
1Scientific Data | (2019) 6:254 | https://doi.org/10.1038/s41597-019-0263-7

www.nature.com/scientificdata

The Empusa code generator and its
application to GBOL, an extendable
ontology for genome annotation
Jesse C. J. van Dam1, Jasper J. Koehorst   1, Jon Olav Vik2, Vitor A. P. Martins dos Santos1,
Peter J. Schaap   1 & Maria Suarez-Diez   1*

The RDF data model facilitates integration of diverse data available in structured and semi-structured
formats. To obtain a coherent RDF graph the chosen ontology must be consistently applied. However,
addition of new diverse data causes the ontology to evolve, which could lead to accumulation of
unintended erroneous composites. Thus, there is a need for a gate keeping system that compares the
intended content described in the ontology with the actual content of the resource. The Empusa code
generator facilitates creation of composite RDF resources from disparate sources. Empusa can convert
a schema into an associated application programming interface (API), that can be used to perform data
consistency checks and generates Markdown documentation to make persistent URLs resolvable. Using
Empusa consistency is ensured within and between the ontology and the content of the resource. As
an illustration of the potential of Empusa, we present the Genome Biology Ontology Language (GBOL).
GBOL uses and extends current ontologies to provide a formal representation of genomic entities,
along with their properties, relations and provenance.

Introduction
Semantic Web technologies provide information retrieval and management systems to integrate heterogeneous
data from disparate sources1. The RDF data model is a W3C standard for storage of information in the form of
self-descriptive Subject, Predicate and Object triples that can be linked in an RDF-graph2,3. The use of retrievable
controlled vocabularies enables integration of heterogeneous diverse data from different sources in a single repos-
itory and SPARQL can be used to query the so generated resources4,5.

By themselves, RDF graphs have no predefined structure nor a schema, and the structure of an RDF resource
can vary as new triples are added. Therefore, a formal definition of the relations among the terms, called an ontol-
ogy, is required to efficiently retrieve linked information from these resources. Structural information can be
encoded using Web Ontology Language (OWL) files6. RDFS is another, related, standard to define the structure
of an RDF resource7. In this standard, each object can be defined as an instance of a class and each link as the real-
isation of a property. Shape Expressions (ShEx) is a standard to describe, validate and transform RDF data. One of
the goals of this standard is to create an easy to read language for the validation of instance data8–10.

In the development of RDF resources, transformation of existing data into the RDF data model is often
a source of errors such as typing errors in the predicates, instances with missing attributes, non-unique
Internationalized Resource Identifiers (IRIs), or no type defined, among others. In previous work, we developed
RDF2Graph, a tool to automatically recover the structure of an RDF resource and to generate a visualisation,
ShEx file and/or an OWL ontology thereof11. Application of RDF2Graph to resources providing data in the RDF
data model in the life sciences domain such as Reactome, ChEBI, UniProt, or those transformed by the Bio2RDF
project12–16 showed mismatches between the retrieved data structure and the one described in the OWL defini-
tion of the particular resource. The main reason for this lack of consistency is the flexibility provided by RDF:
the data graph is a free format, the ontology defines the structure but does not enforce it. Tools that use the RDF
data model as means to store their output may therefore be essential to unlock the potential of these technologies

1Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708 WE, The
Netherlands. 2Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences (IHA),
Faculty of Life Sciences (BIOVIT), Norwegian University of Life Sciences (NMBU), PO Box 5003, Ås, Norway. *email:
maria.suarezdiez@wur.nl

Article

OPEN

https://doi.org/10.1038/s41597-019-0263-7
http://orcid.org/0000-0001-8172-8981
http://orcid.org/0000-0002-4346-6084
http://orcid.org/0000-0001-5845-146X
mailto:maria.suarezdiez@wur.nl

2Scientific Data | (2019) 6:254 | https://doi.org/10.1038/s41597-019-0263-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

in the life sciences. Their development would be greatly facilitated by supporting tools able to read an ontology
definition and generate code that can be used for data generation, export and validation.

Here we present Empusa. Empusa has been developed to facilitate the creation of RDF resources, which are
validated upon creation (Fig. 1). Empusa can convert a schema into an associated application programming
interface (API), that can be used in Java and R to perform data consistency checks and generates Markdown doc-
umentation to make persistent URLs resolvable17.

Results
The Empusa code generator has been applied to the Genome Biology Ontology Language (GBOL), that uses
and extends current ontologies to provide a formal representation of genomic entities. Advances in sequencing
technologies have turned genomics into a data-rich scientific discipline that relies on automated annotation algo-
rithms to supplement to manual annotation18,19. The GenBank format is currently used for sharing genome anno-
tation. However, tradeoffs between simplicity, human readability and representational power, left little support for
interoperability, i.e. the ability of computer systems to directly make use of information.

Large scale comparative analysis of genome data requires a framework such as SAPP20 able to accommodate
the various types of annotations (e.g. gene and protein domain predictions) consistently interlinked with the
supporting statistical evidence so that data becomes FAIR21. Using standard tools, SAPP automatically annotates
genome sequences. In SAPP, GBOL and the GBOL stack of enforcing tools are used to describe and link genome
annotations with provenance.

Empusa was developed primarily to help develop ontologies focusing on their function as a database schema
for RDF resources. The design principles modularity, human readability, and annotation are followed. These prin-
ciples are reflected in GBOL as described below.

Modularity.  The number of classes in the main class tree is kept as small as possible and elements within
the data are described with attributes when possible. Furthermore, classes are included in the main class tree
only when there are unique properties in a class or in one of the sibling classes. This approach ensures that
sub-ontologies can be managed as separate entities within the main ontology and that we can use existing ontolo-
gies. As an example the class RegulationSite has an attribute regulatoryClass, which denotes the type of regulation
with a separate set of classes of which all are instances of the regulatoryClass.

To further simplify the ontology, every attribute is defined as a direct property within the class that links to
either a string, an integer, another object or a class in an enumeration set. For each class in which the attribute is
used, an ‘all values from’ axiom is used, with an optional minimal and/or maximal cardinality constraint. The ‘all
values from’ axiom enforces all referenced objects to be of the expected type, which is not the case with the ‘some
values of ’ axiom and therefore we excluded the use of the ‘some values of ’ axiom. This approach is fundamentally
different from the principle used in the Sequence ontology22, in which attributes are defined using the ‘has quality’
property in combination with the ‘some values of ’ axiom that references to a class.

Fig. 1  Simplified overview of the workflow to manage consistent integration of new diverse data with existing
resources. Empusa enables error control as it compares the intended content, described in the ontology, with the
actual content of the resource. For this, Empusa checks whether or not Subjects and Objects have the properties
that the ontology demands. Empusa builds upon RDF2Graph11, a tool to automatically recover the structure of
an RDF resource, to generate a visualisation, ShEx file, and/or an OWL ontology thereof.

https://doi.org/10.1038/s41597-019-0263-7

3Scientific Data | (2019) 6:254 | https://doi.org/10.1038/s41597-019-0263-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

Human readability.  All names within the ontology adhere to a set of basic principles to increase (human)
readability of the ontology. All class names represent the underlying biological concept as closely as possible
avoiding the use of unreadable numbers. All classes start with uppercase whereas properties start with lowercase.
All words are spelled out, and white spaces are left out of the names, instead the next word starts with uppercase.
In this way, the class ‘exact position’ becomes ‘ExactPosition’ and the property ‘regulatory class’ becomes ‘regu-
latoryClass’. Furthermore, where possible, the names are shortened with abbreviations, as long as they remain
understandable for a human reader (e.g. XRef instead of CrossReference).

Annotation.  All classes and terms within the ontology are annotated with a short definition; an optional
comment with additional usage information; an optional editorial comment relating to the development of the
ontology itself; an optional ddbj label indicating the presence in the GenBank standard; and an optional SKOS23
exact match to relate classes to terms in existing ontologies.

GBOL structure.  GBOL provides the means to consistently describe computationally inferred genome anno-
tations of biological objects typically found in a genome sequence annotation data file in public repositories.
Additionally, GBOL can describe the data provenance of extracted genetic information.

An overview of the structure of GBOL is shown in Fig. 2. The ontology contains 251 classes that can be catego-
rized into 6 broad domains (Table 1). In GBOL, sequences have features, which in turn have genomic locations on

Fig. 2  The GBOL ontology structure. Nodes represent types. Blue edges represent subClassOf relationships
whereas grey edges represent unique type links. A unique type link is defined as a unique tuple: type of
subject, predicate, (data)type of object. Arrow heads indicate the forward multiplicity of the unique type links:
0..1 and 1..1 multiplicities are indicated by diamonds; 0..N and 1..N multiplicities are indicated by circles.
Neighbourhood of nodes marked in yellow is further expanded in Fig. 3.

Sub domain Classes Properties
Value
sets

Genomic locations 16 17 1

Genes

transcripts and features 114 133 17

Document structure 27 107 7

Dataset-wise provenance 22 54 0

Element-wise provenance 5 9 0

BIBO 59 90 2

Table 1.  Overview of domains, classes and properties described by the the GBOL ontology. Note that some
properties might be in multiple sub domains.

https://doi.org/10.1038/s41597-019-0263-7

4Scientific Data | (2019) 6:254 | https://doi.org/10.1038/s41597-019-0263-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

the sequence. The authority of this relationship is derived from the data provenance that captures both the statis-
tical basis of each individual annotation (element-wise provenance) as well as the programs and parameters used
for the complete set of sequences under study (dataset-wise provenance). All annotations for a given sequence can
be packed into a single entity called a document.

Key GBOL classes.  Common elements in genome annotation include different classes of DNA molecules,
transcripts, proteins, exons, protein domains and other functional annotations. In the following we summarise
two key classes of the ontology: Genomic locations and Provenance (see Table 1). Extensive descriptions for each
class and element in GBOL can be found in the Empusa generated documentation available at http://gbol.life.

Genomic locations.  Annotation of genomic location is inspired by FALDO ontology24. Genomic locations of
all features in GBOL is captured with the Location, Position and StrandPosition classes, which are represented
in Fig. 3. The Location and its subclasses together with the StrandPosition define an interval on the Sequence,
whereas Position defines a single position in a sequence. A location can be either: (i) A region which has begin
and end positions; (ii) A collection of regions (ordered or unordered); (iii) A single base at a given position; or
(iv) an InBetween location denoting a location between two bases after the base of which the position is given.
Each region, base and in-between location can be defined to be located on the forward, reverse or both strands,
although no strand should be specified if the sequence is a single stranded DNA sequence or a protein sequence.
It should be noted that elements of a collection of regions can be located on different sequences. This can be used
to encode cases in which an otherwise indistinguishable genetic element is located on multiple chromosomes.

Exactly known positions can be indicated using the ExactPosition class containing the position prop-
erty. Otherwise a not exactly known position, also called fuzzy position, can be indicated using either the
BeforePosition class containing the position property, the AfterPosition class containing the position property, the
InRangePosition class containing the beginPosition and endPosition properties or the OneOfPosition class contain-
ing multiple position properties.

Provenance.  Three types of provenance can be distinguished. Metadata refers to the ownership of the samples,
the biological origin, culture conditions etc. All data within a single data collection stored in GBOL is based
on the GBOLDataSet, which holds the metadata, composed among other of references to all included samples,
sequences, organisms, annotation results and linked databases. Dataset- and element- wise provenance pertain
to the annotation process.

Dataset-wise provenance.  Storage of the dataset-wise provenance is based on the PROV-O ontology25 in which
the Activity class is central. Within GBOL, each activity is an annotation activity. An automatic annotation must
be associated with a software agent, a set of parameters and the corresponding input and/or output files. Manual
curation must be associated with a curator.

Element-wise provenance.  Each annotation tool generates its own evidence statements, often embedded in a
statistical framework, characteristic of the algorithmic approach taken, such as p-values, bit scores, matching
regions or any other scoring system. This element-wise provenance of all the annotation in GBOL is captured
per property per feature with the FeatureProvenance. To store tool specific confidence scores, subclasses of the
ProvenanceAnnotation class can be created. Some example classes include Blast, HMM and SignalP associated
with the output of corresponding tools26–28. However, these classes are not part of the GBOL ontology itself.

Extensibility and link to existing ontologies.  A challenge in ontology development is consistent
incorporation of existing ontologies. Empusa ensures correct usage of existing ontologies. Empusa leads to the

Fig. 3  Graphical view of the GBOL ontology for genomic locations. An explanation of the classes is provided in
the main text.

https://doi.org/10.1038/s41597-019-0263-7
http://gbol.life

5Scientific Data | (2019) 6:254 | https://doi.org/10.1038/s41597-019-0263-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

development of an API that can be used to perform data consistency checks between the existing ontologies and
the one under development.

In the development of GBOL we made extensive use of this gate keeping function, as ontologies already exist
for various aspects of biology29. In this manner we were able to embed GBOL in the set of existing ontologies such
as FALDO24, PROV-O25, SO22, SBOL30, BIBO31, WikiData32, FOAF33, Gene ontology (GO)34 and the Evidence
ontology35. For instance, whenever applicable, we added a cross-link to exact matching terms within the FALDO,
SO and SBOL ontologies22, and identification of persons and institutions is done through the FOAF ontology, and
BIBO is used to identify publications.

Moreover, the use of Empusa turns GBOL into and extendable ontology: although GBOL has been primarily
designed to handle genomic annotation, in the future it can be extended to host other ~ omics data types as pro-
teomics and transcriptomics. The modular design ensures that other ontologies can be incorporated and managed
as separate entities. For instance, the majority of the feature and sequence classes within GBOL can be connected
with those from the SO. The major difference between GBOL and SO is that SO has been defined as vocabulary
of terms related to genetic elements, whereas the GBOL classes have been designed to describe genetic annota-
tion and elements located on a sequence and is inspired on the principles of the GenBank format. However, still
a number of features in the SO are not currently available in GBOL and future work should focus on including
them. Another possible extension would be to link to Minimum Information Standards like MIGS and extensions
thereof (MIMARKS, MIxS)36,37 and cross domain experiment reporting standards like ISA-tab38. Other possible
extensions relate to the development of the sub-ontologies GBOL links to. For instance, BIBO is used to store
information on literature references, however the OWL ontology file of BIBO has to be further improved, as it
does not specify to which classes all of the properties should belong.

Discussion
Empusa was developed primarily for ontologies focusing on their function as a schema for RDF resources. This
is achieved through the design principles modularity, human readability, and annotation. Data sharing in the life
sciences requires the use of concepts and terms that can be matched across resources. This matching requires
ontologies, so that a concept is defined within the context of other concepts. Another requirement is that data are
stored in a universal representation that can be readily interlinked with other resources and data sets. Using RDF,
this is achieved by representing the data as a graph in which the nodes represent instances of concepts and the
links represent properties that describe the instance from which they originate. The OWL standard can be used to
create ontologies to define concepts and to link these to the associated terms while ShEx (and SHACL) standards
can be used to validate the instance data, which ensures that the structure of the data follows the rules defined
within the ontology. An example of instance data validation would be to verify that a protein has one and only one
amino acid sequence associated to it.

The growth of semantic web technologies has led to using the technologies developed for concept matching to
link data. This might lead to mismatches between design principles and effective usage. For instance, the GO and
SO ontologies. were developed to characterize gene function and nucleotide sequences respectively. Currently
they are used in resources such as UniProt16 to unambiguously refer to biological concepts. However, these ontol-
ogies are not suited to store all the information of the objects themselves within an inter-linkable and reusable
semantic data graph. For example, SO can be used to indicate that a part (indicated with FALDO) of a nucleotide
sequence corresponds to a silencing RNA. However SO cannot be used to describe all the properties of the silenc-
ing RNA as it cannot describe what are the targets of the silencing RNA. Likewise, the GO ontology can be used to
annotate genes with a given biological or molecular function, however it cannot be used to describe a biochemical
reaction not included in the GO ontology.

GBOL was developed to consistently capture annotation data generated by SAPP20. Initial versions of the
GBOL ontology have been used for comparative genomics analysis and to show that protein domain architectures
are well suited for comparative functional genomics39. GBOL was used to hold the data underlying the large scale
comparison of Pseudomonas genomes (432 species)40 to identify key characteristics of this genus such as the sizes
of the core and pan genomes and to clarify the link between gene essentiality and persistence. The comparison 80
mycoplasma genomes was also enabled by GBOL41 and shed light on host specificity. GBOL can also hold eukar-
yotic genome data as illustrated in42. Currently the GBOL stack is being used in various collaborative projects to
handle genomic data of organisms across all domains of life (DigiSal, INFECT, MycoSynVac, EmPowerPutida).

GBOL enables interoperable genome annotation, as it deploys and extends existing ontologies to represent
genomic entities, their properties and relations and associated provenance. The GBOL Stack, generated using the
Empusa code generator, provides a framework to enforce consistent and correct usage of GBOL. The semantic
basis and the integration of provenance enables FAIR genome annotations, thereby enabling large scale analysis
of heterogeneous biological data and unlocking the potential of functional genome annotation.

Empusa was developed primarily to help develop ontologies focusing on their function as a database schema
for RDF resources. The design principles modularity, human readability, and annotation ensure that the so gen-
erated ontology can be easily extended43. This allows users to browse the complete ontology intuitively. The Java
and R APIs can be used to verify the consistency of the resource using ShEx (a use case is presented in the Empusa
documentation).

Modularity and readability also ease the expansion of GBOL. We separated the sub-ontologies (value set) defi-
nition from the definition of the classes that have properties associated to them. In this way, value sets are defined
under the EnumeratedValue class and can be seen as sub-ontologies. This ensures that a value set can evolve into a
full ontology, and a class/sub-class structure can be defined for these elements. For instance, in GBOL, a value set
is be defined for nucleic acids that contains adenine, cytosine, guanine, thiamine, uracil and inosine. In the future
this could be extended with alternative forms. However, inclusion of all alternative forms and modifications

https://doi.org/10.1038/s41597-019-0263-7

6Scientific Data | (2019) 6:254 | https://doi.org/10.1038/s41597-019-0263-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

would cause the complexity of the ontology to explode. Thus, instead of adding values to the value set, a class with
properties describing the chemical representation could be added.

The GBOL stack contains over 80.000 lines of R and Java code, OWL and ShEx definition files, and documen-
tation files (mkdocs format). Generating such a large amount of code would entail 1 year of manual work (con-
sidering an efficiency of 50 lines per hour)44. Moreover, during the development of the GBOL ontology countless
updates were made to correctly encapsulate all the data and associated provenance. Most of these updates were
based on insights gained through the data encoding process. Manually updating the code, without using the
supporting Empusa tool, would have entailed so much work that it would still be an on-going process. Thus, the
Empusa code generator can serve to reduce the time (and costs) associated to development of ontologies and
tools.

In conclusion, the Empusa code generator can be used to develop new ontologies combined with automatic
generation of API and documentation. This reduces the complexity and time to extend and develop ontologies
and tools able to exploit the full potential of Semantic Web technologies for heterogeneous data integration.
Moreover, Empusa enables the validation of the generated resources and the verification of the consistency of the
exported data thereby bridging the gap between the intended and the actual content of RDF resources.

Methods
The input definition of Empusa is a combination between OWL and a simplified version of ShEx, which can be
edited within Protégé45. OWL makes the open world assumption and it is not suitable for closed world structure
checking. In case of a class that states that an associated property is obligatory, an instance not having the corre-
sponding link would be wrong, however an OWL processor would not report this mismatch as the corresponding
link would be assumed to exist in an open world. ShEx was designed for data conformance tests under the closed
world interpretation, so that the absence of the obligatory link will be reported46. ShEx provides complementary
benefits and we combine OWL and ShEx to enable standardized restrictions implemented through ShEx. At the
end of the process, Empusa outputs OWL and ShEx files conforming to their respective standards. The classes are
defined in OWL, whereas the properties are defined in each class under the annotation property propertyDefini-
tions encoded within a simplified format of the ShEx standard. Additionally predefined value sets can be defined
by adding a subclass to the EnumeratedValueClass. For instance a FileType can only be one element of a prede-
fined list (e.g. CSV,TXT,TSV).

The RDFS standard is used to define the subClassOf relationships between the classes, whereas the ShEx
standard is used to define the properties of each class. Properties of the class are defined through the annotation
property propertyDefinitions as shown in Fig. 4. For each property the multiplicity and the expected type of the
target value can be defined. The multiplicity can either be: 0..1 indicating that the property is optional and at
most one reference is allowed; 1..1 indicating that one and only reference is allowed; 0..N for optional proper-
ties with multiple allowed references; and 1..N for properties that must have at least one reference. The ‘=’ and
‘~’ sign can be used to define the references to be stored as an ordered or numbered list to ensure that the ele-
ments are numbered. Target value types can also be defined. The type of the target value can be either: A simple
value (String, Integer or Double, among others); Another class (for example a Protein); Or an IRI, referencing an

Fig. 4  Empusa file definition. Left: The input definition file (combining OWL and SHeX) is used to provide an
ontology (here the GBOL ontology is used as example). Empusa generates as output: an OWL file definition, a
ShEx file that can be used for instance validation, the corresponding documentation in Markdown format, and
R and Java APIs. Right Example input file. Properties within a class can be defined with the propertyDefinitons
annotation property. As an example, the Region class has been highlighted. Value sets (sub-ontologies) can be
defined under the EnumeratedValueClass class, for example the StrandPosition value set.

https://doi.org/10.1038/s41597-019-0263-7

7Scientific Data | (2019) 6:254 | https://doi.org/10.1038/s41597-019-0263-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

external resource or ontology or to a sub-ontology (value set). Within the ontology, value sets are be defined as
subclasses under the EnumeratedValue class. In this way every sub-class of EnumeratedValue can be expanded
as a sub-ontology. All subsequent sub-classes are elements of the sub-ontology of which it is sub-classed from.

The Empusa code generator uses this definition to generate: (i) An OWL file definition. It should be noted that
the OWL file definition is generated as it remains general consensus within the field of semantics that these files
are created for each ontology. (ii) A full ShEx file that can be used to validate a data set containing information
that is encoded with the ontology. (iii) An R and Java API, which one can use to generate the data with the encod-
ing of the defined ontology. This API ensures that the multiplicities and referenced types are correct and prevents
many errors in the data export. (iv) A full documentation of the ontology based on mkdocs. The rdfs:label and
skos:description properties can be used within the ontology to add a description about the classes and a comment
line above each property definition in the simplified ShEx definition and can be used to add a description to each
property.

Regarding GBOL, storage of the genomic location is inspired by FALDO, although several elements had
to be modified e.g. to account for features that start and end on different sequences. Differences include: (i)
StrandPosition is not subclassed from Position. Instead, an additional property is added to the region, base and
InBetween location, this is done because these location object types can have both a strand position and an index
position on the sequence. (ii) The reference property is not part of a Position, but of a Location, because a loca-
tion that starts on one sequence and ends on another sequence is an undefined sequence. (iii) The BaseLocation
and the InBetweenLocation classes have been added to the ontology. (iv) The BaseLocation, InBetweenLocation,
CollectionOfRegions and Region are children of the Location class, such that the rest of the ontology can incorpo-
rate these classes. (v) The before and after positions have been explicitly defined to include their semantics. (vi)
The classes sub-classed from FuzzyPosition have an integer to denote the position and do not point to another
position object, which could allow for arbitrary complex location denotations. (vii) The N- and C-terminal posi-
tions have been removed and all indexes are counted from the N-terminal side. Counting from the C-terminal
side can be calculated based on the sequence length. (viii) The reflective properties beginOf and endOf have been
removed, because a position can also be referenced by the added base location. For consistency we have redefined
all FALDO elements within our own namespace.

Over 350 cross-links to exact matching terms from other ontologies (such as FALDO, SO, SBOL or Wikidata)
were added using skos:exactMatch. Additionally, several properties within the ontology point to existing ontolo-
gies, for instance: (i) The signalTarget property of SignalPeptide, the modificationFunction of ModifiedResidue and
the organelle of Sample are interlinked with GO terms. (ii) The experiment property of ProvenanceAnnotation,
which denotes upon which evidence the annotation is based on, should point, where possible, to a term within
the Evidence Ontology. (iii) The residue property of ModifiedResidue must point to a term within the Protein
Modification Ontology47. (iv) GBOL includes the GO terms for tissueType of the Sample class and points, when
possible, to a term within the BRENDA Tissue and Enzyme Source Ontology48,49.

Data availability
Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Code availability
Empusa is written in Java with Gradle as build system. Empusa code base is available at http://www.gitlab.com/
Empusa under the MIT license. Documentation and tutorials can be found at associated website http://empusa.
org.

Regarding GBOL, the source file of the ontology encoded in the Empusa and associated generated OWL defi-
nition (Passes OWL validation according to the HermiT Reasoner), ShEx schema and visualization for Cytoscape
are available at http://www.gitlab.com/GBOL under the MIT license. The generated Java and R API are available
at https://gitlab.com/gbol/GBOLapi and https://gitlab.com/gbol/RGBOLApi under the MIT license. Tutorials on
using the Java and R API are available at http://gbol.life/APIUsage/. Instructions on how to perform a ShEx val-
idation, with passing and failing examples are to be found at http://gbol.life/APIUsage/. All terms in GBOL are
resolvable and can be browsed at the associated website http://gbol.life.

Received: 8 March 2019; Accepted: 11 October 2019;
Published: xx xx xxxx

References
	 1.	 Berners-Lee, T., Hendler, J. & Lassila, O. The Semantic Web. A new form of Web content that is meaningful to computers will

unleash a revolution of new possibilities. Scientific American 284, 34–43 (2001).
	 2.	 Brickley, D. & Guha, R. V. RDF Vocabulary Description Language 1.0: RDF Schema, https://www.w3.org/2001/sw/RDFCore/

Schema/200212/ (2004).
	 3.	 W3C RDF 1.1 Concepts and Abstract Syntax, https://www.w3.org/TR/rdf11-concepts/ (2014).
	 4.	 Prud’hommeaux, E. & Seaborne, A. SPARQL Query Language for RDF, https://www.w3.org/TR/rdf-sparql-query/ (2008).
	 5.	 Aranda, C. B. et al. SPARQL 1.1 Overview, https://www.w3.org/TR/sparql11-overview/ (2013).
	 6.	 Bao, J. et al. OWL 2 Web Ontology Language Document Overview (Second Edition), https://www.w3.org/2007/OWL/wiki/

Document_Overview (2012).
	 7.	 Brickley, D., Guha, R. V. & McBride, B. RDF Schema 1.1, https://www.w3.org/TR/rdf-schema/ (2014).
	 8.	 Solbrig, H. & Prud’hommeaux, E. Shape Expressions 1.0 Definition, https://www.w3.org/2013/ShEx/Primer (2014).
	 9.	 Boneva, I., Labra Gayo, J. E. & Prud’hommeaux, E. G. Semantics and Validation of Shapes Schemas for RDF. In: d’Amato C. et al.

(eds) The Semantic Web – ISWC 2017. Lecture Notes in Computer Science, vol. 10587, Springer, Cham, pp. 104–120 (2017).
	10.	 Prud’hommeaux, E., Labra Gayo, J. E. & Solbrig, H. Shape expressions: an RDF validation and transformation language. In

Proceedings of the 10th International Conference on Semantic Systems, 32–40 (2014).
	11.	 van Dam, J. C., Koehorst, J. J., Schaap, P. J., Martins Dos Santos, V. A. & Suarez-Diez, M. RDF2Graph a tool to recover, understand

and validate the ontology of an RDF resource. Journal of biomedical semantics 6, 39 (2015).

https://doi.org/10.1038/s41597-019-0263-7
http://www.gitlab.com/Empusa
http://www.gitlab.com/Empusa
http://empusa.org
http://empusa.org
http://www.gitlab.com/GBOL
https://gitlab.com/gbol/GBOLapi
https://gitlab.com/gbol/RGBOLApi
http://gbol.life/APIUsage/
http://gbol.life/APIUsage/
http://gbol.life
https://www.w3.org/2001/sw/RDFCore/Schema/200212/
https://www.w3.org/2001/sw/RDFCore/Schema/200212/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/sparql11-overview/
https://www.w3.org/2007/OWL/wiki/Document_Overview
https://www.w3.org/2007/OWL/wiki/Document_Overview
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/2013/ShEx/Primer

8Scientific Data | (2019) 6:254 | https://doi.org/10.1038/s41597-019-0263-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

	12.	 Belleau, F., Nolin, M.-A., Tourigny, N., Rigault, P. & Morissette, J. Bio2RDF: towards a mashup to build bioinformatics knowledge
systems. Journal of Biomedical Informatics 41, 706–716 (2008).

	13.	 Croft, D. et al. The Reactome pathway knowledgebase. Nucleic Acids Research 42, D472–D477 (2014).
	14.	 Hastings, J. et al. The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013. Nucleic

Acids Research 41, D456–D463 (2013).
	15.	 Jupp, S. et al. The EBI RDF platform: linked open data for the life sciences. Bioinformatics 30, 1338–1339 (2014).
	16.	 The UniProt Consortium UniProt: the universal protein knowledgebase. Nucleic acids research 45, D158–D169 (2017).
	17.	 Gruber, J. Daring fireball: Markdown. Récupéré le 3, 2011 (2004).
	18.	 Tatusova, T. et al. NCBI prokaryotic genome annotation pipeline. Nucleic acids research 440(14), 6614–6624 (2016).
	19.	 Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 300(14), 2068–2069 (2014).
	20.	 Koehorst, J. J. et al. SAPP: functional genome annotation and analysis through a semantic framework using FAIR principles.

Bioinformatics 34, 1401–1403 (2018).
	21.	 Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Scientific data 3, 160018

(2016).
	22.	 Eilbeck, K. et al. The Sequence Ontology: a tool for the unification of genome annotations. Genome biology 60(5), R44 (2005).
	23.	 Miles, A., Matthews, B., Wilson, M. & Brickley, D. SKOS Core: Simple knowledge organisation for the Web. International Conference

on Dublin Core and Metadata Applications 00(0), 3–10 (2005).
	24.	 Bolleman, J. et al. FALDO: A semantic standard for describing the location of nucleotide and protein feature annotation. Journal of

Biomedical Semantics, 7–39 (2016).
	25.	 Lebo, T. et al. PROV-O: The PROV Ontology, https://www.w3.org/TR/prov-o/ W3C recommendation, 30 (2013).
	26.	 Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).
	27.	 Rabiner, L. & Juang, B. An introduction to hidden Markov models. IEEE ASSP magazine 30(1), 4–16 (1986).
	28.	 Petersen, ThomasNordahl, Brunak, S. øren, Heijne, Gunnarvon & Nielsen, Henrik SignalP 4.0: discriminating signal peptides from

transmembrane regions. Nature methods 80(10), 785–786 (2011).
	29.	 Jonathan B. L. Bard & Seung Y. Rhee Ontologies in biology: design, applications and future challenges. Nature Reviews Genetics,

50(3), 213–222, ISSN 1471-0056 (2004).
	30.	 Galdzicki, M. et al. The Synthetic Biology Open Language (SBOL) provides a community standard for communicating designs in

synthetic biology. Nature Biotechnology 32, 545–550 (2014).
	31.	 Giasson, F. & D’Arcus, B. Bibliographic ontology, http://dublincore.org/specifications/bibo/. Technical report (2008).
	32.	 Mitraka, E. et al. Wikidata: A platform for data integration and dissemination for the life sciences and beyond. Preprint at, https://

doi.org/10.1101/031971v1 (2015).
	33.	 Brickley, D. & Miller, L. Foaf vocabulary specification 0.91, http://xmlns.com/foaf/spec/ (2007).
	34.	 Ashburner, M. et al. Gene Ontology: Tool for The Unification of Biology. Nature Genetics 250(1), 25–29 (2000).
	35.	 Chibucos, M. C. et al. Standardized description of scientific evidence using the Evidence Ontology (ECO). Database 2014, bau075m

(2014).
	36.	 Field, D. et al. The minimum information about a genome sequences (MIGS) specification. Nat Biotechnol. 260(5), 541–547 (2008).
	37.	 Yilmaz, P. et al. Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x)

sequence (MIxS) specifications. Nat Biotechnol. 29(5), 415–420 (2011).
	38.	 Rocca-Serra, P. et al. ISA software suite: Supporting standards-compliant experimental annotation and enabling curation at the

community level. Bioinformatics 27, 2354–2356 (2011).
	39.	 Koehorst, J. J., Saccenti, E., Schaap, P. J., dos Santos, V. A. M. & Suarez-Diez, M. Protein domain architectures provide a fast, efficient

and scalable alternative to sequence-based methods for comparative functional genomics. F1000Research 5,1987 (2016).
	40.	 Koehorst, J. J. et al. Comparison of 432 Pseudomonas strains through integration of genomic, functional, metabolic and expression

data. Scientific reports 6, 38699 (2016).
	41.	 Kamminga, T. et al. Persistence of Functional Protein Domains in Mycoplasma Species and their Role in Host Specificity and

Synthetic Minimal Life. Frontiers in Cellular and Infection Microbiology 70, 31 (2017).
	42.	 Carreres, B. M. et al. The diurnal transcriptional landscape of the microalga tetradesmus obliquus. Algal research 400, 101477 (2019).
	43.	 Bizer, C., Heath, T. & Berners-Lee, T. Linked data-the story so far. Semantic services, interoperability and web applications: emerging

concepts 5(3), 1–22 (2009).
	44.	 Nawrocki, J. & Wojciechowski, A. Experimental evaluation of pair programming. European Software Control and Metrics (Escom)

269–276 (2001).
	45.	 Musen, M. A. The Protégé Project: a look back and a look forward. AI matters 1, 4–12 (2015).
	46.	 Baker, T. & Prud’hommeaux, E. Shape Expressions(ShEx) Primer, https://shexspec.github.io/primer/ (2019).
	47.	 Montecchi-Palazzi, L. et al. The psi-mod community standard for representation of protein modification data. Nature biotechnology

260(8), 864–866 (2008).
	48.	 Schomburg, I. et al. Brenda, the enzyme database: updates and major new developments. Nucleic acids research 320, D431–D433

(2004).
	49.	 Shannon, P. et al. Cytoscape: A software Environment for integrated models of biomolecular interaction networks. Genome Research

13, 2498–2504 (2003).

Acknowledgements
This work has received funding from the Research Council of Norway, No. 248792 (DigiSal) and from the
European Union FP7 and H2020 under grant agreements No. 305340 (INFECT), No. 635536 (EmPowerPutida),
No. 634940 (MycoSynVac), No. 730976 (IBISBA 1.0), and the Netherlands Organisation for Scientific Research
funded UNLOCK project (NRGWI.obrug.2018.005). We thank Benoit Carreres for helpful design discussions.

Author contributions
J.v.D. was the primary developer of Empusa, and a co-developer of GBOL, explored the use cases and applications
and drafted the manuscript. J.K. participated in code development and testing, co-developed GBOL, explored the
use cases and applications and revised the manuscript. P.S. explored the use cases and applications and revised the
manuscript. MS-D explored the use cases and applications and revised the manuscript. All authors critically read,
revised and approved the manuscript. All authors had full access to the underlying code and data.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to M.S.

https://doi.org/10.1038/s41597-019-0263-7
https://www.w3.org/TR/prov-o/
http://dublincore.org/specifications/bibo/
https://doi.org/10.1101/031971v1
https://doi.org/10.1101/031971v1
http://xmlns.com/foaf/spec/
https://shexspec.github.io/primer/

9Scientific Data | (2019) 6:254 | https://doi.org/10.1038/s41597-019-0263-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019

https://doi.org/10.1038/s41597-019-0263-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	The Empusa code generator and its application to GBOL, an extendable ontology for genome annotation

	Introduction

	Results

	Modularity.
	Human readability.
	Annotation.
	GBOL structure.

	Key GBOL classes.
	Genomic locations.
	Provenance.
	Dataset-wise provenance.
	Element-wise provenance.

	Extensibility and link to existing ontologies.

	Discussion

	Methods

	Acknowledgements

	Fig. 1 Simplified overview of the workflow to manage consistent integration of new diverse data with existing resources.
	Fig. 2 The GBOL ontology structure.
	Fig. 3 Graphical view of the GBOL ontology for genomic locations.
	Fig. 4 Empusa file definition.
	Table 1 Overview of domains, classes and properties described by the the GBOL ontology.

