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SUMMARY

Until recently laboratory tasks for studying behavior were highly artificial, simpli-
fied, and designedwithout consideration for the environmental or social context.
Although such an approach offers good control over behavior, it does not allow
for researching either voluntary responses or individual differences. Importantly
for neuroscience studies, the activity of the neural circuits involved in producing
unnatural, artificial behavior is variable and hard to predict. In addition, different
ensemblesmay be activated depending on the strategy the animal adopts to deal
with the spurious problem. Thus, artificial and simplified tasks based on re-
sponses, which do not occur spontaneously entail problemswithmodeling behav-
ioral impairments and underlying brain deficits. To develop valid models of hu-
man disorders we need to test spontaneous behaviors consistently engaging
well-defined, evolutionarily conserved neuronal circuits. Such research focuses
on behavioral patterns relevant for surviving and thriving under varying environ-
mental conditions, which also enable high reproducibility across different testing
settings.

CONVENTIONAL BEHAVIORAL TESTING AND ITS DRAWBACKS

You are alone. Locked in a strangely shaped, grey-walled space with no way out. You were transported here

by a creature of another, definitely more powerful species that could easily do you harm. Your stress

response is through the roof. Everything looks and feels strange as your surroundings are like nothing

you have ever seen before. You do not know that, but now you are expected to perform; solve a task or

behave in a specific way testifying to your motor, memory, or social skills. How well do you think you would

do under such circumstances? More importantly, what are the chances your behavior measured in that sit-

uation would actually reflect the actions and abilities you normally present in your everyday life? This kind of

scenario sounds more like a bad dream than a purposely crafted experimental setup meant to faithfully

assess specific functional characteristics of a living individual. Nevertheless, this is exactly how most labo-

ratories approach testing animal behavior and its neural underpinnings.

The most commonly discussed and, at the same time, most problematic aspect of conventional behavioral

testing is its notorious irreproducibility (Figure 1) (Mandillo et al., 2008; Button et al., 2013; Gilmore et al.,

2017; Kafkafi et al., 2018; Bodden et al., 2019; Richter, 2020; Saré et al., 2021; Andrews et al., 2018). Indeed,

the problem has been recognized as a significant threat to both the reliability of scientific discoveries and

their potency to influence policymaking and the direction of societal changes (Morrison, 2014; Nature Spe-

cial Issue on Challenges in irreproducible research, 2018). It has been argued that in animal research the

prevalence of irreproducible data can be as high as 50 to 90% (Prinz et al., 2011; Collins and Tabak,

2014; Freedman et al., 2015). The well-recognized source of the issue is the variable quality of the testing

procedures, stemming from the stressfulness of the behavioral assays, and the lack of unified data interpre-

tation practices (Morrison, 2014). As a result, significant efforts have been put into establishing guidelines

for high-quality experimental design and analysis (Kilkenny et al., 2010; Nosek et al., 2016; Sert et al., 2018;

Smith et al., 2018). Now more than ever, adhering to the high reproducibility standards should be our pri-

ority (Gulinello et al., 2019). Unfortunately, due to its very nature, behavior is a complex phenomenon, and

measuring it in a standardized way poses significant challenges. Thus, recognizing and eliminating the fac-

tors confounding behavioral assessment is the indispensable first step toward improving reproducibility

(Camp et al., 2012; Gaburro et al., 2011; Pernold et al., 2019). Let us take a closer look at randomness

and biases introduced by the stressfulness of the experimental procedures. The top three factors signifi-

cantly intensifying experimental stress in animal subjects and thus promoting variable, erratic responses

are (1) contact with humans before and during the testing procedures, (2) artificial and unfamiliar design

of the testing environment, and (3) isolation anxiety (Beery and Kaufer, 2015; Chesler et al., 2002; Crabbe
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Figure 1. Issues arising from testing behavior under rigid laboratory conditions lead to notorious

irreproducibility of results obtained in the field of behavioral neuroscience

ll
OPEN ACCESS

iScience
Perspective
et al., 1999; Heinrichs and Koob, 2006; Pu�scian et al., 2016; Sandi and Haller, 2015; Sorge et al., 2014). The

influence of the last of these factors stems from the fact that most conventional assays test lone and some-

times also singly housed subjects. Although, as it was shown time and time again, isolating social animals

such as rodents leads to deterioration of their health and cognitive functions (Zelikowsky et al., 2018; Mum-

taz et al., 2018; Arzate-Mejı́a et al., 2020; Begni et al., 2020; Mudra Rakshasa and Tong, 2020).

On top of those considerations, there is a bigger issue of our ability to evaluate the data obtained with the

use of the traditional behavioral assays. The problem with being able to interpret the data in the context of

the role-specific behavior plays under naturalistic conditions is a serious limitation of classic behavioral as-

says. Meanwhile, the conventional wisdom in the community is that although classic behavioral tests have

their problems, at least they are simple, and the interpretation of the data is very straightforward. We argue

that nothing could be further from the truth. In fact, standardization of data reporting for even the very well-

established assays leaves a lot to be desired. In many behavioral tests, there is little agreement as to what

exact measures to use, and the between-laboratory variability in data analysis is huge (Andrews et al., 2018;

Bodden et al., 2019; Chesler et al., 2002; Crabbe et al., 1999; Mandillo et al., 2008; Miyakawa, 2020; Morri-

son, 2014; Rudeck et al., 2019).

Even more importantly, the reasoning underlying our understanding of data is oftentimes based on the as-

sumptions as to how animals ‘‘should’’ behave, rather than rooted in the ethology of a given species. The

danger of such an approach was highlighted by the arguments of Paul Willner, who argued that one of the

critical criteria for validation of the animal models of human disorders is their face validity. Face validity re-

fers to the usefulness of a given test for measuring what the researchers aim to measure (Willner, 1986,

1997). For example, in one of the most commonly used assays of social behavior, the three-chambered

apparatus, researchers are supposed to assess how sociable a tested animal is, based on its propensity

to approach an unfamiliar conspecific, restrained under a small wire cup (Crawley, 2004; Duncan et al.,

2004; Yang et al., 2011). In our view, this kind of thinking about behavior is fundamentally flawed. From

the point of view of natural behavior, readily approaching an unknown individual in a situation that is

already ambiguous might simply be dangerous. In fact, field studies performed in rodents show that

they tend to avoid encounters with unfamiliar conspecifics and, if forced to interact openly, often become

aggressive (Lopucki, 2007). This piece of knowledge about the ethology of the species shines a new light on

the interpretation of data from conventional behavioral assays of sociability and is just an example of how a

better understanding of natural behavioral repertoire may—or dare we say, should—inform our laboratory

practices. We argue that similar problems with data interpretation can be identified across many popular

behavioral assays. Pursuing investigation of not only artificially evoked but also presumptively construed

behavioral responses may lead to conclusions that have little to do with naturalistic reality. Persistent usage

of such a tool may thus result in us missing the point.

Another rarely discussed issue is the limited utility of the conventional behavioral tests for studying individ-

ual differences. In majority of cases, although tested individually, animals are thought of as clones,
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expected to behave similarly, which can be then reflected as oscillating around the group mean. The

greater the individual differences, the bigger the reason for concern on the part of the researchers, as

the significant data variability hinders the conventional statistical approach. Not so long ago the argument

that the more complex testing environment might increase the variability of behavioral outcomes was a

dominant reason for not even considering its implementation. Yet, as shown by Wolfer et al. (2004), enrich-

ing the environment does not hinder the reliability of the obtained results, while having significant advan-

tages for animal welfare (Balcombe, 2006; Bracke and Hopster, 2006; Loss et al., 2021; Voikar, 2020).

Of course, individual differences measured with one trial assay are highly artificial and more often than not

an artifact of a method itself. To tackle real behavioral specificity, animals must be provided with a signif-

icant level of freedom in when and how they respond to the testing situation. For that purpose, combining

housing and experimental environments seems to be the optimal choice. Indeed, systems allowing for

continuous behavioral assessment of the individuals kept in the home-cage settings are more and more

popular (Anpilov et al., 2020; Codita et al., 2012; de Chaumont et al., 2012, 2019; Endo et al., 2021; Forkosh

et al., 2019; Galsworthy et al., 2005; Howerton et al., 2012; Knapska et al., 2006, 2013; Krackow et al., 2010;

Pérez-Escudero et al., 2014; Pu�scian et al., 2014, 2016; Schaefer and Claridge-Chang, 2012; Shemesh et al.,

2013, 2016; Voikar et al., 2010; Weissbrod et al., 2013). Such an approach also provides a considerable

benefit of the possibility to measure higher-order behavioral strategies. As in most automated testing sys-

tems animals live in social groups, they have a chance of performing behaviors that would otherwise be

obsolete in a singly tested individual. Moreover, the considerable complexity of the homecage/experi-

mental environment makes it feasible to observe a much richer behavioral repertoire. Standard housing

cages used to keep laboratory animals provide greatly impoverished living conditions in comparison to

any natural habitat. Many automated assays help solve this problem due to the implementation of enrich-

ment, sometimes even resembling the most notable features of the rodent natural habitats (Blanchard

et al., 1995; Pu�scian et al., 2016; Foster, 2017; Herman and Tamashiro, 2017; Bove et al., 2018). Taken

together, arranging an intricate social and spatial environment gives insight into the complex actions.

Such investigation is simply impossible to execute by using conventional behavioral assays.
ARTIFICIAL ENVIRONMENT EQUALS ARTIFICIAL BEHAVIOR

Although behavior itself is a complex phenomenon, investigating its neural underpinnings adds another

layer of complexity. The dynamic character and intricate workings of the brain call for well-defined and

standardized experimental approaches, enabling dissection of the neural circuits involved in governing

specific actions. A common approach to solving this problem is the utmost simplification of the experi-

mental tasks. This strategy has been extremely successful in studying the neuronal background of well-

defined behavioral responses. A good example are elementary defensive responses, such as freezing in

the face of a threat when an animal is put into a small cage without any escape route. Behavioral testing

of such responses is easily replicable, shows low individual variability, and reliably mimics what is observed

in the natural environment, e.g., a rodent freezes when a predator is close and there is no chance of running

away (Clugnet and LeDoux, 1990; Iwata and LeDoux, 1988; Maren, 1996, 1999; Phillips and LeDoux, 1992).

Thus, measuring simple responses does not necessarily equate to performing misleading and unsound

behavioral testing, as long as it is rooted in the understanding of their natural function.

However, weargue that an oftentimes contrived environmentmay lead topresenting rigid or atypical behavioral

patterns (Figure 2). More problems arise when we aim to study more complex and variable behaviors, for

example, responses aimed at obtaining food.Most commonly, they are studied in the operant tests that require

a well-defined response, such as lever pressing, for the animal to get access to the reward (Balleine, 1992; Dick-

inson and Balleine, 1990; DiFeliceantonio and Berridge, 2012; Urstadt and Berridge, 2020). However, motivation

to get food depends onmany factors, including when an animal last ate and how afraid it is of the experimental

environment. The food-acquiring behavior is thus naturally variable. To reduce this variability, experimenters

deprive animals of food and use shaping procedures to facilitate learning of the desired response (Skinner,

1938). Although a lot was learned using this approach, artificially increasingmotivation leads to the loss of infor-

mation on the natural drive to find, get, and consume food. In addition, food deprivation is known to alter brain

function, thusputting in doubt the conclusions regarding neuralmechanisms studiedunder such conditions (Bu-

benik et al., 1992; Claassen, 1994; Karami et al., 2006; Talhati et al., 2014).

Another often neglected problem is the individual variability of the studied responses. One can easily ima-

gine that various individuals of the same species apply diverse strategies to acquiring food. We can expect
iScience 25, 104635, July 15, 2022 3



Figure 2. A contrived environment leads to rigid behaviors

(A) Stereotypic behaviors, such as pacing the fence, are often observed in captive wild animals living under conditions far

more simplistic than those of their natural habitats.

(B) By the means of extensive shaping, it is feasible to teach laboratory animals to perform very elaborate behaviors, which

never spontaneously occur in nature. Here a laboratory rat is taught to ‘‘play basketball’’ (see also: https://www.youtube.

com/watch?v=drnnulHw5CM).
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even more divergence in social interactions, which by definition involve at least two animals, who affect

each other’s responses in a very dynamic way. Further, animals living in a group naturally form social rela-

tionships, which have a strong impact on their behavior. Thus animals—even those very similar in terms of

their genetic background, such as mice of a given inbred strain—do care who they interact with. Neverthe-

less, neuroscientists often try to reduce behavioral variability by simplifying the testing conditions and

depriving animals of novelty and even isolating them. We argue that neuroscience is at a point where

we can efficiently investigate the neural underpinnings of individual variability in animal behavior. However,

to do it reliably we need well-standardized tests with a long observation time allowing for collecting a suf-

ficient amount of data to assess specific phenotypes.
ACCESSING INDIVIDUAL PHENOTYPE

By creating stable, well-structured habitats and recording many instances of spontaneous behavior in

group-housed animals we gain access to what they do voluntarily. Thus, instead of simplifying testing en-

vironments, nowadays many researchers make them more spacious and complex (Tecott and Nestler,

2004). The two main trends in measuring animal behavior more systemically are (1) tracking animals in

utmost detail, usually without prior assumptions about the function of the actions taken by the subjects

and then classifying behaviors using various (supervised or unsupervised) clustering algorithms and

(b) designing testing environments resembling vital features of ecological habitats to elicit natural behav-

ioral patterns. The latter approach is historically rooted in the field studies and ethology of the species most

commonly used in the neuroscience research, that is rodents (Amrein et al., 2004a, 2004b; Dell’omo et al.,

1998; Fiore et al., 1995; Galsworthy et al., 2005; Giorgio et al., 2012, 2012; Lipp et al., 2001; Peters et al.,

2015; Pu�scian et al., 2016; Spruijt et al., 2014; Spruijt and DeVisser, 2006; Vyssotski et al., 2002).
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Within the first framework, experiments are often conducted in spacious, highly environmentally enriched

arenas, where animals can interact with numerous objects and conspecifics (Anpilov et al., 2020; Arroyo-

Araujo et al., 2019; Balzani et al., 2018; Codita et al., 2012; de Chaumont et al., 2012, 2019; Endo et al.,

2021; Forkosh et al., 2019; Galsworthy et al., 2005; Genewsky et al., 2017; Goulding et al., 2008; Howerton

et al., 2012; Knapska et al., 2006, 2013; Krackow et al., 2010; Pérez-Escudero et al., 2014; Pernold et al., 2019;

Pu�scian et al., 2014, 2016; Robinson et al., 2018; Schaefer and Claridge-Chang, 2012; Shemesh et al., 2013,

2016; Singh et al., 2019; Voikar et al., 2010; Weissbrod et al., 2013). Scientists track animal behavior with the

use of cameras or radio-frequency-based identification (RFID) antennas. Other, more rarely used technol-

ogies include electromagnetic detection, sensor plate-, and infrared-based systems (Burman et al., 2018;

Iannello, 2019; Recordati et al., 2019; Voikar and Gaburro, 2020). Camera-based technology allows for high-

ly detailed analysis of every move animal makes and thus is the most commonly employed approach. How-

ever, two main limitations of video tracking occur when subjects enter the secluded spaces and when many

animals interact with one another in closeness, proximity (Voikar and Gaburro, 2020). Sometimes the latter

problem can be solved by color-marking the subjects. One of the most exciting developments in this field

are scripts and software packages allowing for precise tracking of the chosen points on animals’ bodies,

such as paws or snouts, and even reconstructing movements based on such data (Kane et al., 2020; Mathis

et al., 2018, 2020; Mathis and Mathis, 2020; Nath et al., 2019). On the other hand, in RFID-based experi-

ments, each animal is injected with an electronic chip encoding its individual number that can be registered

by the antennas placed anywhere within the testing environment. Thus, this technology allows for regis-

tering animal behavior that remains either out of sight, e.g. in shelters, tunnels, feeders, running wheels,

or when one wants to register many subjects crowded in a small space. The latter is a common problem

in research on social behavior in large groups of rodents. To make the most of both approaches, and at

the same time avoid their perils, some researchers combine the two technologies to improve quality of an-

imal tracking (de Chaumont et al., 2019).

On the other hand, in experiments conducted in systems mimicking essential characteristics of natural hab-

itats researchers root their testing methods in what is already known about natural behavioral patterns and

assess actions that are known to be ecologically relevant. For example, they use nosepoking as the basis for

instrumental conditioning inmice, as this behavior (in contrast to e.g. lever pressing) is readily performed as

a form of exploration and does not require shaping (Krackow et al., 2010; Endo et al., 2011; Knapska et al.,

2013; Pu�scian et al., 2014; Kiryk et al., 2020; Iman et al., 2021). Some testing environments imitate borrows

and tunnels as found in natural rodent habitats, to obtain activity and social behavior patterns resembling

those found in wild animals (Blanchard et al., 1995; Pu�scian et al., 2016; Foster, 2017; Herman and Tama-

shiro, 2017; Bove et al., 2018). Moreover, housing animals in spaces similar to those found in nature in com-

bination with testing naturally occurring behaviors allows researchers to design tasks best suited to engage

well-conserved neural mechanisms. As most such assays utilize RFID technology for animal identification

combined with other systems allowing to e.g. limit access to an attractive resource, such as food reward,

located somewhere within the territory to only one animal at a time. In addition, instrumental conditioning

with natural actions (operant behaviors) is also used in such research. For example, mice have to poke in a

specific hole to obtain access to sweetened water. Notably, some recent experiments allow for measuring

patterns of complex group behavior in a reliable, replicable way (Pu�scian et al., 2016; Winiarski et al., 2021).

Notably, it has been shown that implementing fully automated behavioral testing can be a successful strat-

egy for improving reproducibility (Arroyo-Araujo et al., 2019; Krackow et al., 2010; Pernold et al., 2019; Rob-

inson et al., 2018). Arguably, the presented approaches to studying behavior post new challenges. The

amount of data generated by such assays, especially when video-tracking is employed, requires a substan-

tial space for data storage. In addition, novel approaches to big data analysis constitute an exciting, how-

ever still only developing, area in behavioral neuroscience. Moreover, to access the brain mechanisms

underlying specific behaviors we need relevant methods of neuronal imaging and manipulation, which

can be employed in the automated testing systems i.e., wireless and well aligned to behavioral responses.
TOWARD VALID MODELS OF HUMAN DISORDERS

The issues with conventional behavioral testing are significantly slowing down the progress in proposing

novel therapeutic approaches to neurodevelopmental, neurodegenerative, and psychiatric disorders.

Indeed, if researchers encounter significant problems at the initial phase of phenotype assessment of

the animal models of the impairments, it is to be expected that reproducible in vivo testing of new
iScience 25, 104635, July 15, 2022 5



Figure 3. The behavior of the individuals depends on the environmental and social constraints

The diagrams illustrate differing social interactions under varying housing conditions.

(A) Mice amicably interact in the enriched, socially-adequate environment.

(B) Animals of the same strain present aggressive behaviors and isolate themselves as a result of being subjected to

overcrowding and impoverished conditions.
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therapeutic strategies poses a major challenge. In our view, the lack of compelling developments in this

area over the last decades is in no small part due to the oversimplified approach to studying behavior

(Figure 3).

One of the most notable consequences of this problem are inconsistencies in reporting phenotypes of

mouse models of autism. Sadly, it is common that researchers from different laboratories reach opposite

conclusions when assessing the behavior of animals with identical genetic mutations and background. An

example of this issue is well illustrated by the studies focused on the sociability of neuroligin-3 mutant mice,

which are considered one of the most relevant animal models of this disorder (Tabuchi et al., 2007; Chad-

man et al., 2008).

However, at this point scientists are able to design reliable and replicable assays using automated testing

equipment, allowing for long observation times and taking multiple behavioral measures simultaneously.

Importantly, by using such tests, we are now capable of evaluating phenotypes that would otherwise be

difficult or impossible to capture. The latter issue can be illustrated by two examples. The effects of fluox-

etine, the SSRI commonly used to treat depression, on the behavior of various mouse models of this dis-

order are often variable. Measuring the effects of fluoxetine in animals housed in either enriched or impov-

erished conditions for a long time revealed that the variability in the drug effects could be explained by the

type of environment in which it is administered, with an enriched environment exerting beneficiary effects

(Alboni et al., 2017). Such studies require long observation of animals living in a stable, friendly environ-

ment, an approach executed most efficiently with the use of automation (Pu�scian et al., 2021). The second

example illustrates how automated tests can help to stratify the phenotypes of experimental animals. The

long-term observations of alcohol drinking behavior in laboratory mice group housed in automated
6 iScience 25, 104635, July 15, 2022
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systems show that the propensity to alcohol addiction differs across individuals. Based on such data, re-

searchers are able to select mice prone to alcohol addiction, which offers a model much closer to clinical

observations than that based on testing the average behavior of randomly chosen animals (Radwanska and

Kaczmarek, 2012). Thus, strategies enabling testing voluntary behavior can be effectively used to study the

underlying mechanisms and potential therapeutic approaches (Stefaniuk et al., 2017; Beroun et al., 2018).

We propose that especially in the case of studying animals with significant behavioral deficits, which can be

exacerbated by stress, testing should be performed in the setups allowing for the spontaneous manifesta-

tion of symptoms. As previously discussed, engaging well-defined and well-evolutionarily conserved neural

circuits is most probable under such conditions, which may be critical for our ability to reliably test novel

therapeutic approaches.
BLUEPRINT FOR MEASURING NATURAL BEHAVIOR

Long-term assessment of animal behavior in the complex physical and/or social environment is most effec-

tively achieved by the employment of automation. Simultaneously, recording the actions of many subjects

for days or even weeks generates a vast amount of data that need to be carefully analyzed. As previously

mentioned, such a strategy poses a technical challenge but is necessary to overcome variability, which

unavoidably increases with test complexity. The researchers collect more data, observe animals for

extended periods, record more behavioral measures, and replicate experiments to tackle the variability.

The latter is critical when testing animals within social groups. As the group composition may affect social

behavior and learning efficacy (Kiryk et al., 2011; Pu�scian et al., 2016), it is vital to test the hypothesis in

several cohorts of animals and, when possible, carefully control group composition. For instance, when

evaluating genetically modified animals and their wild-type counterparts, the experiments conducted in

groups of mixed genotypes may yield different results than those performed in subjects of particular ge-

notypes tested separately (Kiryk et al., 2011; Kalbassi et al., 2017; Sledziowska et al., 2020). Notably, longer

observation time and simultaneous recording of multiple behavioral measures enable scientists to reveal

the behavioral patterns that are stable over time (Krackow et al., 2010; Codita et al., 2012). Further, to cap-

ture the whole picture of a given phenotype, one needs to test males and females in parallel (Shansky and

Murphy, 2021). To efficiently collect and analyze such a significant amount of data, we need high-

throughput, cost-effective and reliable assays, and data analysis pipelines. Fortunately, the fully automated

behavioral systems meeting these criteria have already been available for some time (Anpilov et al., 2020;

Arroyo-Araujo et al., 2019; Balzani et al., 2018; Codita et al., 2012; de Chaumont et al., 2012, 2019; Endo

et al., 2021; Forkosh et al., 2019; Galsworthy et al., 2005; Genewsky et al., 2017; Goulding et al., 2008; Ho-

werton et al., 2012; Knapska et al., 2006, 2013; Krackow et al., 2010; Pérez-Escudero et al., 2014; Pernold

et al., 2019; Pu�scian et al., 2014, 2016; Robinson et al., 2018; Schaefer and Claridge-Chang, 2012; Shemesh

et al., 2013, 2016; Singh et al., 2019; Voikar et al., 2010; Weissbrod et al., 2013).

As discussed, testing groups of animals in a relatively complex environment poses certain challenges. Is it

really necessary to add additional layers of complexity by performing field experiments or testing outbred

or even wild animals? We argue that the answer to this question is yes. To understand behavior, i.e., when

and why given patterns of actions occur, we need to observe diverse animal strains, if possible in their nat-

ural habitats, and learn how animals behave in their everyday lives (Lahvis, 2017a, 2017b).

It is noteworthy that some behaviors are especially difficult to interpret when tested in the laboratory. For

instance, social hierarchy in a safe laboratory environment full of foodmay not be as vital as it is under mark-

edly more difficult natural conditions. The threat of predators, scarcity of food, and low temperatures—in

the presence of such challenges better access to resources may be crucial for survival. What makes partic-

ular animals leaders or subordinates within the group (Figure 4)? What are the advantages and costs of be-

ing a leader? In the laboratory, scientists most commonly study social hierarchy in male mice, often

enhancing it by introducing several aggressive encounters with other animals (Wang et al., 2011; Fan

et al., 2019). Such conditions rarely occur in the natural conditions in which rodents rather avoid direct fights

(Lopucki, 2007). The tube test commonly used to evaluate (and establish) social hierarchy offers clear-cut

results, by ordering mice within a group, which some researchers consider a practical advantage when

studying underlying neuronal pathways. Nevertheless, how do we know if neural mechanisms discovered

under such conditions are also involved in a naturally occurring hierarchy? Which behaviors from the reper-

toire recorded in the laboratory are also beneficial in the real world? What circuits play a role in obtaining

and maintaining the territory? Finally, are inbred laboratory animals suitable models to study the
iScience 25, 104635, July 15, 2022 7



Figure 4. Graphic representation of social networks in humans (A) and mice (B) illustrating varying within-group positions and relations

Social network structures in both species are visualized as node-edge graphs. The nodes represent subgroups (A) or individuals (B).

(B) The bigger the node, the higher the position within the social structure. The thickness of the edges between the nodes represents the strength of the

social connections—the thicker the lines, the more frequent the interactions.
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mechanisms of dominance and leadership? In our view, these questions can be addressed only by

combining the knowledge gathered in the field studies with wild animals as subjects, with discoveries

made by testing both inbred and outbred animals under conditions resembling the most essential charac-

teristics of natural habitats.

SUMMARY AND OUTLOOK

Studying artificial behavior results in eliciting artificial, and to a great extent randomly, ad-hoc-recruited circuits;

this in turn leads to significant within- and between-subject variability hindering our ability to draw conclusions.

Indeed, becausebehavior studied in the artificial experimental designs is highly variable and hard to predict, the

same must be true about the underlying neuronal activity. At the same time, it should be acknowledged that

there are some avenues of research where testing constrained behaviors is still the best or even the only option.

Studies on sensation in which scientists strive to test the limits of perception are a notable example. Such exper-

iments oftentimes require highly controlled environments and might make experimentation in multiple freely

moving animals difficult to implement, despite all the progress in the field.

Moreover, it cannot be overlooked that modifying existing experimental protocols to comply with the need

for addressing the ecological reality would require significant efforts on the part of the scientists and finan-

cial support from the funding bodies. The latter might even require lobbying for fund allocation on the part

of the scientists. Introducing ethologically sound experimentation calls for additional laboratory space,

which also may be a considerable barrier to making a systemic change. In addition, still many behavioral

neuroscience labs lack the expertise needed for efficient implementation of automation and digitalization,

which makes focusing on ethologically relevant research more of a challenge. To be able to tackle all those

issues, broad collaboration among scientists seems indispensable. Community efforts, already undertaken

by researchers in the field, such as moving toward more open science, and sharing experimental protocols

and scripts for data analysis, might constitute a cornerstone of the paradigm shift. Indeed, to address the

problem of behavioral data irreproducibility, standardization of protocols and practices is of paramount

importance, especially because researchers will have to face overcoming standards of practice that have

been with us for decades. We argue, that there is no better way to do it than by continuing the efforts of

openly sharing instructions and algorithms, as has already been done by so many.

Further, we suggest that gradual implementation of the new approach starts by changing the most critical

factors influencing well-being and ability to express species-specific behaviors by the laboratory animals.

The straightforward first step in this process might be improving the housing conditions by keeping animals
8 iScience 25, 104635, July 15, 2022
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in larger social groups in enriched environments. Another relatively straightforward strategy is the intro-

duction of automated behavioral testing, which has already been shown effective in improving reproduc-

ibility, in no small part due to cutting human interference (Krackow et al., 2010; Pu�scian et al., 2016). Appli-

cation of those solutions would open new avenues for studying more naturalistic, unconstrained actions

and including sex-, genotype-, and strain balancing into the mix. Even more importantly, it would consti-

tute a great improvement in and of its own.

Nevertheless, we argue that studying behavior under more naturalistic settings consistently engaging well-

defined, evolutionarily conserved neural circuits is the best way to address the reproducibility crisis in

behavioral neuroscience and beyond. The need for more ecologically relevant research has been ex-

pressed by many scientists, most notably the ones focusing on applying computational approaches to

ethology, neuroethology, and human neuroscience (Anderson and Perona, 2014; Eitan et al., 2022; Liberti

et al., 2022; Nastase et al., 2020; Sonkusare et al., 2019; Zhang et al., 2022; Zigelman et al., 2022; Rose et al.,

2021). Although it is still a challenge, combining the ecologically relevant behavioral research with

advanced methods of brain imaging, measuring neuronal activity, and manipulation of specific circuits

has become more and more feasible over the last years. Even though such methodologies are not without

their challenges, we are at the point when newly developing technologies allow wireless recording/manip-

ulating many neurons at a time in group-housed animals (Anpilov et al., 2020; Cai et al., 2022; Caras and

Sanes, 2017; Inagaki et al., 2019; Li et al., 2022; Lu et al., 2018; Mayer et al., 2019; Montgomery et al.,

2015; Murphy et al., 2016; Pinnell et al., 2015; Yang et al., 2021; Zong et al., 2022). Broader implementation

of those methodologies increases our chances of developing experiments, whose results will stand over

time and thus enable us to break the impasse in proposing new, effective therapeutic strategies.
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Hüttl, R.-E., Feldman, N., Berger, R., Dagan, A.,
Chen, G., Neumann, I.D., Wagner, S., Yizhar, O.,
and Chen, A. (2020). Wireless optogenetic
stimulation of oxytocin neurons in a semi-natural
setup dynamically elevates both pro-social and
agonistic behaviors. Neuron 107, 644–655.e7.
https://doi.org/10.1016/j.neuron.2020.05.028.
Arroyo-Araujo, M., Graf, R., Maco, M., van Dam,
E., Schenker, E., Drinkenburg, W., Koopmans, B.,
de Boer, S.F., Cullum-Doyle, M., Noldus, L.P.J.J.,
et al. (2019). Reproducibility via coordinated
standardization: a multi-center study in a Shank2
genetic rat model for Autism Spectrum
Disorders. Sci. Rep. 9, 11602. https://doi.org/10.
1038/s41598-019-47981-0.

Arzate-Mejı́a, R.G., Lottenbach, Z., Schindler, V.,
Jawaid, A., and Mansuy, I.M. (2020). Long-term
impact of social isolation and molecular under-
pinnings. Front. Genet. 11, 589621. https://doi.
org/10.3389/fgene.2020.589621.

Balcombe, J.P. (2006). Laboratory environments
and rodents’ behavioural needs: a review. Lab.
Anim. 40, 217–235. https://doi.org/10.1258/
002367706777611488.

Balleine, B. (1992). Instrumental performance
following a shift in primary motivation depends
iScience 25, 104635, July 15, 2022 9

http://BioRender.com
https://doi.org/10.1038/mp.2015.142
https://doi.org/10.1111/j.1460-9568.2004.03795.x
https://doi.org/10.1111/j.1460-9568.2004.03795.x
https://doi.org/10.1002/hipo.20018
https://doi.org/10.1002/hipo.20018
https://doi.org/10.1016/j.neuron.2014.09.005
https://doi.org/10.1016/j.neuron.2014.09.005
https://doi.org/10.1021/acschemneuro.7b00504
https://doi.org/10.1021/acschemneuro.7b00504
https://doi.org/10.1016/j.neuron.2020.05.028
https://doi.org/10.1038/s41598-019-47981-0
https://doi.org/10.1038/s41598-019-47981-0
https://doi.org/10.3389/fgene.2020.589621
https://doi.org/10.3389/fgene.2020.589621
https://doi.org/10.1258/002367706777611488
https://doi.org/10.1258/002367706777611488


ll
OPEN ACCESS

iScience
Perspective
on incentive learning. J. Exp. Psychol. Anim.
Behav. Process. 18, 236–250. https://doi.org/10.
1037/0097-7403.18.3.236.

Balzani, E., Falappa, M., Balci, F., and Tucci, V.
(2018). An approach to monitoring home-cage
behavior in mice that facilitates data sharing. Nat.
Protoc. 13, 1331–1347. https://doi.org/10.1038/
nprot.2018.031.

Beery, A.K., and Kaufer, D. (2015). Stress, social
behavior, and resilience: insights from rodents.
Neurobiol. Stress 1, 116–127. https://doi.org/10.
1016/j.ynstr.2014.10.004.

Begni, V., Sanson, A., Pfeiffer, N., Brandwein, C.,
Inta, D., Talbot, S.R., Riva, M.A., Gass, P., and
Mallien, A.S. (2020). Social isolation in rats: effects
on animal welfare and molecular markers for
neuroplasticity. PLoS One 15, e0240439. https://
doi.org/10.1371/journal.pone.0240439.

Beroun, A., Nalberczak-Skóra, M., Harda, Z.,
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