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A B S T R A C T   

Background and Purpose: Treatments on combined Magnetic Resonance (MR) scanners and Linear Accelerators (Linacs) for radiotherapy, called MR-Linacs, often 
require daily contouring. Currently, deformable image registration (DIR) algorithms propagate contours from reference scans, however large shape and size changes 
can be troublesome. Artificial neural network (ANN) based contouring may alleviate this issue, however generally requires large datasets for training. Mitigating the 
problem of scarcity of data, we propose patient specific networks trained on a single dataset for each patient, for contouring onto the following datasets in an adaptive 
MR-Linacworkflow. 
Materials and Methods: MR-scans from 17 prostate patients treated on an MR-Linac with contours of Clinical Target Volume (CTV), bladder and rectum were utilized. 
U-net shaped models were trained based on the image from the first fraction of each patient, and subsequently applied onto the following treatment images. Results 
were compared with manual contours in terms of the Dice coefficient and Added Path Length (APL). As benchmark, contours propagated through the clinical DIR 
algorithm were similarly evaluated. 
Results: In Dice coefficient the ANN output was 0.92 ± 0.03, 0.93 ± 0.07 and 0.84 ± 0.10 while for DIR 0.95 ± 0.03, 0.93 ± 0.08, 0.88 ± 0.06 for CTV, bladder and 
rectum respectively. Similarly, APL where 3109 ± 1642, 7250 ± 4234 and 5041 ± 2666 for ANN and 1835 ± 1621, 7236 ± 4287 and 4170 ± 2920 voxels for DIR. 
Conclusions: Patient specific ANN models trained on images from the first fraction of a prostate MR-Linac treatment showed similar accuracy when applied to the 
subsequent fraction images as a clinically implemented DIR method.   

1. Introduction 

Magnetic Resonance (MR) imaging provides high soft-tissue contrast 
without using ionizing radiation, and since the introduction of devices 
combining MR-scanners and Linear Accelerators, called MR-Linacs, the 
radiotherapy field has moved to adaptive workflows. Daily high-quality 
soft-tissue imaging with the integrated MR, and replanning while the 
patient is in treatment position, enables dose delivery tailored to the 
daily anatomy. Daily replanning on an MR-Linac [1] system includes the 
full radiotherapy workflow, compressed into generally less than an hour, 
with image fusion to a reference image, recontouring of the anatomy and 
replanning based on the new contoured anatomy, and execution of the 
delivery. The workflow is very resource intensive and one of the most 
time consuming aspects of the replanning workflow is the recontouring 
step ([2] as well as identified in our clinic) where both the target and 
relevant organs at risk (OARs) need to be recontoured. 

Deformable image registration (DIR) has become a mainstream so
lution for contour propagation [3] with mixed results depending on both 

anatomical site and magnitude of anatomy changes [4–6]. Interfrac
tional variations in both bladder and rectum in prostate radiotherapy 
patients may be substantial and the algorithm may struggle to produce 
accurate and smooth contours, requiring the physician to manually 
adjust (or completely recontour) the organ under time pressure with the 
patient in treatment position. More complex solutions to handle large 
interfractional changes have been suggested, e.g. introducing deep 
learning based contours into the DIR pipeline [7], and with methods 
directed towards the MR-Linac treatment workflow such as using mul
tiple DIRs to propagate contours from previous treatment sessions and 
combining into consensus contours [8]. A deep learning network jointly 
obtaining contour propagation and a deformation field for CTV (Clinical 
Target Volume) in an MR-Linac setting has been proposed [9]. Contour 
propagation through DIR for intrafractional motion has also been 
investigated for prostate MR-Linac treatments [10]. 

Artificial neural networks (ANNs) for semantic segmentation are 
now present for a variety of medical image modalities and anatomical 
regions [11]. Training deep learning networks generally requires a large 
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image cohort with consistent contours on same image modality, hence 
for medical purposes training to contour OARs on CT-images is generally 
the most straightforward approach. These ANNs should learn general 
features of the training dataset for reliable behavior during inference, i. 
e. to be able to accurately produce contours onto a never seen dataset of 
a new patient, since in conventional radiotherapy there is only a ne
cessity to contour on a single dataset for each patient. However, the 
longitudinal character of an MR-Linac treatment infers the necessity to 
contour the images each fraction and hence the possibility to utilize 
daily images for training of a patient specific ANN. ANNs also almost 
exclusively contour the OARs, excluding the definition of the target, 
since the target is not necessarily limited to a specific organ but rather 
pathologically determined and therefore can vary between patients. 

Patient specific networks would therefore be a suitable choice since 
the models will be agnostic to patient specific target definitions as well 
as potential abnormal patient specific anatomy not present in the 
training data (e.g extensive surgical resections) as well as to MR imaging 
protocol. This can also circumvent the otherwise dominant issue of 
requiring large dataset for general models. While not making much 
sense for a conventional external therapy workflow due to above 
reasoning of one-time contouring, it is suitable for an adaptive workflow 
requiring adaptations on a daily basis. Utilizing transfer learning 
through networks trained on a large image dataset such as Imagenet 
[12] is a potential approach, however choosing how and which layers to 
update is a challenging and highly critical task [13], not guaranteed to 
improve results compared to training from scratch [14]. A transfer 
learning approach for fine-tuning on a patient-level on prostate CT-scans 
in an adaptive approach has been performed [15], and similarly on MR- 
images [16]. However, such approaches require a pretrained model to 
begin with. 

In the context of an MR-Linac workflow, our aim was to examine the 
possibility to train patient specific ANNs from scratch with only a single 
3D-image and evaluate its accuracy on the upcoming fractions, 
including both target and relevant OARs. We benchmarked it against the 
already implemented DIR method in the treatment planning system to 
evaluate the potential applicability. 

2. Material and methods 

The MR-Linac workflow used (shown schematically in Fig S1 in 
Supplementary Material) consisted of acquiring a reference MR-image 
before the first fraction (offline) from a conventional 3T MR on which 
the target along with all relevant OARs were contoured. A treatment 
plan was made and approved acting as a reference plan for adaptation at 
the upcoming treatments (online). The contours were then propagated 
online through a DIR algorithm onto the daily image set and manually 
adjusted, or completely recontoured by a physician, depending on the 
accuracy of the contour propagation. A verification scan was acquired to 
identify any potential motion during the previous steps during the plan 
adaptation. The plan was then approved and delivered during which an 
additional scan was acquired. 

2.1. Dataset 

Images from ultrahypofractionated treatments of prostate patients, 
6.1 Gy × 7 fractions were available for the study. All data used herein 
was preceded by informed consent and with approval from the Swedish 
Ethical Review Authority (2019–03050). The planning images were 
acquired through the on scanner pre-defined exams, yielding T2- 
weighted transversal images with 0.86 × 0.86 × 1 mm resolution with 
2 min acquisition time. At treatment the CTV was accurately contoured 
as well as the OARs in the vicinity of the CTV. Retrospectively however 
images were more fully contoured including the CTV, bladder and 
rectum. Seventeen patients with associated scans were available. How
ever, some fractions were delivered on either conventional accelerators 
or with a workflow not requiring recontouring on the MR-Linac and 

resulted in a total of 112 fraction images available for the study. The 
CTV varied between patients, encompassing the whole prostate and 
sometimes also the seminal vesicles. 

2.2. Network design and training 

The images from the first fraction for each patient was set as the 
training data for the ANN framework. The images were cropped to 
contain the contoured structures with a minimum size of 256 × 256 ×
128 voxels in the left–right, anterior-posterior and feet-head direction, 
to speed up training and reduce both the memory requirements as well 
as class imbalance due to the otherwise large amount of background 
voxels. A 2D U-net-shaped model was employed on the data along the 
transversal axis and the model was saved every 100th epoch during a 
total training of 1000 epochs (see Supplementary Material for more 
detailed description of architecture). Of the 17 patients, 3 were used for 
internal validation of the network design finding e.g. appropriate depth 
and learning rate, leaving 14 patients for actual testing of the workflow. 
Batch size was set to 4 (the small size attributed to the highly limited 
number of training images), SeLu (Scaled exponential Linear unit) 
activation [17] employed in the hidden layers and 4 probability maps 
(background, CTV, bladder and rectum) obtained through softmax 
activation of the last layer. Training was performed with random 128 ×
128 patches extracted from the images to augment the small dataset. The 
Adam optimizer was used for training with a learning rate of 1e-4. The 
training was implemented in Tensorflow 2.4 and performed on an 
Nvidia RTX 3070. The reference dataset with corresponding structures 
(see Fig S1 in Supplementary Material for explanation) was used as 
validation data during training to observe proper convergence and also 
notice potential overfitting. To further improve results and to prevent 
overfitting small random deformations along with noise and contrast 
augmentations were employed as well as alpha dropout of 0.4 in the 
bottom layer. The network was trained to simultaneously segment the 
CTV, bladder and rectum. Despite cropping a quite noticeable class 
imbalance was identified (~93% background voxels) hence a focal loss 
implementation [18] with gamma = 2 was utilized. 

At inference a horizontal ensemble approach [19] was utilized with 
the three last saved models where the results from each of the networks 
underwent a soft voting procedure producing the final segmentation 
map. This was performed on all of the remaining fractional images for 
each patient, i.e. fraction 2 and forward. The inference of the ensemble 
approach was thought to stabilize end results [19] and remove any 
spurious noise and small misclassifications, which could be expected due 
to the limited amount of training data. Postprocessing of the results 
included keeping only the largest coherent structure for each output, 
removing any potential still remaining noise. 

2.3. Evaluation measures 

As evaluation measures the commonly applied Dice coefficient 
overlap was utilized, which is a pure geometric measure of segmentation 
overlaps. However, its correlation to the recontouring time is not 
optimal [20], which in the sense of online contour propagation is 
arguably more important. The Added Path Length (APL) that has been 
shown to have a higher correlation to recontouring time [21] was 
therefore added as evaluation measure. It is a measure of how much of 
the total length of the generated contours that are beyond a tolerance 
from the reference contours, hence indicating how much requires 
recontouring. Larger values of APL therefore indicate longer recon
touring time. A one voxel tolerance was chosen, not considering the 
voxel anisotropy. The output of the ANNs were compared to the refer
ence contours for a direct measurement of the ANN segmentation ac
curacy. Also, it was benchmarked against the results from the current 
DIR algorithm in the treatment planning system (with the same refer
ence image as in the ANN training). A Wilcoxon two-sided rank test was 
employed to depict significance levels between the ANN and DIR 

S. Fransson et al.                                                                                                                                                                                                                                



Physics and Imaging in Radiation Oncology 23 (2022) 38–42

40

approach. This test was chosen since we did not assume normal 
distribution. 

3. Results 

In total, the DIR approach produced slightly better results than the 
ANN in terms of Dice coefficient and APL for the CTV and rectum with a 
statistically significant difference (p < 0.05) while performance for the 
bladder was similar, however with a difference not statistically signifi
cant (p > 0.05), see Table 1. 

However, both metrics varied quite substantially both between and 
within patients, as depicted in Fig. 1 and Fig. 2 and apparent especially 
for the rectum. 

For the rectum, variable contrast between the training and test im
ages was generally difficult for the ANN to handle, as depicted in the 
example results in Fig. 3 where bright areas of the rectum where mis
interpreted as belonging to the background. 

No tendency of performance degradation due to volumetric differ
ences between training and test data was seen for the CTV, which 
however had small variation of volume (<15 cm3), while the variation 
in performance was larger for the bladder and the rectum having larger 
differences in volume, (<350 cm3 and <110 cm3 respectively), see 
Fig. 4. 

4. Discussion 

In this work we trained patient specific segmentation ANNs on a 
single dataset for longitudinal propagation of contours in prostate 
ultrahypofractionated radiotherapy with an MR-Linac. Despite the 
minimal amount of training data, the proposed ANN approach produced 
similar accuracy in terms of both Dice coefficient and APL compared to 
the DIR approach. 

However, as previously mentioned, the ANNs will only work with 
precision when the inference data is similar to the training data. This 
inherently causes issues. The most prominent failure of ANN is depicted 
in Fig. 3, when there was a large variation in contrast between the 
training image and inference image in the rectum, producing holes in 
the structure. In case of large volume differences between the structures 
on the training image and the inference image one could potentially 
have expected the performance of especially the DIR approach to 
degrade. As for the CTV, no difference in performance due to volume 
change seemed to be present for either ANN or DIR, although this could 
likely be due to the rather small absolute volume changes. Larger vol
ume changes was observed for the bladder and rectum and also a larger 
spread in performance for both the ANN and DIR approach, however it 
seems like the volume change was not the only factor contributing to the 
variation in performance. Noticeable is that in some cases, e.g CTV for 
patients 12–14, the results between and ANN and DIR were very similar 
but not fully accurate when compared to the manual ground-truth 

structures. Similarly, this can be seen in the example image in Fig. 3 
for the rectum, where especially the cranial extent of the structure was 
similar between the ANN and DIR but sometimes not with the ground- 
truth. Such deviations could potentially be explained, not by the inac
curacy of the approaches, but rather by a variation in definition of the 
ground-truth structures. It is hence evident that, regardless of approach 
chosen, the reference data need to be carefully constructed since both 
approaches, however in very different ways, propagate this information. 
Due to the usage of 2D-models in the transversal plane, an additional 
potential explanation for the ANNs inability to distinguish the rectum 
extent is the processing on a slice-wise basis not considering adjacent 
slices, noticed in e.g. [22,23]. Also, obtaining an accurate initial dataset 
where only minor or no adjustments are required may decrease both the 
intra- and interobserver variations, (e.g.[24]), hence obtaining more 
coherent segmentations used for treatment follow-up purposes (e.g. 
through dose accumulation). 

The reference data from the initial plan was here not utilized as the 
training data for the ANN framework. The reason was that this data was 
acquired on a different scanner and with different sequence parameters, 
yielding images with different contrast, resolution and noise than the 
daily treatment images. Initial training on these images unfortunately 
did not produce satisfactory results at inference on the daily images, 
which is an apparent shortcoming of this ANN framework. Potentially 
some more sophisticated augmentation could have mitigated this issue, 
such as a histogram matching technique [25]. Also due to the rather 
stochastic nature of the interfractional variation, a leave-one-out 
approach could have been utilized, training on images from any of the 
fractions and applied on the remaining, without losing any generaliza
tion, hence strengthening the conclusions. Other longitudinal studies 
have exploited information in following imaging sessions, in which new 
images were continuously included [15,26]. This approach has not been 
tried in this context but is an evident candidate for evolution of this 
framework, possibly yielding continuously more accurate models for 
each fraction. However, this would require manual recontouring of each 
structure at every fraction if not determined acceptable by the online 
DIR approach. 

The combination of several outputs of a single model has the 
advantage of simplicity at both training and inference. However, it may 
potentially be suboptimal, especially when the volume of the segmented 
structures varies substantially. As in this case, the CTV was substantially 
smaller than the bladder and rectum and hence the class imbalance may 
still be of concern for the CTV. A much smaller cropped volume, 
encompassing solely the CTV with some margin and employing a 
network onto this volume would potentially have increased the seg
mentation accuracy. Splitting into different models may also have 
improved the results. 

For future work, a transfer learning approach with a baseline model 
for the OARs could potentially have improved the results, at least for the 
rectum segmentation due to the high variation in not only shape but also 
in contrast. As for the threshold of one voxel for the APL, it was chosen to 
avoid penalizing structures within clinical acceptance by not requiring a 
perfect overlap. However, one could argue for different thresholds e.g. 
for OARs, especially at a distance sufficiently far away from the target 
and hence to a large degree outside the intended treatment volume. 
Also, no consideration was given to a potentially more care given to the 
contouring of the target, which would have implied a higher weight to 
this structure, or to slice-wise interpolation reducing the number of 
slices to correct. Here we have focused on evaluating a recontouring 
scenario, thus emphasizing a measure reflecting this. However, for 
future work it would be of interest to focus on the dosimetric aspects of 
different contouring approaches and evaluate their effect of the 
replanning stage and the dose delivered. 

In conclusion, we have trained patient specific ANNs on only a single 
image set for contouring CTV, bladder and rectum and employed in the 
context of an adaptive prostate radiotherapy workflow using an MR- 
Linac. Although a very simple approach, it showed similar 

Table 1 
Mean values and standard deviations of the output of ANN (Artificial Neural 
Network) and DIR (Deformable Image Registration) in terms of Dice coefficient 
value and Added Path Length (APL) in voxels. The p-values from a Wilcoxon 
two-sided signed rank test are given to depict significance of the difference 
between the approaches.   

ANN 
DICE 

DIR 
DICE 

p-value ANN APL DIR APL p-value 

CTV 0.92 ±
0.03 

0.95 ±
0.03  

<0.001 3109 ±
1642 

1835 ±
1621  

<0.001 

Bladder 0.93 ±
0.07 

0.93 ±
0.08  

0.60 7250 ±
4234 

7236 ±
4287  

0.77 

Rectum 0.84 ±
0.10 

0.88 ±
0.06  

<0.001 5041 ±
2666 

4170 ±
2920  

<0.001 

All – –  – 15400 ±
6217 

13242 ±
6083  

<0.001  
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performance in comparison to a DIR algorithm optimized for the specific 
task. 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 

Fig. 1. Results from ANN (Artificial Neural Network) (blue circle) and DIR (Deformable Image Registration) (orange cross) compared to reference structures for each 
patient and all fraction images except the first which was the training image. Results are separated for each patient along the x-axis and presented as Dice coefficient 
on the y-axis. Each marker represents the result from one fraction image. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 

Fig. 2. The results from ANN (Artificial Neural Network) (blue circle) and DIR (Deformable Image Registration) (orange cross) compared to reference for each 
patient and all fraction images except the first which was the training image. Results are separated for each patient along the x-axis and presented as Added Path 
Length (APL) in voxels on the y-axis. Each marker represents the result from one fraction image. In the rightmost plot each structure contribution is summed. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Longitudinal results of patient 2 (top) and 5 (bottom). Yellow structures indicate reference contours, red artificial neural network results and green 
deformable image registration results. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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