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A B S T R A C T

This paper outlines a framework in order to provide a reliable and up-to date local precipitation dataset over
Sistan and Baluchestan province, one of the poorly rain gauged areas in Iran. Initially, the accuracy of GPCC data,
as the reference dataset, was evaluated. Next, the performance of eight gridded precipitation products (namely,
CHIRPS, CMORPH-RAW, ERA5, ERA-Interim, GPM-IMERG, GSMaP-MVK, PERSIANN and TRMM3B42) were
compared based on the GPCC observations during 1982–2016 over the study area. The evaluation was done by
using eight commonly used statistical and categorical metrics. Then, among the products, the most suitable ones
on the basis of their better performance and least time delay in providing data, were utilized as the constituent
members of the proposed hybrid dataset. Using several statistical/machine learning approaches (namely, NSGA II,
ETROPY and TOPSIS), daily weights of the chosen datasets were estimated, while the correlation coefficient and
the estimation error of the data were maximized and minimized, respectively. Finally, the efficiency of the
proposed hybrid precipitation dataset was investigated. Results indicate that the developed hybrid dataset (2014-
present), using the estimates of the chosen ensemble members (GPM-IMERG, GSMaP-MVK and PERSIANN) and
their respective weighting coefficients, provides accurate local daily precipitation data with a spatial resolution of
0.25�, representing the minimum time delay, compared to the other available datasets.
1. Introduction

Access to climate data (i.e., rainfall, temperature, etc) is one of the
fundamental prerequisites for hydro-climatological applications (Kucera
et al., 2013; Lettenmaier et al., 2015; Abdulrazzaq et al., 2019). Typi-
cally, station-based observation data is considered as the most reliable
source of this data. The quality required to exploit this data depends on
the essential features including: existence of a long-term statistical period
of overlapping data between the stations, appropriate spatial-temporal
coverage across the region, sufficiently accurate precipitation esti-
mates, data recording in accordance with the international standards,
timely data presentation with minimum delay, etc. Not all of these fea-
tures are easy to obtain. However, remote sensing data provides the
opportunity to use the precipitation estimates as a data source. Today, a
wide range of data centres provide gridded precipitation products, which
can be generally classified into four categories (Duan et al., 2016): 1)
precipitation products from gauge-based data e.g., CPC (the Climate
Precipitation Center), CRU (the Climatic Research Unit), GPCC (the
andoost).
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Global Precipitation Climatology Centre) (Xie et al., 2007; Harris et al.,
2013; Schneider et al., 2014); 2) satellite-only products such as
CMORPH-RAW (CPC MORPHing technique-RAW), GSMaP-MVK (Global
Satellite Mapping of Precipitation Moving Vector with Kalman) (Joyce
et al., 2004; Iguchi et al., 2009); 3) reanalysis data created from
combining observation and simulation/measurement data, for example:
NCEP-CFSR (National Centers for Environmental Prediction- Climate
Forecast System Reanalysis) (Saha et al., 2010); and 4) satellite-gauge
products, for instance PERSIANN (Precipitation Estimation from
Remotely Sensed Information using Artificial Neural Networks), TRMM
(Tropical Rainfall Measuring Mission) (Sorooshian et al., 2000; Huffman
et al., 2007). Therefore, the precipitation datasets do not necessarily use
the same basic data and data preparation methods. As a result, perfor-
mance evaluation of different datasets is always considered as a necessity
for the climatic research. Evaluation results from several studies
demonstrate that satellite-only products are reasonably accurate and can
be used for various applications such as hydrologic applications; how-
ever, the results have always been interpreted differently. For example,
ber 2020
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Figure 1. (A) Location of Sistan and Baluchestan Province and (B) the rain gauge stations, used in the present study.
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the datasets may overestimate or underestimate the amount of precipi-
tation in hot and cold seasons (e.g. Behrangi et al., 2011; Basheer and
Ahmed Elagib, 2019). Some other studies showed that the accuracy of
the estimated values, not only depends on temporal distribution, but also
on the spatial distribution and topography of the area (e.g. Duan et al.,
2016; Henn et al., 2018; Yang et al., 2019). In addition, using raw pre-
cipitation products may provide more accurate estimates, compared to
the interpolated gridded precipitation, derived from inadequate spatial
coverage of land stations (e.g. Ghulami et al., 2017). Results also show
that satellite-based datasets provide better outcomes in hot and dry re-
gions, reanalysis datasets are ideally suited for the areas with dense
network of ground-based stations, and finally, multi-source datasets are
especially appropriate for estimating the rainfall at regional or local
levels (Bosilovich et al., 2008; Xue et al., 2013; Wang et al., 2019).

The common theme among all the studies is that the performance
assessment process is mainly carried out either directly (calculating sta-
tistical and categorical metrics e.g. Sun et al., 2018; Ahmed et al., 2019;
Thanh, 2019) or indirectly (evaluation of hydrologic-hydraulic models
e.g. Voisin et al., 2008; Getirana et al., 2011; Wu et al., 2018). More
information, about the performance assessment of precipitation datasets
can be found in several studies (e.g. Yong et al., 2010; Gao and Liu, 2013;
Tan et al., 2015).

Although the results of the evaluations indicate the effectiveness of
different datasets, sometimes their precipitation estimates contain sys-
tematic and random errors and even different datasets present different
amounts of rainfall in the same spatial location and temporal position.
This leads to uncertainties in the accurate estimation of precipitation.
Recent studies show that multi-source datasets, providing maximum
similarity with the observed values, have several gains (Grimes et al.,
1999; Todini, 2001; Heidinger et al., 2012): 1) they take advantage of the
selected data sources; 2) they can reduce the impact of systematic errors
and biases; 3) they consider the interactions of different datasets with
others at different times and locations; and 4) they may reduce, as much
as possible, the sensitivity to the factors decreasing the accuracy of pre-
cipitation estimates.
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Among currently available designed hybrid datasets, PFD (Precipi-
tation Frequency Data Server) and WFDEI (Watch Forcing Data ERA-
Interim) may be referred to (Sheffield et al., 2006; Weedon et al.,
2014), which are based on rescaling reanalysis data to force agreement
with gauge-interpolated data as well as TMPA3B43 (TRMM
Multi-satellite Precipitation Analysis) and CHIRPS (Climate Hazards
group Infrared Precipitation with Stations), through combining
gauge-based data with satellite-only products, using inverse-error
weighted averaging (Huffman et al., 2007; Funk et al., 2015b). In a
more recent approach, Beck et al. (2017) put forward the idea of a novel
merging technique and developed MSWEP (Multi-Source
Weighted-Ensemble Precipitation). The estimated precipitations are
calculated by weighting the seven datasets where the basis of weighting
was the three-day correlation coefficients. However, use of MSWEP can
provide better performance for water storage and discharge studies but it
has no obvious advantages compare to some rainfall products on other
aspect (Awange et al., 2019).

As these merged datasets generate data globally/quasi-globally, their
use may be challenging as (a) all of themmay not provide up-to-date data
(e.g. Joyce et al., 2004; Huffman et al., 2007; Awange et al., 2019); (b)
the performance assessment process in some of them has been carried out
indirectly by the evaluation of hydrologic-hydraulic models (e.g. Beck
et al., 2017; Awange et al., 2019), which may not necessarily be a
definitive confirmation of the accuracy of the precipitation data; (c) they
do not provide reliable precipitation estimates in different time periods
(e.g. Behrangi et al., 2011; Awange et al., 2019; Basheer and Ahmed
Elagib, 2019); and (d) the spatial distribution of the accuracy of precip-
itation estimates are not the same in different areas (e.g. Ghulami et al.,
2017; Henn et al., 2018; Awange et al., 2019).

Therefore, the main motivation for the present study was to develop a
local hybrid dataset, thereby taking advantage of the individual used
datasets, minimizing their limitations and presenting precipitation data
in a timely manner, believed to be crucially important for gauge-based
data-sparse regions. The Sistan and Baluchestan province, located in
the southeast of Iran with varying challenging issues including floods and



Table 1. Summary of the rain gauge stations, utilized in the present study.

Station longitude Latitude Altitude (m) Period of record

Chabahar 60 37 E 25 17 N 8 1963–2019

Iranshahr 60 42 E 27 12 N 591 1964–2019

Khash 61 12 E 28 13 N 1394 1986–2019

Konarak 60 24 E 25 24 N 12 1984–2019

Mirjaveh 61 26 E 29 01 N 836 2006–2019

Nik Shahr 60 12 E 26 14 N 510 2006–2019

Nosrat Abad 59 59 E 29 51 N 1127 2011–2019

Rask 61 24 E 25 14 N 406 2009–2019

Saravan 62 20 E 27 20 N 1195 1986–2019

Zabol 61 29 E 31 02 N 489 1962–2019

Zahedan 60 53 E 29 28 N 1370 1951–2019

Zehak 61 41 E 30 54 N 895 1992–2019
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droughts, has been selected as the study area, in this research, for
developing a local precipitation dataset.

This paper is organized as follow. Section 2, in three subsections,
presents the study area, the used datasets as the materials of this study
and the methodology describing the notion of the hybrid technique for
the proposed dataset. Section 3 presents the obtained results and
consequently the relative discussions and conclusion are described in
Sections 4 and 5.

2. Material and methods

2.1. Study area

Lack of adequate coverage (existence) of rain gauge stations, espe-
cially in arid and semi-arid areas of Iran is a major management and
research predicament. In this term, the province of Sistan and Baluche-
stan is one of the remarked poorly rain gauged areas of the country. This
province with a population of approximately 2,800,000 people (ac-
cording to the latest census of the country in 2015), situated in the
southeast of Iran, is enclosed between a longitude of 58�500-63�020 E and
a latitude of 25�030-31�270 N. It covers an area of about 181,000 km2 and
as such it is the second largest province in the country. The prevailing
climate of this vast province is hot desert climate and meteorological
parameters suggest that the average annual precipitation and the average
annual temperature varies from 22 to 37 �C (Barthold, 1984; Abbasnia
et al., 2018). Most of this information is captured and stored by the
weather station in the analyzed area (Figure 1). Based on official reports,
this province is one of the most deprived areas of Iran in terms of water
resources availability. In addition, the region is facing serious challenges,
including severe floods and droughts, scarce land-based data, water
conflicts with riparian neighboring countries, etc. Thus, development of a
reliable precipitation dataset, which can be used in various aspects of
research and management, is imperative.
Table 2. Characteristics of the used precipitation products in the present study.

Dataset Spatial resolution Temporal resolution

CHIRPS 0.05� Daily

CMORPH_RAW 0.25� 30 min

ERA5 0.25� 1 Hourly

ERA-Interim 0.25� 3 Hourly

GPM-IMERG 0.10� 30 min

GSMaP-MVK 0.10� 1 Hourly

PERSIANN 0.25� Daily

TRMM (3B42-RT) 0.25� 3 Hourly

3

2.2. Data

2.2.1. Observational data
Usage of rain gauge records, as the primary source of rainfall mea-

surements, are exposed to several challenges: 1) discontinuous data on
the stations; 2) insufficient periods of records; 3) point specific mea-
surements and small sampling areas resulting in uncertainties in the
spatial variability of precipitation (C�anovas-García et al., 2018). The
location of the 12 rain gauge stations, situated in the study area, provided
by the Iranian Meteorological Organization (IRIMO), are shown in
Figure 1 and Table 1. Inadequate spatial and temporal coverage of the
stations led to utilize GPCC as the reference precipitation dataset, using
high-density gauge data (Rudolf and Schneider, 2005). GPCC, which was
established by the Germany's National Meteorological Service at the
DeutscherWetterdienst (DWD) on invitation of theWorldMeteorological
Organization (WMO) in 1989, uses rain gauge stations to analyze pre-
cipitation for the global land areas and it aims to provide users with their
needs, especially in determining the accuracy of gridded precipitation
data (Schneider et al., 2011, 2014). This product provides gridded pre-
cipitation data, comprising several different sources such as WMO, GTS
(Global Telecommunication System), SYNOP (SYNoptic Ocean Predic-
tion), CLIMAT (ground surface targets), CRU (Climate Research Unit),
FAO (Food and Agriculture Organization), and GHCN (Global Historical
Climatology Network). The GPCC data is produced through a systematic
process including: data collection, quality control, spatial analysis, and
error quantification (Sun et al., 2018). This procedure for producing
gridded precipitation data, has led to the introduction of GPCC as a
reliable reference observation dataset in Iran, by different studies (Raziei
et al., 2011; Azizi et al., 2015; Darand and Zand Karimi, 2016).

2.2.2. Precipitation products
In this study, eight gridded precipitation products were employed in

accordance with Table 2. The following gives a brief description of each.
Zonal coverage Availability Reference

50� N-50� S 1981-present Funk et al. (2015a)

60� N-60� S 1998-present Joyce et al. (2004)

Global 2008–2018 Hersbach and Dee (2016)

Global 1979–2018 Dee et al. (2011)

60� N-60� S 2014-present Huffman et al. (2014)

60� N-60� S 2000-present Iguchi et al. (2009)

60� N-60� S 2000- present Sorooshian et al. (2000)

50� N-50� S 2000–2016 Huffman et al. (2007)
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CHIRPS is a quasi-global dataset with a statistical length of almost 40
years. Combining satellite-based rainfall products with gauge-based data
provides a gridded precipitation dataset in time series (Funk et al.,
2015a). This study uses the CHIRPS2.0 version of the dataset.

CMORPH stands for the precipitation products, estimated by NOAA
Climate prediction center MORPHing technique, combining existing
passive microwave-based precipitation estimates from multiple low orbit
satellites and infrared data from multiple geostationary satellites (Joyce
et al., 2004). In the present study, the CMORPH-RAW, one of the latest
CMORPH products, was utilized.

Reanalysis is a procedure for generating climate data for climate
monitoring and prediction. An unchanging data assimilation scheme and
the relative models are utilized for manufacturing data; available ob-
servations are ingested every 6–12 h over the period being analyzed,
since the observational network is altering. This framework provides a
dynamically consistent estimate of the climate state at each time step.
During each reanalysis product, the changing observation mix can pro-
duce artificial variability and spurious trends. ECMWF (European Centre
for Medium-RangeWeather Forecasts) is one of the centres that produces
and presents reanalysis data, including ERA5, ERA-Interim, etc, in
different spatial and temporal resolutions (Hersbach and Dee, 2016; Dee
et al., 2011).

GSMaP-MVK is a satellite-based dataset, aiming to develop high res-
olution precipitation data from passive microwave and infrared satellites.
The GSMaP-MVK product stands for the GSMaP Moving Vector with
Kalman-filter product (Iguchi et al., 2009). The GSMaP-MVK provides
data in different versions and the version 6.0 (second edition) was uti-
lized in the present study.

Among other satellite-based precipitation datasets, PERSIANN is a
system that uses an artificial neural network algorithm to estimate the
amount of rainfall per pixel by using satellite longwave infrared images
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(Sorooshian et al., 2000). It offers data in three versions and this study
used the PERSIANN version.

One of the first attempts to estimate precipitation by satellites, was
the TRMM project in 1997, which was a joint project between NASA
(National Aeronautics and Space Administration) and JAXA (Japan
Aerospace Exploration Agency). The satellite was dedicated to estimate
tropical precipitation by different microwave and visible infrared sen-
sors, using a set of algorithms. Although passive microwave sensors
benefit from more accurate estimates of precipitation, satellite infrared
algorithms can produce high temporal sampling. The data collection
started by TRMM and is currently continued by GPM-IMERG, launched in
2014 (Huffman et al., 2007, 2014).

All daily datasets used in the study have a spatial resolution of 0.25�.
In cases where pixel size was less than 0.25� (i.e. CHIRPS, GPM-IMERG,
GSMaP-MVK with higher spatial resolution than GPCC), data were
resampled using the pixel averaging aggregation method.

2.3. Methodology

With the aim of providing a local precipitation dataset with high
spatial-temporal resolution, the dominant perspective on the present
study is summarized in Figure 2. Each of these steps is discussed in details
below.

2.3.1. Evaluation of GPCC dataset accuracy
To ensure GPCC's ability in estimating precipitation and confirm it as

the reference database, its agreement with the station data in the target
region was monitored between 1982 and 2016. In this respect, daily
precipitation data of GPCC with the spatial resolution of 0.25 � � 0.25 �

was applied. Subsequently, the correlation coefficient and mean precip-
itation values, derived from GPCC data, were compared with the
observed values in cells containing stations.
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Table 3. List of the statistical and categorical metrics, used in the present study for the evaluation of precipitation products.

Evaluation Indexes Describing Type Equation Unit Range Optimal value

Mean Absolute Error (MAE) the average magnitude of the
forecast errors

statistical
MAE ¼

PN
i¼1jPi � Oij

N

mm [0~∞) 0

correlation coefficient (R) the degree of collinearity between
observed precipitation data and
the gridded products

statistical
R ¼

PN
i¼1ðjPi � Pi jÞðjOi � OijÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1ðjPi � PijÞ2
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1ðjOi � OijÞ2
q NA [-1~1] 1

BIAS score (BIAS) the ratio of the frequency of
forecast events to the frequency of
observed events

categorical BIAS ¼ Hþ F
HþM

NA [0~∞) 1

False Alarm Ratio (FAR) the fraction of events, detected by
the product but not observed

categorical FAR ¼ F
Hþ F

NA [0~1] 0

Probability Of Detection (POD) the fraction of the observed
precipitation events, which were
detected by the assessed product

categorical POD ¼ H
HþM

NA [0~1] 1

Probability Of False Detection (POFD) the fraction of the number of the
precipitation events detected by
the products but not observed by
rain gauge stations

categorical POFD ¼ F
Fþ C

NA [0~1] 0

Critical Success Index (CSI) the proportion of events that were
predicted correctly

categorical CSI ¼ 1�
1

1� FAR

�
þ
�

1
POD

�
� 1

NA [0~1] 1

Heidke Skill Score (HSS) the fractional improvement of the
forecast over the standard forecast

categorical
HSS ¼ 2ðHC� FMÞ

ðHþMÞðMþ CÞ þ ðHþ FÞðFþ CÞ
NA [-1~1] 1

Note: N is the number of samples; Oi is the observed precipitation, Pi is the estimated precipitation from the evaluated products, �Oi and Pi are the average of corre-
sponding data during N events.
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2.3.2. Evaluation of different gridded precipitation datasets
After the ratification of GPCC as the reference database, in order to

select the best datasets in the study area, these datasets were evaluated.
For this purpose, different statistical and categorical metrics were
computed based on daily GPCC data with spatial resolution of 0.25�

during the period from 1982 to 2016 (Table 3). The categorical metrics,
used in the assessments, are based on four combinations of forecasts and
observations: 1) Hit (H): the number of observed precipitations, correctly
detected by the products; 2) Miss (M): the number of observed pre-
cipitations, not detected by the products; 3) False alarm (F): the number
of the precipitation detected by the products but not observed by rain
gauge stations; And 4) Correct negative (C): the number of precipitations,
not detected by the products and not observed by rain gauge stations.
Note that as the categorical metrics depend on a thresholds value, the
value used in the study was precipitation>0 (mm).

At the end of this step, the datasets, which performed better and had
the least time delay in providing data, were introduced as the constituent
members of the proposed local hybrid dataset.

2.3.3. Hybrid precipitation product
In order to achieve the best combination of the chosen rainfall data-

sets, three preconditions are obligatory: (a) finding different combination
of alternatives (the best feasible solution space of the datasets) satisfying
the objectives; (b) distinguishing between the possible solutions based on
the achievement of the objectives; and (c) choosing the best final
Objective:
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alternative based on the results of the previous steps. Here, the frame-
work presented by Yazdandoost and Izadi (2016) was utilized to address
these prerequisites in finding the best combination of ensemble mem-
bers. The proposed framework applies (1) NSGA-II (Non dominated
Sorting Genetic Algorithm II) with the aim of finding the best solution
space of the datasets with assessing the trade-offs between the objectives,
(2) ENTROPY theory to find the relative importance of the objectives and
(3) TOPSIS (Technique for Order of Preference by Similarity to Ideal
Solution) to choose the best alternative from the available options. The
following part elaborates a brief outline of the steps of this framework
and complete information can be found in Yazdandoost and Izadi (2016)
and Yazdandoost et al. (2020).

Initially, the NSGA-II optimization algorithm (as a robust Pareto
optimal solution approach proposed by Deb et al., 2002) was used to
find suitable weights for each precipitation dataset. This weighting was
performed separately for each 0.25� cell at daily spatial-temporal res-
olution. Not surprisingly, the more precise precipitation estimates were
available for any dataset during the past years, the more weight was
assigned to that dataset. In order to do that, the objective functions (R
and ME) and constraints were set as the following equation. In fact, in
the process of solving this optimization algorithm, the daily weights of
each dataset (as the decision variables) were determined in such a way
that in each cell the ME and R were minimized and maximized,
respectively (Eq. (1)).
z
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Table 4. Evaluation of GPCC data based on the station data.

Station Period of record R Observed mean (mm/day) Estimated mean (mm/day)

Chabahar 1963–2016 0.60 0.31 0.34

Iranshahr 1964–2016 0.95 0.29 0.36

Khash 1986–2016 0.94 0.32 0.39

Konarak 1984–2016 0.88 0.30 0.34

Mirjaveh 2006–2016 0.78 0.11 0.20

Nik Shahr 2006–2016 0.66 0.48 0.46

Nosrat Abad 2011–2016 0.83 0.21 0.14

Rask 2009–2016 0.68 0.35 0.40

Saravan 1986–2016 0.95 0.29 0.27

Zabol 1962–2016 0.95 0.15 0.17

Zahedan 1951–2016 0.94 0.24 0.23

Zehak 1992–2016 0.89 0.13 0.13

Table 5. Comparison of different precipitation datasets based on statistical and categorical metrics.

CHIRPS CMORPH ERA5 ERA-Interim GPM-IMERG GSMaP-MVK PERSIANN TRMM

MAE 0.339 0.358 0.255 0.305 0.226 0.194 0.308 0.378

(6) (7) (3) (4) (2) (1) (5) (8)

R 0.333 0.363 0.576 0.479 0.614 0.454 0.326 0.334

(7) (5) (2) (3) (1) (4) (8) (6)

BIAS 0.527 2.53 2.085 1.45 1.534 1.698 0.716 0.421

(3) (8) (7) (2) (5) (6) (1) (4)

FAR 0.509 0.69 0.567 0.537 0.57 0.632 0.509 0.449

(3) (8) (5) (4) (6) (7) (2) (1)

POD 0.253 0.62 0.742 0.632 0.582 0.524 0.346 0.197

(7) (3) (1) (2) (4) (5) (6) (8)

POFD 0.043 0.241 0.135 0.125 0.086 0.137 0.045 0.029

(2) (8) (6) (5) (4) (7) (3) (1)

CSI 0.197 0.241 0.364 0.36 0.321 0.261 0.252 0.161

(7) (6) (1) (2) (3) (4) (5) (8)

HSS 0.257 0.271 0.454 0.435 0.417 0.321 0.342 0.229

(7) (6) (1) (2) (3) (5) (4) (8)

Note: The numbers in parentheses represents the rank of each dataset for the corresponding metrics.
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Where ðPd
ðijÞÞz is the amount of rainfall, given by the selected zth dataset,

by the coordinates of (i, j) on the dth day of the year and ðWd
ðijÞÞz is the

amount of the assigned weight to the dataset, corresponding to the same
cell and same day. And l is the length of the overlapping period between
the dataset and GPCC in years.

The output of this optimization is a set of optimal compromise solu-
tions that one solution can be better in one objective and worse in other.
This set of all solutions is called Pareto front or Pareto frontier. Therefore,
the Pareto front can show the changes in the values of the objective
functions relative to each other. With this knowledge, more flexibility in
the selection of final alternative can be offered to the decision maker.

In order to distinguish between alternatives, next, the ENTROPY
method (introduced by Shannon and Weaver, 1947) by emphasizing the
objectives with higher differences in their values, specifies the relative
weight of objectives. In other words, the ENTROPY idea is mainly useful
to express which set of data is less variable and consequently may have
lower priority in decision making (Hwang and Yoon, 1981). Therefore,
the result of this part would determine which of the objectives (ME or R)
is more important in the selection of the final combination of datasets.
6

Then, by using the Entropy weights (as the input weight of ME and
R) and Pareto optimal solutions (different alternatives of dataset com-
binations) as the input variables, the TOPSIS method was selected,
among the multi-criteria decision making methods, for various reasons
such as: simplicity, rationality, comprehensibility and good computa-
tional efficiency (Roszkowska, 2011). The base of this method is
established on this rule that the preferred alternative must have the
highest similarity to the ideal solutions. Further information about this
method is provided in Hwang and Yoon (1981) and García-Cascales and
Lamata (2012).

Finally, in order to develop the desired precipitation dataset, the SAW
method (Eq. (2)) is used to estimate merged daily precipitation for each
0.25�-pixel:

Pd
ðijÞ ¼Σm

i¼1Σ
n
j¼1Σ

k
z¼1

�
Wd

ðijÞ
�
z
�
�
Pd
ðijÞ
�
z

(2)

Where: ðPd
ðijÞÞz is the amount of produced rainfall by the coordinates of (i,

j) on the dth day of the year. Also, ðPd
ðijÞÞz is the amount of the assigned

weight to the selected zth dataset and ðPd
ðijÞÞz is the amount of precipita-

tion, corresponding to that dataset in the same cell and same day. And m
and n are matrix dimensions, consisting of pixels and k is the number of
selected datasets. The output of this step is the proposed hybrid dataset,
providing daily precipitation values with a delay in accordance with the
maximum delay of the selected datasets.
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Figure 3. Comparing the performance of the applied precipitation datasets indicated by MAE.
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3. Results and discussion

3.1. Evaluation of GPCC dataset accuracy

To ensure full compliance of GPCC data with the station data in the
study area and ratify it as the reference database, the mean values of
rainfall, provided by GPCC, and the correlation coefficients of the sta-
tions were calculated (Table 4). Results confirm the GPCC's ability to
estimate rainfall in the area. Based on the results, the average error and
CHIRPS CMORPH−RAW

GPM−IMERG GSMaP−MVK

Figure 4. Comparing the performance of the ap

7

the average of correlation coefficients at all stations were 0.02 (mm/day)
and 0.84, respectively. So, the reliability of using GPCC, as the reference
gridded dataset, was accepted without any modification.

3.2. Evaluation of different gridded precipitation datasets

The performance of the eight precipitation datasets was evaluated by
calculating the metrics, listed in Table 3. In the process of calculation, the
overlapping periods of GPCC with the other datasets were used. Table 5
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Figure 5. Comparing the performance of the applied precipitation datasets indicated by BIAS.
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indicates the average values of these metrics in the whole region and the
rank of each dataset (the number in parentheses), compared to the
others. Based on the results, it can be claimed that GPM-IMERG and
GSMaP-MVK had the best performances in terms of estimating the pre-
cipitation values; and in terms of detecting the occurrence or absence of
precipitation, ERA5 and ERA-Interim made the best judgments. In
addition, as shown in the table, TRMM, CMORPH and CHIRPS did not
perform well compared to the other datasets. In contrast, ERA5, ERA-
Interim, and GPM-IMERG provided the best results, respectively; and
CHIRPS CMORPH−RAW

GPM−IMERG GSMaP−MVK

Figure 6. Comparing the performance of the app

8

the next rankings included GSMaP-MVK and PERSIANN. This is while, as
of August 2019, ERA-Interim has been suspended from production. On
the other hand, as ERA5 is published with an offset of about three months
from the dataset's reference date, it is impossible to provide early esti-
mates of rainfall by this dataset. Given the results and the limitations of
development of an up-to-date precipitation dataset, finally, GPM-IMERG,
GSMaP-MVK and PERSIANN were selected. Elucidating their contribu-
tions, as an inter-model comparison, GPM-IMERG was observed to pre-
sent highly accurate datasets in terms of MAE, R, CSI and HSS. In the case
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lied precipitation datasets indicated by FAR.
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Figure 7. Comparing the performance of the applied precipitation datasets indicated by POD.
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Figure 8. Comparing the performance of the applied precipitation datasets indicated by POFD.
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of PERSIANN this was true for BIAS, FAR and POFD, while the GSMaP-
MVK datasets measured the amount of precipitation data more accu-
rately than the others based on MAE (see Table 5). Details of the spatial
distribution of the applied metrics throughout the analyzed area are
shown in Figures 3, 4, 5, 6, 7, 8, 9, and 10.

3.3. Hybrid precipitation product

At this stage, NSGA-II was utilized to find the best weight combina-
tion of the ensemble members. Figure 11 illustrates the result of the
9

genetic algorithm for one cell of the region (Lon¼ 60.375, Lat¼ 29.375)
on March 7th. Given the trend of the Pareto front, the inference that ‘as
the error in the estimation of the merged precipitation increases, the
correlation coefficient increases too’, can be correctly drawn.

As can be seen in Figure 11, the proposed genetic algorithm is capable
of discovering different points in the solution domain over a wide range.
This range varies from 0.36 to 0.48 mm and 0.35 to 0.85 for ME and the
R, respectively. Although the points are able to exhibit different weight
combinations of the ensemble members, they have led to the challenge of
distinguishing between these options and subsequently selecting the
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Figure 9. Comparing the performance of the applied precipitation datasets indicated by CSI.
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Figure 10. Comparing the performance of the applied precipitation datasets indicated by HSS.

F. Yazdandoost et al. Heliyon 6 (2020) e05091
most optimal combination. Next, in response to this challenge, the EN-
TROPYmethod was used to reveal the relative importance of ME and R as
the decision criteria. Whenever the amplitude variation of ME for the
optimal solutions (Pareto front) has a lower value compared to the
amplitude variation of R, ENTROPY assigns less weight to ME and more
to R, and vice versa. Since the amplitude variation of R over ME, for
optimal solutions, is more than 4 times (Figure 11), ENTROPY has esti-
mated the relative importance (ENTROPY weights) of the parameters R
and ME: 0.888 and 0.112, respectively. The final step is to determine the
10
best combination of the chosen datasets by TOPSIS, using the decision
matrix (optimal solutions of Pareto front) and the relative importance of
the decision criteria. Point A in Figure 11, was introduced as the final
option for the merged dataset in the proposed cell on March 7th by the
TOPSIS method. Here, results of the best weight combination of GPM-
IMERG, GSMaP-MVK and PERSIANN were 0.764, 0.039 and 0.183,
respectively. This three-step process was performed separately and
repeatedly in each cell for each day of the year using Eq. (2). By this way,
the daily precipitation of each 0.25�-cell of the network was obtained



Figure 11. Pareto front of NSGA-II in one cell (lon ¼ 60.375, lat ¼ 29.375) on
March 7th.
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from the summation of multiplying each dataset precipitation value by its
corresponding weight.

At this stage, to evaluate the effectiveness of the proposed dataset, it is
absolutely necessary to answer three basic questions: 1) can the hybrid
dataset provide accurate estimates of rainfall? 2) does it provide better
estimates, compared to the other existing precipitation datasets? and 3)
can it be trusted as a timely and a generally valid dataset?

In response to the first challenge, the results of monthly cumulative
precipitation from the merged dataset, were compared with monthly
cumulative precipitation from the GPCC throughout the area. The com-
parison results are shown in Figure 12 in the mean of the whole region
(graphs) and their range of changes in different cells (box plots). As the
figure demonstrates, the maximum difference between the two graphs is
7.17 mm and the correlation coefficient is 0.95, indicating the high ac-
curacy of synchronization between the hybrid dataset and the observed
rainfall values during the entire study period.

In response to the second question, the precipitation values from the
proposed dataset and the other three selected datasets, were compared
with observational data from GPCC. Figure 13 shows the time series of
daily precipitation and its difference values fromGPCC data for the entire
area, for the proposed dataset and the other three datasets. As can be seen
Figure 12. Mean of monthly cumulative precipitation r
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from this figure, there are several reasons why the hybrid dataset per-
forms better than the other three datasets: 1) the mean of ME at the re-
gion was much lower for the hybrid dataset. 2) the number of days, when
the rainfall estimation error was significant (number of peaks), was much
lower in the hybrid dataset. and 3) the estimation error of PERSIANN did
not follow a specific pattern, while GPM and GSMaP-MVK overestimated
the amounts of precipitation. Therefore, it can be claimed that the
developed hybrid dataset, utilizing the other datasets in the target region,
has achieved better results.

In answer to the third question, since the observational database
(GPCC) does not provide daily precipitation during the period from 2017
to present, the preference for using the hybrid dataset as an appropriate
alternative, needs to be investigated. In response to this need, data from
regional weather stations (2017–2018) were used to evaluate the accu-
racy of the proposed dataset and compared with the others. The results
are shown in Table 6. In this evaluation, Konarak station was not used
due to lack of data in 2018. As expected, the merged dataset never per-
formed the worst in the region and has always been among the top three
datasets.

Based on the results, it can be claimed that the hybrid dataset, not
only provides a higher accuracy in precipitation estimates, but these
estimates are quite timely and represent the least environmental sensi-
tivities, making it the top choice for estimating rainfall in the region.

As seen from the results presented in Section 3, along with previous
studies (e.g., Moazami et al., 2016; Henn et al., 2018; Wang et al., 2020),
the performance of precipitation datasets varies in time and space. As a
result, earlier studies (e.g., Beck et al., 2017; Shen et al., 2018; Beck et al.,
2019) tend to design hybrid precipitation datasets, which optimally
merge the most reliable precipitation datasets available as a function of
time and location. In addition, localized merged datasets are needed to
correct the drawbacks and enhance the advantages of individual sources
(Shrestha et al., 2011; Beck et al., 2017; Shen et al., 2018). As inferred
from these documented studies, merging algorithms for multi-source
datasets should be developed at regional scale before any further anal-
ysis. Consistent with this suggestion, using the NSGA-II multi-objective
esults, obtained from the hybrid dataset and GPCC.



Figure 13. Time series of mean daily precipitation and its difference values from GPCC data for the hybrid proposed dataset and the three selected datasets.

Table 6. Evaluation of merged data and the selected datasets based on in-situ data in 2017–2018.

Station R ME (mm/day)

Merge GPM-IMERG GSMaP-MVK PERSIANN Merge GPM-IMERG GSMaP-MVK PERSIANN

Chabahar 0.95 (2) 0.95 (2) 0.95 (2) 0.97 (1) 0.45 (3) 0.73 (4) 0.12 (2) 0.02 (1)

Iranshahr 0.79 (2) 0.81 (1) 0.72 (4) 0.76 (3) 0.10 (2) 0.15 (3) 0.24 (4) 0.00 (1)

Khash 0.88 (1) 0.79 (2) 0.72 (3) 0.67 (4) 0.07 (2) 0.02 (1) 0.28 (4) 0.11 (3)

Mirjaveh 0.67 (3) 0.68 (2) 0.90 (1) 0.51 (4) 0.06 (1) 0.12 (3) 0.07 (2) 0.12 (3)

Nik Shahr 0.98 (1) 0.94 (2) 0.87 (3) 0.84 (4) 0.28 (3) 0.55 (4) 0.26 (2) 0.02 (1)

Nosrat Abad 0.86 (3) 0.73 (4) 0.96 (1) 0.88 (2) 0.02 (1) 0.03 (2) 0.11 (4) 0.10 (3)

Rask 0.58 (1) 0.57 (2) 0.55 (3) 0.55 (3) 0.25 (3) 0.46 (4) 0.19 (2) 0.11 (1)

Saravan 0.50 (3) 0.55 (2) 0.83 (1) 0.48 (4) 0.19 (3) 0.34 (4) 0.12 (1) 0.15 (2)

Zabol 0.95 (1) 0.89 (2) 0.95 (1) 0.82 (3) 0.16 (2) 0.19 (3) 0.03 (1) 0.23 (4)

Zahedan 0.79 (2) 0.69 (3) 0.91 (1) 0.60 (4) 0.04 (1) 0.07 (2) 0.09 (3) 0.10 (4)

Zehak 0.75 (2) 0.72 (4) 0.74 (3) 0.77 (1) 0.14 (2) 0.18 (4) 0.06 (1) 0.16 (3)

Note: The numbers in parentheses represents the rank of each dataset for the corresponding metrics.
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optimization method, daily weights of three selected datasets were
calculated for each 0.25� cell in Sistan and Baluchestan.

A review of previous studies on the assessment of precipitation
datasets in Iran and especially those covering the study area, revealed
that most of the studies have focused on evaluating the performance of
TRMM and PERSIANN (e.g. Javanmard et al., 2010; Alijanian et al.,
2017; Darand et al., 2017). The results of these studies indicated that
TRMM has been able to provide better estimation of the amount of
precipitation while PERSIANN has been presented better results in terms
of POD in the study area (Moazami et al., 2013, 2016; Katiraie-Bor-
oujerdy et al., 2013). The present study showed that GPMIMERG and
GSMaP-MVK were far more accurate in estimating the amount and
detection of the precipitation events (see Table 5). These findings were
consistent with the results from studies by Sharifi et al. (2016), Khoda-
doust Siuki et al. (2016), Beck et al. (2017). In addition, GPMIMERG and
12
GSMaP-MVK have better spatial resolution and provide timely data with
less delay.

Comparing the proposed hybrid dataset with the merged precipita-
tion dataset, MSWEP, it should be acknowledged that although it has also
used observational data (e.g., GPCC as an ensemble member of its
development), it has only been able to provide a maximum R of 0.72 in
Iran. However, the maximum andminimumR of this study were 0.98 and
0.60, respectively. Therefore, the algorithm proves effective. In addition,
MSWEP has provided data until 2017 and cannot be an up-to-date
dataset. In addition, MSWEP used ERA-Interim data (suspended
providing precipitation data since 2019), putting the application of the
dataset in serious jeopardy. Furthermore, it has not utilized the GPMI-
MERG dataset (the most accurate dataset in the study area) as one of its
ensemble members (Beck et al., 2017). Hence it is safe to ascertain that
the presented merged dataset can be nominated as the best localized
precipitation dataset in the study area.
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As the developed dataset was constructed from an analysis of satellite-
derived precipitation estimates, and satellite-derived data are still not as
reliable as desired (Shrestha et al., 2011; Tesfagiorgis et al., 2011; Golian
et al., 2015), further investigations will be necessary with focus on
combining different types of datasets: gauge observations, satellite
remote sensing and atmospheric model reanalysis data, taking full
advantage of the complementary nature of the data recognized in pre-
vious studies (e.g., Pe~na Arancibia et al., 2013; Xu et al., 2019; Tarek
et al., 2019).

4. Conclusions

In the present study, a framework was proposed to develop a merged
precipitation dataset over a poorly gauged area, Sistan and Baluchestan
province, Iran. In the proposed framework, at first, performance of
different datasets was compared to GPCC dataset (as the observational
reference dataset) over the period of 1982–2016 in order to identify the
best ensemble members. Then, using a combination of NSGA-II, EN-
TROPY, and TOPSIS methods, a decision-making framework was pre-
sented in which daily weights of the chosen datasets were estimated for
each 0.25� cell, while the correlation of coefficient and also the estima-
tion error were maximized and minimized, respectively. Finally, the
hybrid precipitation dataset was evaluated.

The results showed that since the performance of different datasets is
not the same over time and space, the hybrid dataset, taking advantages
of the three selected datasets of GPM-IMERG, GSMaP-MVK and PER-
SIANN, is a reliable local daily precipitation product. In fact, it can pro-
vide acceptable performance for the study area with the spatial
resolution of 0.25� � 0.25� with less time delay compared to the other
datasets.
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