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Introduction

Microscopes collect images from scales of atoms and mol-
ecules to cells and tissues. While visual inspection can 
guide intuition, automated image processing is central for 
distilling understanding from the gathered data. 
Computational analysis approaches have evolved together 
with the instrumentation, with a plethora of methods devel-
oped to date.1,2 However, due to the high dimensionality, 
large data volumes, and complex signals in high-content 
microscopy, image analysis remains challenging to auto-
mate in general.3 Perhaps the most important and most thor-
oughly studied task is identifying nuclei in cell microscopy 
images,4 a common foundational step in many analysis 
workflows. As generating brightfield images is relatively 
quick and noninvasive, it would benefit many protocols to 
be able to segment nuclei directly from them. However, this 
rewarding task remains challenging5 and is therefore the 
main focus of this work.

Over the last decade, deep learning-based approaches 
have advanced image classification,6 object detection,7 and 

segmentation.8 The cell microscopy analysis community 
and the larger cytometry field in general have taken note 
and exapted the useful ideas.9–11 One of the earliest popular 
approaches that utilized convolutional neural networks for 
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Advances in microscopy have increased output data volumes, and powerful image analysis methods are required to 
match. In particular, finding and characterizing nuclei from microscopy images, a core cytometry task, remains difficult to 
automate. While deep learning models have given encouraging results on this problem, the most powerful approaches 
have not yet been tested for attacking it. Here, we review and evaluate state-of-the-art very deep convolutional neural 
network architectures and training strategies for segmenting nuclei from brightfield cell images. We tested U-Net as a 
baseline model; considered U-Net++, Tiramisu, and DeepLabv3+ as latest instances of advanced families of segmentation 
models; and propose PPU-Net, a novel light-weight alternative. The deeper architectures outperformed standard U-Net 
and results from previous studies on the challenging brightfield images, with balanced pixel-wise accuracies of up to 86%. 
PPU-Net achieved this performance with 20-fold fewer parameters than the comparably accurate methods. All models 
perform better on larger nuclei and in sparser images. We further confirmed that in the absence of plentiful training 
data, augmentation and pretraining on other data improve performance. In particular, using only 16 images with data 
augmentation is enough to achieve a pixel-wise F1 score that is within 5% of the one achieved with a full data set for all 
models. The remaining segmentation errors are mainly due to missed nuclei in dense regions, overlapping cells, and imaging 
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nuclear segmentation from fluorescence images was 
DeepCell.12 Many more have been proposed since.13–20 
U-Net,21 later superseded by U-Net++,22 has also been 
introduced as a plugin for ImageJ23 to make the models 
accessible for biological image analysis. Overall, classical 
methods have been outperformed by deep learning tech-
niques for nuclear segmentation, justifying the substantial 
interest in them.4 However, while segmenting the more 
challenging brightfield cell images has also been 
attempted,5,24 there remains a performance gap compared 
with fluorescence segmentation.

The rapid development of deep learning has continu-
ously provided new insights that could also impact practical 
solutions.8,22,25–27 The key advances in image segmentation 
have come from properly accounting for context.28 The 
early approach was to use the features extracted in earlier 
layers as inputs into deeper ones,21,29 followed by 

considering a broader context for the segmented 
object.22,25,30,31 Training was further improved by data aug-
mentation,32,33 and objects of different scales better handled 
with scale-robust architectures.30,31 These recent ideas and 
advanced networks could improve nuclear segmentation 
performance as well, but have not yet been utilized for this 
purpose.

Here, we tackle the nucleus segmentation problem in 
brightfield and fluorescence images with current state-of-
the-art deep learning approaches. We evaluate the architec-
tures of U-Net++,22 Deeplabv3+,30 Tiramisu,25 and a 
modified version of U-Net,5 as well as a novel streamlined 
PPU-Net architecture, for identifying nuclei. To gain a 
deeper understanding, we investigate the causes of variable 
performance across cell lines and images, the sources of 
error, and the data requirements for training successful seg-
mentation models.

Box 1. Common definitions.

Transfer learning: Applying the knowledge gained from one domain to another one, for example, using a model trained using 
images from one cell line (source domain) to predict images from another cell line (target domain)
Label smoothing: Acknowledging possible errors in annotations and setting the prediction target to values away from traditional 
0/1 (e.g., 0.1 and 0.9) to reflect this.42

Evaluation metrics:
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Materials and Methods

To evaluate modern deep learning methods for the nuclear 
segmentation task, we use two data sets containing a total of 
eight different cell lines, five alternative neural network 
architectures, and a unified training process that includes 
models with different amounts of training data, transfer 
learning, label smoothing, data augmentation, and multiple 
evaluation metrics (Box 1).

Network Architectures

We evaluated four convolutional neural networks that cover 
the successful architectural features for image segmenta-
tion: skip connections, atrous convolution, pyramid pool-
ing, and dense blocks. All models are end-to-end trained 
encoder–decoder networks with a downsampling contrac-
tion path, an upsampling expansion path, and a bottleneck 
to connect them. Inspired by the surveyed literature, we also 
propose a new architecture (PPU-Net) to strike a balance 

between model size and performance. We describe each of 
the models in detail below.

As a baseline, the successful U-Net21 has already been 
adapted for brightfield nuclei segmentation.5 The architec-
ture has four main components: a contraction path, an expan-
sion path, a bottleneck to connect them, and skip connections 
to enhance localization by transferring high-resolution fea-
tures from the contraction to the expansion path (Fig. 1A). 
The contraction path in our implementation contains 15 con-
volution layers that use 3 × 3 convolution filters followed 
by rectified linear unit (ReLU)34 activation layers, with a 2 
× 2 max pooling layer and a skip connection to the upsam-
pling path every third convolution. The expansion path con-
sists of 15 corresponding convolution layers, followed by 
ReLU activation layers, with an upsampling layer every 
third convolution. There is a bottleneck block between the 
encoder and the decoder with three convolution layers. 
Each convolution layer in the contraction path, expansion 
path, and bottleneck has 64 filters. In total, the architecture 
has 1.3 million trainable parameters (Fig. 1).

Figure 1. Convolutional neural network architectures. (A) U-Net is the baseline model with down- and upsampling paths, as well 
as standard skip connections. (B) U-Net++ introduces a series of convolutions in the skip connection layers. (C) Deeplabv3+ uses 
atrous convolution and spatial pyramid pooling with a simple upsampling path. It uses a modified version of the Xception model35 
as its backbone. (D) Tiramisu uses a dense block as a core building block. (E) The proposed architecture, PPU-Net, applies skip 
connections between the downsampling blocks and deploys the pyramid pooling module between downsampling and upsampling 
paths. Brackets next to the model names indicate the number of trainable parameters. (F) Average prediction time of a single 
brightfield image for all models. The experiments were conducted using a Tesla V100-PCIE-16GB Graphics Processing Unit.
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U-Net++22 enriches the skip links between the contrac-
tion and expansion paths. To achieve this, a series of dense 
convolutions are added to the encoder feature maps, and 
their output concatenated to the decoder counterparts (Fig. 
1B). Both contraction and expansion paths consist of four 
blocks. Each block consists of two convolution layers, fol-
lowed by batch normalization, followed by 2 × 2 max pool-
ing in the downsampling path, and transposed convolution 
for the upsampling path. The bottleneck consists of a simi-
lar block, but without max pooling. The skip connection 
pathways from the first, second, and third contraction path 
blocks to the corresponding expansion path blocks consist 
of three, two, and one block, respectively. Each convolution 
layer in the first block of the contraction path, the corre-
sponding block in the expansion path, and the skip connec-
tion pathway between them has 32 filters of size 3 × 3. The 
second, third, and fourth blocks have 64, 128, and 256 fil-
ters, respectively, and the convolution layers in the bottle-
neck have 512 filters each. In total, U-Net++ has ~9 
million trainable parameters (Fig. 1).

The Deeplab family of models has evolved to be some of 
the most sophisticated in the field8,26,27,30). Like the other 
considered models, its most recent member, Deeplabv3+, 
has the form of an encoder–decoder network, with the 
Xception backbone35 for sharper boundaries of segmented 
objects. The published encoder module consists of four 
parts: entry flow, middle flow, exit flow, and atrous spatial 
pyramid pooling (Fig. 1C). The entry, middle, and exit 
flows have 3, 16, and 2 blocks, respectively, each consisting 
of two 3 × 3 separable convolutions,36 and another one with 
a stride of 2 for downsampling. The input to each block is 
concatenated to its output. The decoder branch combines 
the output of the encoder with feature maps of low-level 
features. Atrous spatial pyramid pooling uses filters of vari-
ous sizes for the skip connections. Here, we use the pub-
lished Deeplabv3+ with the Xception backbone, and the 
output stride parameter set to 16 to balance performance, 
accuracy, and speed.30 In total, Deeplabv3+ has ~41 mil-
lion trainable parameters (Fig. 1).

The Tiramisu architecture25 uses dense blocks37 for seg-
mentation (Fig. 1D). In a dense block, feature map inputs to 
each convolutional layer are concatenated to the outputs of 
all further convolutional layers in that block, introducing 
deep supervision and feature reuse. The Tiramisu has a con-
traction path of five dense blocks, each followed by a tran-
sition-down block of batch normalization, ReLu, and 2 × 2 
max pooling, and an expansion path of five dense blocks, 
each followed by a transition-up block (3 × 3 transposed 
convolution with a stride of 2). The dense blocks in the con-
traction and expansion paths use (4, 5, 7, 10, 12) and (12, 
10, 7, 5, 4) layers, respectively. The bottleneck dense block 
between the two paths contains 15 layers. Finally, a single 
convolution layer is added to the beginning of the contrac-
tion path. Each convolution layer in the dense block has 

sixteen 3 × 3 filters, while the first convolution layer has 
forty-eight 3 × 3 filters. In total, this network has ~9.4 mil-
lion parameters (Fig. 1).

Inspired by the diversity of successful ideas in the field, 
we designed our own pyramid pooling U-Net architecture 
(PPU-Net) (Fig. 1E). Its relevant features attempt to crys-
talize different aspects of progress in the segmentation 
models above. First, PPU-Net exploits both short and long 
skip connections. This was motivated by a demonstration 
that both types help to achieve better performance and faster 
convergence; the short skip connections also stabilize 
parameter updates and help in solving a vanishing gradient 
problem that prevents parameters from being effectively 
updated.32 Second, to cover the necessary global and subre-
gional context without losing spatial relations, PPU-Net 
employs the hierarchical pooling module (pyramid pool-
ing31) in long skip connections.

The PPU-Net consists of a contraction path, an expan-
sion path, a bottleneck between them, and a skip pathway 
connection that link the features in the contraction path to 
the ones in the expansion path. There are 10 blocks in the 
contraction path, 10 blocks in the expansion path, and 2 
blocks in the bottleneck between the paths. A block com-
prises two 3 × 3 convolutions, each of which is followed by 
batch normalization and ReLU activation layers. Each con-
volution layer in such a block has 64 filters. The contraction 
path block output is processed by the pyramid pooling mod-
ule in the skip pathway, and concatenated to the input of the 
corresponding block in the expansion path. This module 
integrates information from five different scale levels by 
average pooling the feature maps with pool sizes of 16 × 
16, 8 × 8, 4 × 4, 2 × 2, and 1 × 1 and strides that equal the 
pool size. The output of each pooling level is processed by 
sixteen 1 × 1 convolutions, followed by batch normaliza-
tion and ReLU activation layers. The output is rescaled 
bilinearly to match the input dimensions, and concatenated 
with the input again (Fig. 1E). This architecture is the sec-
ond smallest after standard U-Net with ~2.1 million train-
able parameters, which is 5% of Deeplabv3+, the largest 
tested architecture. It is also the fastest at segmenting an 
image, taking 0.23 s, on average (Fig. 1F).

Data

Two data sets were used in this study with a total of eight 
different cell lines. Their provenance has been described 
previously,5 and we briefly repeat this here. First, human 
cervical cancer cells (HeLa), epithelial cells from kidney tis-
sue of adult dogs (MDCK), human hepatocellular carcinoma 
cells (HepG2), human breast cancer cells (MCF7), mouse 
embryonic fibroblast cells (NIH3T3), human alveolar basal 
epithelial cells (A549), and human fibrosarcoma (HT1080) 
were seeded into collagen type 1-coated CellCarrier-384 
Ultra Microplates (PerkinElmer, Waltham, MA; cat. 
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6057700) using 48 wells for each. The cells were fixed in 
formaldehyde (Sigma, St. Louis, MO; cat. 252549) and 
stained with 10 µg/mL Hoechst 33342 (Thermo Fisher, 
Waltham, MA; cat. H3570). Images were acquired using a 
20× water immersion objective on an Opera Phenix high-
content screening system (PerkinElmer) in confocal mode 
for both brightfield and fluorescence modalities. A total of 
3024 images of size 1080 × 1080 pixels (1 pixel = 0.59 µm) 
were acquired for each modality, with nine fields of view 
from each well (432 combined) for each of the seven cell 
lines, and 353 cells in each field of view, on average (Suppl. 
Fig. S1, Suppl. Table S1). This is referred to as “seven cell 
line” data.

Second, human prostate adenocarcinoma (LNCaP, 
sourced from ATCC) cells were seeded into the 384 wells of 
a CellCarrier Ultra (PerkinElmer) microplate, fixed in 
formaldehyde, and stained using DRAQ5 fluor (Abcam, 
Cambridge, United Kingdom) to label nuclear DNA. A total 
of 784 images of 2556 × 2156 pixels (1 pixel = 0.325 µm) 
were acquired using a 20× objective in both confocal mode 
to capture fluorescence images and brightfield mode on a 
CellVoyager 7000 (Yokogawa, Tokyo, Japan) instrument, 
giving an average of 681 cells per image (Suppl. Table S1). 
This is referred to as the “LNCaP” data. For both seven cell 
line and LNCaP data, one modality was acquired first on all 
wells and fields of view, and the second one in a subsequent 
round.

Harmony image analysis software (PerkinElmer) with 
expert quality control to optimize parameters was used to 
generate ground truth masks from fluorescence images of 
nuclear stains for the seven cell lines, as described in 
Fishman et al.5 To establish ground truth fluorescence 
nuclear boundaries for LNCaP, we applied the U-Net++ 
model previously trained to segment fluorescence micro-
graphs from the seven cell line images 5 on these data.

Training

All the experiments were conducted using a Tesla V100-
PCIE-16GB Graphics Processing Unit, and the architec-
tures were built using the Keras framework with TensorFlow 
backend v1.14.0.38

Model Comparison. The five models (U-Net, U-Net++, 
Deeplabv3+, Tiramisu, and PPU-Net) were trained on the 
seven cell line data set (separately on fluorescence and 
brightfield images), using 2016 images for training, 504 
images for validation, and 504 for testing; and on LNCaP, 
using 628 images for training, 78 for validation, and 504 for 
testing. The Adam optimizer39 was used to optimize binary 
cross-entropy loss. Each architecture was trained for up to 
500 epochs with (10,000/batch size) iterations. The learning 
rate was selected as described below, and reduced by a fac-
tor of 10 once the validation loss was not improving for 10 
consecutive epochs. Training was terminated completely if 

validation loss was not improving for 20 consecutive 
epochs. Batches of size 16, 8, 8, 4, and 8 images were used 
for U-Net, U-Net++, Deeplabv3+, Tiramisu, and PPU-
Net networks, respectively, chosen based on the available 
processing budget.27,40 All networks have an input size of 
288 × 288 pixels.

Learning Rate Selection. Learning rate is among the most 
critical hyperparameters for training neural networks.41 We 
used the strategy introduced in Smith40 to select it sepa-
rately for each model. We monitored loss during training 
each model for a few epochs, while gradually increasing the 
learning rate from a very small value (1e-10) to a very large 
one (10). The candidate optimal learning rate was manually 
identified as the value that gives the largest change in loss 
(Suppl. Fig. S2). We then performed full training for the 
models using different learning rates around the candidate 
and selected the best. Selected rates for the brightfield and 
fluorescence data sets are 1e-5, 1e-3, 5e-4, 5e-4, and 5e-4; 
and 3e-5, 3e-4, 5e-4, 5e-5, and 3e-4 for U-Net, U-Net++, 
Deeplabv3+, Tiramisu, and PPU-Net, respectively.

Effect of Training Data Set Size. To simulate situations in 
which a data set of a few images is available, different mod-
els using an increasingly different number of images were 
trained. We randomly extracted 1, 2, 4, 8, 16, 32, 64, and 
286 images of the A549 cells from the seven cell line data. 
Those data sets are used to train seven models from each 
network architecture. The same models are also trained two 
more times, once with label smoothing and another time 
with data augmented using five basic data augmentation 
techniques (horizontal flip, vertical flip, and rotations of 
90°, 180°, and 270°). The models were evaluated using the 
A549 cell line held-out data.

Smoothing Factor Selection. In label smoothing, the cross-
entropy loss is optimized against soft targets.42 The targets 
were softened such that the positive label 1 is reduced by a 
smoothing factor and the negative label 0 is increased by 
the same factor. We selected the best smoothing factor by 
conducting a grid search on models trained using factors of 
0.05, 0.10, 0.15, and 0.20; selected the best performing of 
each architecture; and evaluated them on held-out data 
(Suppl. Table S2). The selected factors are 0.05, 0.15, 0.20, 
0.20, and 0.15 for U-Net, U-Net++, Deeplabv3+, Tira-
misu, and PPU-Net, respectively.

Effect of Architecture Selection. To test the effect of making 
different selections for network architecture, we evaluated 
three aspects that distinguish U-Net from U-Net++. First, 
we doubled the number of U-Net pathway connections. Sec-
ond, we added batch normalization33 to the vanilla U-Net. 
Third, we increased the number of connections as well as 
introduced batch normalization, and further modified the 
number of filters in the convolution layers. We gradually 
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increased the number of filters in the contraction path to be 
64, 128, 256, and 512 filters while decreasing them sym-
metrically in the expansion path. Finally, we excluded half 
of the U-Net++ convolutions in the skip connection 
layers.

Transfer Learning

To evaluate the models’ performance across domains, we 
fine-tuned a model trained on a source domain (one data 
set) using images from the target domain (another data set), 
as well as using images from both source and target 
domains. In both cases, we used an increasing number of 
images (1, 2, 4, 8, 16, 32, 64, and 128) to fine-tune the 
model. When fine-tuning on images from multiple domains, 
the same number was picked from both domains. We exam-
ined two sets of source and target domains. First, we used 
six cell lines from the seven cell line data set as the source 
domain and the remaining cell line as the target domain, and 
repeated for each cell line, introducing a small domain shift 
of the different line, but still considering images from the 
same acquisition experiment. Second, we used the LNCaP 
data set as a source domain and the seven cell line data col-
lected on another instrument as a target domain, introducing 
a large domain shift of the imaging instrumentation and 
laboratory undertaking the work. We conducted the experi-
ments of this section on the lightest model (U-Net), as we 
expect domain shift, rather than model differences, to domi-
nate quality.

Effect of Number of Training Focal Planes

The LNCaP data set was used to learn about the impact on 
segmentation performance with different numbers of unique 
focal planes as network input. To keep the model’s number 
of parameters constant, the number of input channels was 
fixed to nine, and the number of input focal planes was var-
ied from nine copies of a single plane to nine different 
planes. The order in which to add planes was experimen-
tally determined. First, we trained a different model for 
each plane and picked the best input plane based on evalua-
tion. Then, we repeated the experiment to pick the next best 
plane out of eight possible variants in addition to the previ-
ously picked one.

Postprocessing and Evaluation

To evaluate models, we first postprocessed the image prob-
ability maps they produce. All results are based on pixel-
level outputs binarized at a 0.5 cutoff unless detailed 
otherwise. Objects are detected by clustering the intercon-
nected positive pixels into objects using measure.label from 
the skimage package.43 We filtered out objects smaller than 

25 pixels and filled out holes smaller than 25 pixels using 
remove_small_objects and remove_small_holes, respec-
tively, from the same package.

We used both pixel-wise and object-wise metrics (Box 
1) to quantify model performance. The accuracy and F1 
score used for pixels are standard in machine learning.5 To 
quantify object-level accuracy, we measure the intersection 
over union (number of pixels in intersection of two objects 
divided by number of pixels in their union [IoU]) for pairs 
of segmented and ground truth objects, and consider a 
ground truth object detected at an IoU threshold if there is 
a segmented object with an IoU value to it above the 
threshold. We report the F1 score for object detection 
across IoU thresholds ranging from 0.5 to 0.95 with a step 
of 0.05, as well as averaged over these thresholds (object-
wise F1 score), as established earlier.4 We also record the 
number of merges (more than one ground truth object over-
laps a predicted one), splits (a single object in the ground 
truth overlaps multiple predicted objects), and missed 
objects (ground truth objects that are not detected). To 
detect splits and merges, which lead to a small object over-
lap by definition, we used an IoU threshold of 0.1. To 
detect missed objects, we used an IoU threshold of 0.6, 
which gives a good balance between strict overlap and not 
missing objects entirely.

Finally, we assigned a likely cause of error to mislabeled 
pixels. First, we assigned errors to noisy input data if at least 
four out of five models agree on the same prediction in a 
fluorescence image that is opposite to the ground truth 
label, and calculate the fraction of errors that these pixels 
account for. Second, to quantify the error contributed by 
imaging artifacts, we manually annotated artifacts in 20 
images and recalculated performance outside those anoma-
lous regions to derive a difference in error that can then be 
ascribed to the artifacts.

Results

We assessed the performance of four state-of-the-art and 
one novel segmentation model on the seven cell line and 
LNCaP data sets (Fig. 2, Suppl. Tables S3 and S4). All 
models detected nuclei in the fluorescence images with 
high pixel-wise F1 scores (average over all seven cell lines, 
99% for U-Net, 99% for U-Net++, 98% for Deeplabv3+, 
99% for Tiramisu, and 99% for PPU-Net) (Suppl. Table 
S3; Box 1), as well as object-wise scores (96%, 97%, 95%, 
97%, and 97% respectively) (Suppl. Table S3). This con-
firms that the signal in the fluorescence channel is clear 
enough to be detected regardless of the model used (Fig. 
2B), as has been observed before.4,5 We therefore consider 
fluorescence segmentation a solved problem to a practical 
limit, and the rest of the results focus on the more challeng-
ing brightfield modality.
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Figure 2. Comparison of models’ performance. (A) Pixel-wise F1 scores (y axis) for models (colors) trained on brightfield images 
of all seven cell lines (left seven subplots) and the LNCaP data set (rightmost subplot). (B,C) Example of matched fluorescence (B) 
and brightfield (C) images and the corresponding segmentation from all models (right; x axis of panels). Top panels: Probability maps. 
Bottom panels: Maps binarized at the 0.5 threshold. Inscribed number, pixel-wise F1 score for the corresponding model; colored 
contours, ground truth nucleus boundaries. (D) Per-image median object-wise F1 scores (y axis) across seven cell lines (solid lines) 
and LNCaP (dotted lines) for all models (colors) and a range of IoU thresholds (panels; Material and Methods). (E) Median of object 
IoU scores in all seven cell line and LNCaP data sets (y axis, markers) for each decile of object sizes (x axis) for each model (colors). 
(F) Pixel-wise F1 score (y axis) of the baseline model (U-Net, yellow), U-Net++ (brown), and their architecture modifications (x axis, 
colors; Materials and Methods) on the A549 cell line. Brackets in the legend indicate the number of trainable parameters in millions.
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Model Performance on Brightfield 
Images

Unlike for fluorescence images, models’ performances on 
brightfield images have a wider range. The methods 
achieved pixel-wise F1 scores of 81.3%, 85.0%, 86.2%, 
85.6%, and 86.5% for U-Net, U-Net++, Deeplabv3+, 
Tiramisu, and PPU-Net, respectively (Fig. 2A, Suppl. 
Table S3) in the seven cell line data set; and 84.0%, 86.2%, 
87.7%, 85.8%, and 87.4% in the LNCaP data set, demon-
strating that the classical U-Net model is outperformed by 
newer architectures (Fig. 2A–C). This trend is consistent 
across individual images (Suppl. Fig. S3) as well as within 
specific cell lines, and therefore is likely due to real perfor-
mance differences, rather than biases from individual 
images or cell lines.

Next, we assessed object segmentation performance, 
using the area intersection over union (“IoU,” Materials and 
Methods, Box 14) to identify correctly segmented nuclei. In 
line with pixel-wise results, PPU-Net slightly outperformed 
other models in the seven cell lines and was on a par with 
Deeplabv3+ in the LNCaP data set. Classical U-Net was 
inferior (object-wise F1 scores of 48.8%, 55.4%, 58.1%, 
58.2%, and 59.8% for U-Net, U-Net++, Deeplabv3+, 
Tiramisu, and PPU-Net, respectively, for seven cell lines; 
and 45.2%, 51.0%, 54.9%, 51.4%, and 54.6% for the 
LNCaP data set) (Suppl. Fig. S4). Importantly for cytome-
try applications, we confirmed that the object detection 
quality is echoed in the ability to recapitulate object proper-
ties. Indeed, a higher object-wise F1 score also gives a bet-
ter match to ground truth object solidity and size (Suppl. 
Fig. S6).

Data Set and Architecture Properties 
Influencing Performance

It is important to understand when brightfield segmentation 
can be expected to be successful and what the quality deter-
mining factors are. We first tested whether cell density 
influences segmentation performance and found a negative 
correlation between the number of cells per image and the 
pixel-wise F1 score (Pearson’s R = −0.65, −0.66, −0.69, 
−0.67, and −0.70 for U-Net, U-Net++, Deeplabv3+, 
Tiramisu, and PPU-Net in seven cell line data, respectively; 
and Pearson’s R = −0.39, −0.39, −0.46, −16, and −0.40 for 
the same respective models in the LNCap data). This trend 
held across all data, as well as within images from individ-
ual cell lines (Suppl. Fig. S7), with the exception of the 
MDCK line, which has a narrow range of low cell densities. 
Regression line slopes per model ranged between −1.2 × 
10–4 and −1.4 × 10–4, suggesting that the models did not 
differ substantially in the degradation of their performance 
as cell densities decreased. Overall, dense images are more 
challenging to segment into individual objects, as expected.

Next, we considered whether the size of nuclei impacts 
the accuracy of prediction. We observed that larger objects 
are segmented more accurately by all models in the com-
plete data set (Fig. 2E, Suppl. Fig. S8). The objects in the 
largest decile have at least a 9% greater median pixel-wise 
F1 score than the objects in the smallest decile for all mod-
els in both the seven cell line and LNCaP data sets (Fig. 
2E). We also wondered whether models cope differently 
with images that have variability in object size, but saw no 
effect (Pearson’s R values range from 0.03 to 0.08) (Suppl. 
Fig. S9).

Figure 3. Examples of errors from visual inspection. Cyan, ground truth contour; white, prediction contour; red, prediction 
probability maps; white arrows, error. Top images: Ground truth and PPU-net model predictions. Bottom images: Ground truth 
only. (A) Severe contamination (left) and mild contamination (right). (B) Physical nucleus shift between fluorescence and brightfield 
modalities. (C) Low contrast. (D) Overlapping between out-of-focus and in-focus nuclei. (E) Noisy ground truth.
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As we found models to have a range of performances, 
we attempted to understand which model features are 
responsible for the differences. We suspected that the lower 
performance of U-Net could be ascribed to the model repre-
sentation capacity (e.g., number of trainable parameters) 
and training approach. To test this, we evaluated three 
aspects that distinguish it from the otherwise similar 
U-Net++ architecture. First, we doubled the U-Net path-
way connections, and this improved the pixel-wise F1 score 
by 0.006 (Fig. 2F). Second, we added batch normaliza-
tion,33 which also improved the pixel-wise F1 score by 0.02. 
We then increased the number of connections as well as 
introduced batch normalization, and further modified the 
number of filters in the convolution layers, improving the 
score by 0.026 compared with baseline. Finally, we excluded 
half of the U-Net++ convolutions in the skip connection 
layers but did not observe substantial deterioration in per-
formance (0.001 in pixel-wise F1 score) (Fig. 2F). These 
results suggest that multiple architecture choices are respon-
sible for the largest observed model performance differ-
ences, and that changing the number of parameters alone is 
not sufficient to achieve large changes to performance.

Common Errors in Segmentation

The results of the second-generation deep learning models 
for brightfield nuclei detection were better than earlier 
reports,4,5 but errors still occurred. We next visually 
inspected output segmentations and found that the errors 
are mainly due to four effects. First, some samples were 
contaminated (Fig. 3A). Based on the severity of the con-
tamination, all models struggle to delineate a nucleus and 
can miss it entirely. We observed likely cases of biological 
contamination during cell culture (e.g., bacteria) (Fig. 3A, 
right panel), as well as particle contamination during acqui-
sition (e.g., dandruff or skin) (Fig. 3A, left panel). Second, 
predicted nucleus boundaries are shifted between bright-
field and fluorescence modalities (Fig. 3B). We confirmed 
visually that the image registration was correct overall, and 
other cells in this field of view are concordant, and therefore 
hypothesize that the mismatch is due to a true physical shift 
between brightfield and fluorescence modalities, for exam-
ple, if cells are moving when not properly adhered to the 
plate. Third, there can be low contrast between the cell 
nuclei and the background (Fig. 3C). This lack of signal can 
lead models to miss nuclei or to merge objects. Finally, out-
of-focus cells can still be visible in fluorescence images, but 
are difficult to detect in brightfield, as their signal is dis-
torted (Fig. 3D). These findings are consistent with error 
modes previously characterized in these data.5

We next attempted to quantify the relative contribution 
of the various errors. To do so, we first picked 20 images 
with evidence of sample contamination and recalculated 
performance outside of manually annotated anomalous 

regions only. An average of 10.7% (range, 9.3%–11.8%) of 
misclassified pixels were caused by those anomalies, and 
filtering out the anomalous regions improved the pixel-wise 
F1 score by 1.6%–1.9% per image. This suggests that arti-
facts are a substantial but not the major source of remaining 
pixel errors in segmentation. Second, we found that 53%–
61% of errors are due to false-negative pixels, consistent 
with either underprediction at object boundaries or missing 
entire objects, contributing more errors compared with 
false-positive pixels. Finally, we estimate 3%–5% of mis-
classified pixels to be due to noise in the ground truth labels 
(Fig. 3E). Together, these results suggest that anomalies 
and noisy labels contribute about 15% of the errors.

Next, we considered object-level errors of splits, merges, 
and missing nuclei at a range of pixel classification thresh-
olds (Materials and Methods). Compared with other 
advanced models, Tiramisu had the smallest number of total 
merges (5376 in seven cell lines, 4182 in LNCaP) and splits 
(4271 in seven cell lines, 3088 in LNCaP), on average, con-
sidering 176,946 and 53,828 objects in the seven cell line 
and LNCaP data sets, respectively (Suppl. Fig. S10). 
However, it also had a large proportion of undetected nuclei, 
on average, across all the thresholds (35% in both data sets) 
(example in Fig. 2C). Taking into account all types of errors 
and requiring a stricter object overlap, PPU-Net had the best 
object-wise performance by a narrow margin over Tiramisu 
and Deeplabv3+ in the seven cell line data set, with F1 
scores of 59.8%, 58.2%, and 58.1%, respectively, and 
U-Net++ and U-Net having lower scores of 55.4% and 
48.8% (Suppl. Fig. S4). In the LNCaP data set, PPU-Net 
and Deeplabv3+ had on-par performance data with object-
wise F1 scores of 54.6% and 54.9%, respectively.

Training Choices Influencing Performance

The results so far were obtained on a large training data set 
that has thousands of annotated images. In practice, annota-
tion is expensive, and a limited number of annotated images 
are available. Hence, an important practical question, espe-
cially for advanced architectures with millions of parame-
ters, is how many training images are sufficient for optimal 
performance. Predictably, the model performance improves 
with more annotated images (Fig. 4A).

We tested whether label smoothing (using soft targets in 
ground truth masks, for example, 0.1 and 0.9 instead of 0 
and 142) and data augmentation improve performance under 
limited training data. We found that nearly all models per-
formed better using each of those strategies compared with 
training models without any of them (Fig. 4A). Deeplabv3+ 
did not perform well given a small number of training 
images using standard or label smoothing strategies, which 
can be due to its large number of parameters (Fig. 1), but 
other models improved performance by 0.5%–2%, on aver-
age, when label smoothing was used. Data augmentation 
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improves the performance of all models more, with an aver-
age increase in pixel-wise F1 score from 9% to 11%. 
Moreover, using only 16 images with data augmentation is 
enough to achieve a pixel-wise F1 score that is within 5% of 
the one achieved with a full data set for all models. 
Improvements provided by both strategies diminish when 
the data set size increases.

Next, we considered transfer learning to deal with lim-
ited training data. First, we used a model that was trained on 
one data set (source domain) and to segment images in 
another (target domain). Intuitively, the performance then 
indicates how distant the target and source domains are. 
None of the transferred models perform near the optimum 
in another domain, and the domain shift is most marked for 
cells from another imaging experiment on different instru-
mentation (31% performance gap when source and target 
domains are LNCaP and seven cell lines, respectively) (Fig. 
4B). Conversely, a model trained on a subset of six of the 
seven cell lines in one imaging experiment, and applied on 
the seventh, only performed 5% worse than the best one 
trained on that cell line (Fig. 4C).

Next, we used an increasing number of images from the 
target domain to fine-tune the model. Fine-tuning improves 
performance on the target domain but degrades perfor-
mance on the source domain (Fig. 4B,C). To avoid the loss 
of performance on the source domain, we then fine-tuned 
the model using data from both domains. This retained F1 
scores within 2% of the optimum on the source while 
improving the score on the target domain as the number of 
fine-tuning images was increased (Fig. 4B,C). Therefore, if 
the goal is to use the model in different domains, training 
data should be maintained for all of them, and the fine- 
tuning data set should reflect this.

Finally, we asked whether increasing the number of focal 
planes that are used in training improves segmentation per-
formance. We found that adding one additional plane 
increased the pixel-wise F1 score by 3.3% on average, rang-
ing from 4% in U-Net to 2.8% in DeeplabV3+ (Fig. 4D). 
Additional planes gave diminishing returns, with scores 
within 1.7% of the two-plane performance, on average.

Discussion

We have surveyed the literature for developments in deep 
learning for segmentation and evaluated most advanced 
examples of multiple model families for their ability to iden-
tify nuclei in fluorescence and brightfield cell images. We 
found that models range from moderately performing (U-Net) 
to well-performing (Tiramisu, U-Net++, and Deeplabv3+) 
ones, and proposed PPU-Net, a novel architecture for this 
task. PPU-Net segments nuclei as accurately as the compa-
rable alternative models while featuring smaller size, shorter 
training time, and quicker prediction. We noticed that the per-
formance of complex models like Deeplabv3+ degrades 

when the amount of training data is small. We identified the 
number of focal planes, cell density, and nuclear size (but not 
its variability across cells), to influence segmentation quality, 
and established that a small number of ground truth images 
combined with substantial augmentation is sufficient for 
training a well-performing model. To our knowledge, these 
are the first experiments to segment nuclei from brightfield 
cell microscopy images with very deep neural networks, 
novel insights into their performance, and the most accurate 
segmentations presented to date.

The second generation of deep learning models for 
brightfield nuclei detection were superior to the initial tests 
on the same data,5 but not yet as accurate as fluorescence-
based segmentation approaches. Part of this improvement 
can be ascribed to advances in methodology, where the net-
work size, qualitative features, and training approaches all 
had an effect on the outcome quality. In concordance with 
prior work, we observed modality-specific error sources, 
such as low contrast, likely physical shifts, and noisy ground 
truth labels. Some of these, such as physical shift, are sys-
tematic and unlikely to be improved by more complex mod-
els. Others, like out-of-focus cells, could be optimized by 
dedicated data acquisition and training. Upon inspecting the 
errors, we believe that there is room for further improve-
ment to the current models, mainly by avoiding anomalous 
regions, having noisy labels in training data, and better seg-
mentation of smaller objects.

As expected, and observed before (e.g., Caicedo et al.4 
and Fishman et al.5), providing more training data improves 
the ability to accurately identify nuclei. While data acquisi-
tion is not limiting, annotating ground truth in brightfield 
modality can be a substantial bottleneck, even when fluores-
cence-guided nuclear segmentation is available. Various data 
augmentation techniques, such as signal-preserving orthogo-
nal rotations and reflections, as well as lossy general rota-
tions and scalings, can all help bootstrap additional signal for 
the same data, and thereby improve training for models that 
do not take these invariants into account. Soft labeling, or 
intuitively allowing false-positive and false-negative rates in 
the ground truth, also improves outcomes. Therefore, when 
compute time and cost are not limiting, but data set sizes are, 
we recommend augmenting the training data.

Our new segmentation architecture, PPU-Net, is argu-
ably the most practical. While the U-Net model is the small-
est, its performance was dominated by the larger models 
with additional features. For example, it has been demon-
strated that the residual connections, as employed in 
Tiramisu and shown in Drozdzal et al.,32 give a substantial 
performance boost and stable training. Inspired by these 
networks, PPU-Net similarly employs simple light residual 
connections and achieves good performance in both bright-
field and fluorescence modalities. Its smaller size and faster 
speed make PPU-Net more suitable to use in large-scale 
experiments.
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Performance was variable across objects of different size 
and density. The large nuclei were well segmented in gen-
eral. This could be due to technical reasons (they have more 
pixels, and therefore a smaller fraction of the area close to 
the more variable border), additional signal (more photons 
inform of their location), or a simpler context (larger nuclei 
also have larger cells, separating them from neighboring 
nuclei by a bigger distance). Conversely, the most difficult 
nuclei to segment were small and densely packed, in par-
ticular, for the HepG2 cell line. The dense packing problem 

is a general standing issue in instance segmentation. 
Dedicated object delineation models and bespoke data sets 
outside the scope of this work are needed to establish the 
best way of attacking this in cell microscopy.

The quality of brightfield cell nucleus segmentations is 
such that they are useful in practice. A major future direc-
tion is to expand this approach to segment entire cells, 
which would aid cytometry applications, especially in cases 
of relatively dense cultures. Substantial additional training 
data, as well as innovation in handling dense and 

Figure 4. More training data from a relevant domain improves accuracy. (A) Pixel-wise F1 score on the A549 cell line (y axis) for 
models trained plainly (solid line), with label smoothing (dashed line) or with data augmentation (dotted line) for U-Net, U-Net++, 
Deeplabv3+, Tiramisu, and PPU-Net (panels, colors) for an increasing number of training images (x axis). (B) Pixel-wise F1 score for 
the U-Net model on the A549 cell line (y axis) for an increasing number of training images (x axis), fine-tuning on the target domain 
(dashed line) or source and target domains (solid line) and testing on the source domain (red line) or target domain (blue line). 
Source domain of six of seven cell lines in the seven cell line data set; target domain the seventh cell line. (C) As in B, but using the 
source domain of the LNCaP data set and target domain of the seven cell line data set. (D) Pixel-wise F1 scores (y axis) for all models 
(colors) for an increasing number of focal planes (x axis) used as input during training.
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overlapping objects, are required to make progress in this 
direction.
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