighbour of sample y;,,

1, andy; € C,,
= { Xt X t (3)
0, otherwise,



where «; is the number of sample points in K-reciprocal
nearest neighbour list K (y,) that belong to the same cluster
as the current sample point, and Rgcp (y,) € [0, 1]. We find
that the KCP can reflect the neighbourhood information of a
sample near the current sample and judge whether the
pseudolabel obtained by clustering is accurate. We regard
samples larger than the KCP threshold as credible training
samples; we regard samples less than the KCP threshold as
unreliable samples. Finally, we select credible training
samples according to the IDC and KCP measurement
criteria.

3.4. Intercluster Distance Measurement. We not only pro-
pose the IDC credibility measurement but also propose a
new measurement of intercluster distance, that is, according
to the degree of the IDC within the same cluster, a dy-
namically weighted intercluster distance is established and is
defined in the following formula:

1
Dab_—

- E > >
n,n, %j (C“" Chf) (4)

ieC,,jeC,

where 1, and »;, represent the numbers of samples in cluster
A and cluster B, respectively, C, and C,, represent clusters A
and B, respectively, and 9;; is the dynamic weight where its
value is determined by the positions of the two samples in
the intercluster distance ranking list. For samples with
higher confidence at the top of the ranking list, we assign
larger weights; in contrast, for samples with lower confi-
dence at the bottom of the ranking list, we assign smaller
weights. Equation (4) fully considers all the sample points
from the two clusters in the clustering process, but for the
samples with lower confidence, we reduce their contribution
to the distance measurement. The dynamic weighting
method can fully explore the spatial information of all
samples during cluster merging, focus more on the valid
information of credible samples, reduce false label noise that
misleads the clustering results, and make the clustering
results more accurate. The batch hard triplet loss and
softmax cross-entropy loss are used in the loss function for
source domain pretraining, and batch hard triple loss is used
in the target domain, where the softmax cross-entropy loss is
defined as follows:

P K e Jai i
Lsoﬁmax:_zzlog C Wiy (5)

where y, ; is the label of image x,, ;, P is the number of person
identities, and K is the number of people with this identity.
In addition, the batch hard triplet loss is defined in the
following equation:

hardest positive

P K
Lo = 2. 2+ g E(X Xp) = min B(X0X;) |
p=1... j=Le
n=1..K

hardest negative

i=1 a=1

(6)
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where X! is the anchor sample, X{, is the hard positive
sample of X, and X7, is the hard negative sample of X’ . The

overall process of our proposed method is described in
Algorithm 1.

4. Experiment

4.1. Dataset. Experiments were conducted on the Market-
1501 dataset and DukeMTMC-reID dataset to evaluate the
effectiveness of the SMCC method. The Market-1501 [24]
dataset is a popular dataset for person re-ID, and it contains
32668 people images with 1501 identities. The training set
consists of 12,936 images with 751 identities, the test set
consists of 19,732 images of 750 identities, and the query set
consists of 3368 images. The DukeMTMC-reID [25, 26]
dataset consists of 16,522 training set images with 702
identities captured by 8 different cameras, 2228 query set
images of 702 identities, and 17,661 gallery images.

4.2. Implementation Details. We initialize the parameters
of ResNet-50 [59] on ImageNet [60] and use it as the
backbone of the model. We resize the input image to
256 x128 and enhance the diversity of the samples by
horizontal flipping, random cutting, and erasing. To
obtain a model adapted to the source domain, we use
SPGAN [51] to transfer the style of the images in the
source domain and generate a style transfer dataset to
pretrain the model. After that, we implement the
HDBSCAN method to cluster the samples and generate
pseudolabels and pseudolabels’ confidence levels
according to the IDC value of each sample within the
cluster. In the process of clustering, space transformation
is performed to establish the minimum spanning tree. In
the established HDBSCAN tree, the distance of samples
within the cluster is sorted, and the weight of sample
points is assigned according to the ranking. The weight of
credibility is used to recalculate the distance of mutual
reachable between samples, which range from 0.1 to 0.9.
After that, the reachable distance between samples is
sorted, the cluster hierarchy is compressed, and the
clustering results are finally extracted. The unclustered
outliers are discarded at the end of the clustering process.
We select the first eight samples from each cluster
according to the IDC ranking list. The threshold of the
KCP measurement is set to 0.7. We regard sample points
with high IDCs that are greater than the KCP threshold as
credible samples. We generate a new credible dataset
containing credible samples to fine-tune the model. The
loss function of SMCC consists of the hard batch triplet
loss [57]. We set the SGD optimizer’s initial learning rate
to 6 X 107° and its momentum to 0.9. The whole training
process has 30 iterations, and each iteration contains 80
epochs. When the loss function converges, we test the
model on gallery set and get the highest mAP (70.2%) after
the 21st iteration on the Market-1501 dataset. And, we test
the model on gallery set and get the highest mAP (63.4%)
after the 23rd iteration on the DukeMTMC-relD dataset.
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4.3. Ablation Studies. To verify the effectiveness of each
criterion of our proposed SMCC method, we conduct ex-
tensive experiments on the Market-1501 dataset and
DukeMTMC-relID dataset. We use the source domain im-
ages after style transfer to pretrain the model, cluster the
model with the HDBSCAN method, and use this model as
the baseline for ablation studies to explore the improve-
ments in model performance yielded by the IDC and KCP
criteria. The comparison results are shown in Tables 1 and 2.
In Table 1, the DukeMTMC-relD dataset is the source
domain and the Market-1501 dataset is the target domain. In
Table 2, the Market-1501 dataset is the source domain and
the DukeMTMC-reID dataset is the target domain.

Tables 1 and 2 show that the supervised model is trained
and tested on the same dataset, so the Rank-1 and mAP on
the Market-1501 dataset reach 92.0% and 80.9%, respec-
tively. However, when we directly apply the model trained in
the source domain to the unlabelled Market-1501 dataset,
the Rank-1 and mAP are significantly reduced to 48.7% and
25.1%, respectively, due to the existence of domain shift. This
is also one of the reasons why person re-ID in the closed
world cannot be effectively implemented. Rather than ex-
ecuting a direct transfer, we use SPGAN to transfer the style
of the source domain images to the labelled images, whose
style is similar to the style of the target domain, and use them
as pretraining samples. After that, we fine-tune the model
with the pseudolabels obtained by the HDBSCAN method.
The performance obtained by the baseline model is better
than that obtained by direct transfer.

Next, we introduce the IDC measurement criteria with
respect to the baseline to select credible samples for training
the model. After the introduction of the IDC, the Rank-1 and
mAP of the model on the DukeMTMC-relD dataset are
improved by 5.3% and 4.6%, respectively. Similarly, after the
introduction of the IDC, the model’s Rank-1 and mAP on
the Market-1501 dataset improve by 3.6% and 3.7%, re-
spectively. The experimental results show that the IDC can
select more credible samples for training. Starting from the
baseline, we separately introduce the KCP measurement
criterion as the method of credible sample selection. After
introducing the KCP, the Rank-1 and mAP of the model on
the DukeMTMC-reID dataset are improved by 4.1% and
3.0%, respectively. Similarly, after the introduction of the
KCP, the Rank-1 and mAP of the model on the Market-1501
dataset are improved by 2.7% and 2.8%, respectively. This
shows that the KCP can improve the performance of the
model from the perspective of the spatial distribution of the
K-reciprocal nearest neighbour samples. We set different
KCP thresholds for the baseline on Market-1501 and
DukeMTMC-reID to determine an optimal threshold. As
shown in Figure 3, when the KCP threshold is 0.7, the model
performs best. When the KCP threshold is low, the noisy
samples are still regarded as credible samples for optimizing
the model. Although a small portion of the falsely labelled
samples are filtered out, the performance improvement
achieved by the model is relatively weak. With the increase in
the KCP threshold, the CMC and accuracy score of the
model reach their maximum values. When the KCP
threshold is greater than 0.7, the number of credible samples

decreases due to the high threshold, which inevitably leads to
the overfitting problem, and the robustness of the model is
gradually reduced. In addition, we introduce the IDC and
KCP to the baseline at the same time; hence, the Rank-1 and
mAP scores increase by 8.7% and 11.9% on DukeMTMC-
reID and 6.5% and 8.0% on Market-1501, respectively.
Although the IDC and KCP are two different confidence
measurement criteria, most of the credible samples selected
by these two methods meet these two conditions simulta-
neously. We also evaluate different clustering methods. The
performance of these clustering methods under the same
network structure is shown in Tables 3 and 4.

As seen from Tables 3 and 4, the K-means algorithm, as
one of the traditional partition clustering methods, has
performance that is heavily dependent on the selection of the
initial points and the value of K, and the clustering results are
easily affected by random initial points; thus, the algorithm is
not sufficiently stable. It obtains an mAP of 63.1% and a
Rank-1 of 81.3% on the Market-1501 dataset. The CURE [61]
hierarchical clustering algorithm, despite its great perfor-
mance in complex spaces, is strict in terms of its parameter
settings and is sensitive to spatial data density. It yields a
5.3% map improvement and 3.6% Rank-1 improvement
compared to the K-means algorithm. Additionally, as a
hierarchical clustering algorithm, the BIRCH [62] algorithm
can quickly obtain clustering results by constructing a
clustering feature tree and clustering the nodes of the
clustering feature tree, but the clustering results are some-
what different from the actual feature distribution. In
contrast, the DBSCAN [63] algorithm is able to resist noise
and cope with different cluster structures. However, our
SMCC method using HDBSCAN is superior to other
clustering algorithms. On the DukeMTMC-reID dataset, we
obtain 63.4% mAP and 79.1% Rank-1, which are 1.7% and
1.4% higher than those of CURE and 1.3% and 1.1% higher
than those of DBSCAN, respectively. Our method can select
credible pseudolabels from each cluster for model training
after obtaining clustering results, avoid the damage caused
by outliers to the stability of the model, and exhibit better
performance under different densities.

The above experimental results prove that the SMCC
method improves the model performance by selecting
samples. In the feature space, based on the positions of the
samples, it not only avoids the abnormal selection of sample
points, but the KCP criterion used to simultaneously explore
the K-reciprocal nearest neighbour also enables the pro-
posed method to avoid the selection to samples far from the
median centre which may cause misleading results in the
training process. Together, these two criteria can promote
each other and better cope with the challenge of excessive
outliers with respect to the stability of the model during
training.

4.4. Comparison with the State-of-the-Art Approach. We
compare the proposed SMCC method with the state-of-the-
art UDA person re-ID method. The experimental training
set is DukeMTMC-relD, the test set is Market-1501, and vice
versa. The comparison results are shown in Tables 5 and 6.
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Output: Model M
(1) Transfer the image style of S to S by T
(2) Pretrain model M on S
(3) fori=1to N do
(4)  Extract feature representation F from 7 by M

(9) Fine-tune model M with the credible sample dataset
(10) end for

Input: Source dataset S, Target dataset 7, Maximum iteration N, Style Transfer Model T

(5) Calculate the pairwise distance between each pair of samples

(6) Calculate the distance between each pair of clusters according to equation (4), and generate an »n x n distance matrix C
(7)  Merge clusters and generate pseudolabels Y by clustering

(8)  Select credible samples with high confidence according to equations (1)-(3)

ALGORITHM 1: Stable median centre clustering.

TasLE 1: Ablation studies regarding SMCC on Market-1501. Supervised model: the re-ID model for which training and testing are
conducted in the target domain. Direct transfer: the re-ID model pretrained in the source domain is directly transferred to the target
domain. Baseline: the re-ID model uses SPGAN to conduct style transfer on the images for pretraining and then performs the HDBSCAN
method. IDC: the intracluster distance confidence. KCP : the K-reciprocal nearest neighbour cluster proportion.

DukeMTMC-reID — Market-1501

Method
Rank-1 Rank-5 Rank-10 mAP
Supervised model 92.0 97.4 98.4 80.9
Direct transfer 48.7 69.5 76.9 25.1
Baseline 77.8 85.7 89.1 58.3
Baseline + IDC 83.1 92.2 95.5 62.9
Baseline + KCP 81.9 91.8 93.9 61.3
Baseline + IDC + KCP 86.5 94.6 96.7 70.2
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FiGUure 3: The CMC and accuracy score of the model under different KCP thresholds. (a) Market-1051 dataset. (b) DukeMTMC-reID

dataset.

The experimental results demonstrate the efficiency of our
SMCC method.

Tables 5 and 6 show that although PTGAN [50], SPGAN
[51], HHL [15], and CR-GAN [52] can improve the model
performance, CR-GAN outperforms other style transfer
methods. Although it improves the performance of the
model, due to the lack of utilization of unlabelled target
domain data, their performance is slightly inferior to that of

the UDA person re-ID method which generates false labels
by clustering. We also compare the EANet method [64],
which aligns the body’s key points, and our method obtains
mAP and Rank-1 scores that are 18.6% and 8.5% higher than
those of EANet, respectively. CAMEL [16], a method that
attempts to align image feature space information under
different views, also fails to fully explore label information.
In addition, compared with the UDA re-ID method which
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TaBLE 2: Ablation studies regarding SMCC on DukeMTMC-relD.

Market-1501 — DukeMTMC-relD

Method

Rank-1  Rank-5 Rank-10 mAP
Supervised model 82.6 92.1 94.6 70.2
Direct transfer 29.7 44.1 50.4 16.2
Baseline 72.6 82.0 85.3 55.4
Baseline + IDC 76.2 84.9 87.7 59.1
Baseline + KCP 75.3 83.5 87.0 58.2
Baseline + IDC + KCP 79.1 86.8 89.1 63.4

TaBLE 3: Performance of different clustering algorithms on the
Market1501 dataset.

. DukeMTMC-reID — Market-1501
Clustering method

mAP Rank-1 Rank-5 Rank-10
K-means 63.1 81.3 88.0 90.9
CURE [61] 68.4 84.9 93.1 94.7
BRICH [62] 68.9 84.0 92.4 93.1
DBSCAN [63] 69.5 85.6 93.3 95.6
Ours 70.2 86.5 94.6 96.7

TaBLE 4: Performance of different clustering algorithms on the
DukeMTMC-reID dataset.

) Market-1501 — DukeMTMC-relD
Clustering method

mAP Rank-1 Rank-5 Rank-10
K-means 58.4 74.1 82.3 84.9
CURE [61] 61.7 77.6 84.4 87.2
BRICH [62] 61.4 77.3 84.0 86.6
DBSCAN [63] 62.1 78.0 85.2 88.1
QOurs 63.4 79.1 86.8 89.1

TaBLE 5: The comparison of our proposed SMCC method with the
state-of-the-art method on Market-1501.

DukeMTMC-reID — Market-1501

Method
mAP Rank-1 Rank-5 Rank-10

PTGAN [50] — 38.6 — 66.1
SPGAN [51] 228 51.5 70.1 76.8
HHL [15] 314 62.2 78.8 84.0
CR-GAN [52] 54.0 77.7 89.7 92.7
EANet [64] 51.6 78.0 — —
CAMEL [16] 26.3 54.5 — —
PAUL [54] 40.1 68.5 82.4 87.4
UDAP [7] 53.7 75.8 89.5 93.2
PAST [20] 54.6 78.4 — —
SSG [55] 58.3 80.0 90.0 92.4
AD-cluster [46] 68.3 86.7 94.4 96.5
SSG++ [55] 68.7 86.2 94.6 96.5
Ours 70.2 86.5 94.6 96.7

generates pseudolabels by clustering, the UDAP [7] method
performs clustering on the target domain and achieves better
results than the style transfer method. Regarding the clus-
tering-based methods, the PAUL [54] and SSG [55] ap-
proaches, which combine global features and local features,
cannot ensure the correctness of the pseudolabels generated
by clustering, and the model performance easily decreases
with incorrect labels. Our method outperforms the above

TaBLE 6: The comparison of our proposed SMCC method with the
state-of-the-art method on DukeMTMC-reID.

Market-1501 — DukeMTMC-reID

Method
mAP Rank-1 Rank-5 Rank-10

PTGAN [50] — 274 — 50.7
SPGAN [51] 22.3 41.1 56.6 63.0
HHL [15] 27.2 46.9 61.0 66.7
CR-GAN [52] 48.6 68.9 80.2 84.7
EANet [64] 48.0 78.0 — —
CAMEL [16] — — — —
PAUL [54] 53.2 72.0 82.7 86.0
UDAP [7] 49.0 68.4 80.1 83.5
PAST [20] 543 72.4 — —
SSG [55] 534 73.0 80.6 83.2
AD-cluster [46] 54.1 72.6 82.5 85.5
SSG++ [55] 60.3 76.0 85.8 89.3
Ours 63.4 79.1 86.8 89.1

methods by selecting credible samples to reduce the mis-
leading label noise of the model. With the continuous op-
timization of the feature spatial distribution, an increasing
number of credible samples are added into the training
process, which effectively reduces the influence of over-
fitting. Compared with the semisupervised person re-ID
method SSG++ [55], our method also has some advantages.
AD-Cluster [46] adopts a GAN to enhance the image di-
versity under the same camera settings and uses adversarial
learning to optimize the resultant model. Our SMCC
method obtains a Rank-1 score that is 0.2% less than the
Rank-1 score of AD-cluster on the Market-1501 dataset, but
the other evaluation indexes are the best among all methods.
The SMCC method can fully explore the feature space
distribution of the target domain and select credible sample
points from the current cluster and adjacent points by the
IDC and KCP, which can reduce the impact of label noise on
the model during the initial stage of training and ultimately
improve the performance of the model. The experimental
results verify the effectiveness of our proposed SMCC
method.

5. Conclusions

In this paper, stable median centre clustering for the un-
supervised domain adaptation person re-ID method is
proposed. The credible samples near the median centres of
clusters are selected by the intracluster distance confidence
degrees. We also use the K-reciprocal neighbour cluster
proportion of the sample to ensure that the selected samples
are relatively concentrated in the spatial distribution and
reduce the influence of outliers with label noise on model
training. Furthermore, we propose a new method to measure
intercluster sample distances according to the intracluster
distance confidence ranking list; this method assigns dif-
ferent weights to different samples, increases the contri-
butions of credible samples to the distance calculation to
reduce the impact of label noise, and pays more attention to
the contribution of stable samples to training, while ensuring
the calculation of all sample points. This forces the model to
fully explore the potential similarities among credible
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samples. The experimental results demonstrate the effec-
tiveness of our SMCC method compared to that of the state-
of-the-art methods.
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