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Abstract: ATP8B1 is a phospholipid flippase that is deficient in patients with progressive familial
intrahepatic cholestasis type 1 (PFIC1). PFIC1 patients suffer from severe liver disease but also
present with dyslipidemia, including low plasma cholesterol, of yet unknown etiology. Here we
show that ATP8B1 knockdown in HepG2 cells leads to a strong increase in the mitochondrial oxida-
tive phosphorylation (OXPHOS) without a change in glycolysis. The enhanced OXPHOS coincides
with elevated low-density lipoprotein receptor protein and increased mitochondrial fragmenta-
tion and phosphatidylethanolamine levels. Furthermore, expression of phosphatidylethanolamine
N-methyltransferase, an enzyme that catalyzes the conversion of mitochondrial-derived phos-
phatidylethanolamine to phosphatidylcholine, was reduced in ATP8B1 knockdown cells. We conclude
that ATP8B1 deficiency results in elevated mitochondrial PE levels that stimulate mitochondrial
OXPHOS. The increased OXPHOS leads to elevated LDLR levels, which provides a possible explana-
tion for the reduced plasma cholesterol levels in PFIC1 disease.
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1. Introduction

ATP8B1 belongs to the P4-ATPase family of proteins that catalyze the transport of
phospholipids from the exoplasmic- to the cytosolic leaflet of biological membranes, an
activity essential for the creation of membrane asymmetry [1]. The establishment and
maintenance of an asymmetric distribution of phospholipids is crucial for membrane
protein activity and barrier function as well as for the biogenesis, fission and fusion of
membrane vesicles [2,3]. Mutations in the ATP8B1 gene cause liver disease characterized by
a continuous disease spectrum from intermittent Benign Recurrent Intrahepatic Cholestasis
type 1 (BRIC1) to severe progressive Familial Intrahepatic Cholestasis type 1 (PFIC1) [4].
PFIC1 is a progressive autosomal recessive disorder of early onset, which is characterized
by impaired bile formation (i.e., cholestasis) that advances to severe, end-stage liver disease,
requiring liver transplantation before the second decade of life [5,6]. PFIC1 is, however,
not restricted to the liver, as evidenced by the wide range of extrahepatic manifestations in
patients, including diarrhea, pulmonary problems and hearing loss [7–9]. We and others
have previously studied the molecular mechanisms that are likely to contribute to these
extrahepatic phenotypes, which highlighted a role for ATP8B1 in the targeting of multiple
membrane proteins, including apical ectoenzymes (CD13, CD26) [10], the intestinal apical
bile acid uptake transporter (SLC10A2) and CFTR in intestinal and pulmonary epithelial
cells [11,12], all of which were reduced when ATP8B1 expression was reduced.
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In addition to the abovementioned phenotypes, and in contrast to other forms of
cholestasis, low/normal γ-glutamyl transpeptidase PFIC1 patients present with dys-
lipidemia, characterized by hypertriglyceridemia, low high-density lipoprotein and low
plasma cholesterol levels, of which the etiology is not understood [13–15]. Low-density
lipoprotein (LDL) levels were normal, however, the LDL particles were small and dense,
low in cholesterol ester content and highly enriched in triglycerides [13], rendering low
affinity for the LDL receptor (LDLR) [16]. We here studied the hypothesis that ATP8B1 is
involved in the regulation of plasma membrane localization of the LDLR, which plays an
essential role in the maintenance of plasma cholesterol levels (reviewed in [17]). We show
that ATP8B1 knockdown coincides with increased LDLR protein levels that, unexpectedly,
is associated with an increased preference for mitochondrial oxidative phosphorylation.

2. Results
2.1. ATP8B1 Knockdown in HepG2 Cells Leads to Elevated Levels of LDLR

Low-density lipoprotein receptor (LDLR) levels were analyzed in HepG2 cells, in which
ATP8B1 expression was reduced by ~75% using lentiviral knockdown (Figure 1A). Western
analysis showed that ATP8B1 protein levels were reduced by ~65% (Figure 1B,C). Unexpect-
edly, ATP8B1 knockdown coincided with a ~50% increase in LDLR protein levels (Figure 1B,C).
Recently, Khan et al. [18] showed the upregulation of LDLR in HepG2 cells that were treated
with dichloroacetic acid (DCA) [19], an inhibitor of pyruvate dehydrogenase kinase-1
(PDK1). This compound has been clinically used to reduce plasma LDL-cholesterol levels
in patients with familial hypercholesterolemia, diabetes and hyperlipoproteinemia [20,21].
Inhibition of PDK1 relieves the block on the conversion of pyruvate to acetyl-CoA, thus
switching glucose metabolism from aerobic glycolysis to mitochondrial oxidative phos-
phorylation (OXPHOS). To investigate whether such a mechanism could be involved in
the elevation of LDLR in ATP8B1 knockdown cells, we analyzed LDLR protein levels after
DCA application. Indeed, as previously shown [18], DCA induced higher LDLR protein
levels in control cells (Figure 1D,E).
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Figure 1. ATP8B1 knockdown coincides with increased LDLR expression. (A) ATP8B1 mRNA
expression in ATP8B1 knockdown HepG2 cells. Data were normalized to shControl cells and are
expressed as means +/− s.e.m. of 16 replicates from 5 independent experiments. Statistical analysis
by an unpaired t-test.; (B) LDLR protein levels are increased in ATP8B1 kd HepG2 cells. Western blot
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of total cell lysates from a representative experiment is shown. ATP1A1 is included as a transfer
control; (C) Densitometric analysis of ATP8B1 and LDLR levels. Data are expressed as relative mean
protein levels normalized to ATP1A1 ± standard deviation of 7–10 replicates from 2–3 independent
experiments. Statistical analysis by an unpaired t-test; (D) Representative Western blot of total cell
lysates showing the effect of DCA (10 mM, 48 h) on LDLR levels. LDLR-m, mature form of LDLR;
LDLR-I, immature form of LDLR; (E) Quantification of LDLR protein levels after DCA challenge.
Data were normalized to the vehicle control of each cell line and are expressed as means +/− s.d. of
8 replicates from 3 independent experiments. Statistical analysis by a multiple paired t-test; * p < 0.05;
ns, not significant.

In ATP8B1 knockdown cells, however, the elevated LDLR protein levels did not
(further) increase upon DCA treatment (Figure 1D,E). The similarity between the effects
of ATP8B1 knockdown and DCA suggested shared common mediators or mechanisms
to enhance LDLR expression, possibly induced by a metabolic switch from glycolysis to
mitochondrial OXPHOS.

2.2. ATP8B1 Knockdown HepG2 Cells Show Increased Mitochondrial OXPHOS

To address the possibility of a metabolic switch in ATP8B1 knockdown cells, we stud-
ied mitochondrial respiration by Seahorse extracellular flux analysis. When cells were ana-
lyzed under glucose-supplemented conditions, ATP8B1 knockdown cells indeed showed
a much higher oxygen consumption rate (OCR) compared to control cells (Figure 2A).
Inhibition of mitochondrial respiration by oligomycin, which blocks the mitochondrial ATP
synthase, revealed a >2-fold increase in ATP-coupled respiration in the knockdown cells
compared to control cells (Figure 2B).
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analyzer. Dotted lines indicate the addition of different compounds to modulate mitochondrial
respiration. Profiles shown are means +/− s.d. of 14–17 replicates of 2 independent experiments;
(B) Quantification of ATP-coupled-, leak-associated and uncoupled OCR in the presence of glucose.
Data are extracted from the data shown in (A), corrected for the non-mitochondrial OCR, and are
expressed as means +/− s.d. of 14–17 replicates of 2 independent experiments; **** p < 0.0001 by
multiple unpaired t-test; (C) Basal OCR compared to basal ECAR. Data are expressed as means
+/− s.d. of 13–16 replicates from 2 independent experiments; **** p < 0.0001 by 2way ANOVA with
Bonferroni’s correction for multiple testing; ns, not significant; (D) Estimated ATP production rate
(in pmol/min.well) was calculated as described in M&M and is expressed as mean percentage of
total ATP production +/− s.d. of 17–18 replicates from 2 independent experiments. **** p < 0.0001 by
multiple unpaired t-test.

The leak-associated OCR, a measure of a.o. H+ leak over the mitochondrial inner
membrane [22], was 1.4-fold increased, while the uncoupled OCR, i.e., the difference
between maximal and basal respiration (exposed after addition of the proton ionophore
FCCP), was ~4-fold elevated in the knockdown cells (Figure 2B). The elevated basal OCR
in ATP8B1 knockdown cells was not accompanied by a reduction in the basal extracellular
acidification rate (ECAR) (Figures 2C and S1A), suggesting no reciprocal reduction in
glycolysis. Since the ECAR is the result of both glycolysis and TCA cycle activity, we also
determined the oligomycin-induced increase in ECAR (Figure S1A,B) and measured the
lactate concentration in the medium of ATP8B1 knockdown cells (Figure S1C). These results
supported an increased OXPHOS without a change in glycolysis in ATP8B1 knockdown
cells (Figure S1B,C), suggesting that total ATP consumption was higher in ATP8B1-deficient
cells. From the extracellular flux data, we also estimated the ATP turnover rates (JATP)
for OXPHOS and glycolysis [23–25]. These were ~20% and ~80%, respectively, of total
ATP production in control cells and shifted to ~40 and ~60% in ATP8B1 knockdown cells
(Figure 2D). Altogether these data indicate that in ATP8B1 knockdown HepG2 cells the
contribution of mitochondrial OXPHOS was increased.

2.3. ATP8B1 Knockdown Coincides with a Shift towards Mitochondrial ß-Oxidation

Next, we investigated whether the increased OXPHOS correlated with a change
in substrate utilization. When glucose was replaced by the short-chain fatty acid (and
mitochondrial substrate) octanoate, a similar though less pronounced elevation of oxy-
gen consumption was observed in the knockdown cells (Figure S2) indicating normal
or enhanced capacity to oxidize fatty acids. Next, we studied mitochondrial respiration
under no-substrate conditions with and without etomoxir-mediated inhibition of carnitine
palmitoyltransferase 1A (CPT1A). CPT1A catalyzes the first step in the entry of long- and
medium-chain fatty acids into the mitochondrial matrix for mitochondrial ß-oxidation [26].
When no substrate was added, oxygen consumption was again strongly increased in the
knockdown cells, in particular under uncoupled conditions (Figure 3A,B).

Importantly, etomoxir almost completely nullified the difference between control and
ATP8B1 knockdown cells (Figure 3C–E), suggesting that the increased OXPHOS in ATP8B1
knockdown cells was the result of enhanced mitochondrial ß-oxidation of endogenous
fatty acids.

2.4. ATP8B1 Knockdown Cells Have Increased Mitochondrial Fragmentation and Elevated
Mitochondrial PE Levels

To obtain a mechanistic explanation for increased OXPHOS utilization in ATP8B1
knockdown cells, we studied mitochondrial mass, fragmentation and lipid composition.
Genomic PCR analysis of the mtDNA coding for NADH-ubiquinone oxidoreductase chain 1
(complex 1 subunit) as well as Western analysis of electron transport chain complex I-V
protein markers showed no significant differences between control and ATP8B1 knockdown
cells (Figure 4A–C), indicating no difference in mitochondrial mass. Immunofluorescent
detection of the mitochondrial outer membrane-localized protein TOM20 suggested that
ATP8B1 knockdown cells had a more fragmented mitochondrial network (Figure 4D).
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Indeed, quantification of the mitochondrial area demonstrated that the mitochondria from
the knockdown cells were smaller, even after correction for cell swelling (Figure 4E,F).
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12–14 replicates of 2 independent experiments; (B) Quantification of ATP-coupled-, leak-associated
and uncoupled OCR when no substrate was added. Data are extracted from the data shown in
(A), corrected for non-mitochondrial OCR, and are expressed as means +/− s.d.; *** p < 0.0001 by
multiple unpaired t-test; (C) Oxygen consumption rate (OCR) in the absence of added substrate with
3 µM etomoxir. Profiles shown are means +/− s.d. of 12–14 replicates of 2 independent experiments;
(D,E) Quantification of basal (D) and maximal (E) respiration (corrected for non-mitochondrial
respiration) in the absence of added substrate with/without etomoxir (Eto). Data are expressed as
means +/− s.d. of 11–14 replicates from 2 independent experiments. **** p < 0.0001, ** p < 0.005 by
2way ANOVA with Tukey’s correction for multiple testing; ns, not significant.

Importantly, analysis of the mitochondrial phospholipid composition revealed that the
relative abundance of cardiolipin (CL), phosphatidylinositol (PI), phosphatidylcholine (PC)
and sphingomyelin (SM) were unaffected, while phosphatidylethanolamine (PE) levels
were increased from 9.8% in control cells to 13.7% in the knockdown cells (Figure 5A). In
addition, mitochondrial cholesterol content was also unaffected (Figure S3). PE synthesized
in the mitochondria is converted to PC by the enzyme phosphatidylethanolamine N-
methyltransferase (PEMT) [27], and PEMT deficiency has been shown to be associated
with increased mitochondrial fragmentation, PE levels and oxidative phosphorylation [28].
Intriguingly, ATP8B1 knockdown HepG2 cells displayed an ~50% reduction in PEMT levels
(Figure 5B,C), a phenotype that was also observed when the cells were immunostained for
PEMT (Figure 5D).
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Figure 4. No change in mitochondrial mass and increased mitochondrial fragmentation in ATP8B1
knockdown cells. (A) Genomic LC-PCR analysis of the mtDNA NADH-ubiquinone oxidoreductase
chain 1. Data are expressed as mean +/− s.d. of 3 independent DNA isolations. Statistical analysis
by an unpaired t-test; ns, not significant; (B) Western blot analysis from total cell lysates of electron
transport chain complex (ETC) I-V protein markers; (C) Densitometric analysis of ETC protein levels.
Data were corrected for GAPDH, normalized to shControl cells and expressed as means +/− s.d.
of 4 independent experiments. No statistical significance by multiple unpaired t-test; (D) Confocal
analysis of TOM20 staining in red and nuclear dapi in blue. Bar = 10 nm; (E,F) Quantification of
mitochondrial fragmentation. HepG2 cells were stained for TOM20 and the mitochondrial network
was quantified as described in the materials and methods. Ratio of mean mitochondrial area over
perimeter (E) and mitochondrial connectivity (F), representing average mitochondrial area/perimeter
ratio normalized to circularity to account for mitochondrial swelling, are shown. Data are expressed
mean values +/− s.e.m. of 13 images (3–4 cells/image) from 3 independent experiments. Statistical
analysis by an unpaired t-test.

The reduced PEMT levels did not coincide with reduced PEMT mRNA expression,
indicating that this involves a posttranslational event (Figure 5E). Staining of PEMT in
HepG2 cells that ectopically expressed ATP8B1-eGFP showed abundant plasma membrane
staining of ATP8B1eGFP, but also punctate staining that, although in close proximity of
PEMT-positive puncta, never co-stained with PEMT (Figure S4). Altogether these data
show that ATP8B1 knockdown cells have increased mitochondrial fragmentation, increased
mitochondrial PE levels and reduced PEMT levels.
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and reduced phosphatidylethanolamine N-methyltransferase (PEMT) levels. (A) Mitochondrial lipid
species expressed as percentage of total mitochondrial lipid. Data are expressed as mean +/− s.d. of
3 independent mitochondria isolations. Statistical analysis by multiple unpaired t-test; (B) Representa-
tive Western blot showing PEMT protein levels in total cell lysates of control and ATP8B1 knockdown
HepG2 cells; (C) Densitometric analysis of PEMT levels; data are expressed as mean +/− s.d. of
6 replicates from 3 independent experiments. Statistical analysis by an unpaired t-test. *** p = 0.0001;
(D) Confocal analysis of PEMT staining in red and nuclear dapi in blue. Bar = 20 nm; (E) PEMT
mRNA expression in ATP8B1 knockdown HepG2 cells. Data were normalized to shControl cells
and are expressed as means +/− s.e.m. of 15 replicates from 5 independent experiments. Statistical
analysis by an unpaired t-test.

3. Discussion

In contrast to normal cells, most cancer cells, including HepG2 cells, meet their energy
demands (despite sufficient oxygen pressure) via cytosolic aerobic glycolysis in which
glucose is converted to lactate and ATP. This well-established Warburg effect is inefficient,
as it consumes large amounts of glucose to produce relatively low amounts of ATP (one
glucose molecule yields two molecules of ATP), as opposed to the mitochondrial tricar-
boxylic acid (TCA) cycle and oxidative phosphorylation in which one molecule of glucose
yields 38 molecules of ATP [29]. Intriguingly, we show here that knockdown of the phos-
pholipid flippase ATP8B1 in HepG2 cells weakens the Warburg phenotype and coincides
with a metabolic reprogramming in which the mitochondrial OXPHOS pathway is strongly
increased without a change in glycolysis, mitochondrial mass or electron transport chain
complex proteins.

The increased OXPHOS coincided with elevated mitochondrial phosphatidyletha-
nolamine (PE) levels, whereas levels of other mitochondrial lipids, including cardiolipin,
were unaffected. PE, such as cardiolipin, is a non-bilayer, fusogenic lipid and enriched in the
mitochondrial inner membrane, where it contributes to the structure of the cristae in which
the protein complexes of the electron transport chain (ETC) reside (reviewed in [30,31]).
Cellular PE is produced via two pathways, i.e., the cytidine 5′-diphosphate-ethanolamine
(Kennedy) pathway in the endoplasmic reticulum (ER) [32], and in mitochondria from
phosphatidylserine (PS) in a reaction catalyzed by PS decarboxylase 1 (PSD1) (reviewed
in [33]). In addition to residence in the cristae, mitochondrial PE is exchanged at the
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mitochondrial-ER contact sites, i.e., the mitochondrial-associated membrane (MAM) [34],
where PE is methylated to phosphatidylcholine by the enzyme phosphatidylethanolamine
N-methyltransferase (PEMT) [27]. Van der Veen et al. [28] demonstrated that PEMT de-
ficiency associated with increased mitochondrial fragmentation and elevated (~20%) mi-
tochondrial PE levels increased ETC protein complex activity and increased OXPHOS in
mouse hepatocytes and hepatoma cells. In addition, they showed a positive correlation be-
tween mitochondrial PE and ATP content and a negative correlation between PEMT activity
and ATP content [28]. More recently, Heden et al. [35] showed that PSD1 overexpression in
C2C12 cells or in mouse skeletal muscle resulted in elevated mitochondrial PE levels and a
concomitant increased oxygen consumption. Reversibly, skeletal muscle-specific knockout
of PSD1 or knockdown in C2C12 cells resulted in reduced mitochondrial PE levels, reduced
ETC protein complex activities and reduced oxygen consumption rates [35]. These observa-
tions underscore the importance of mitochondrial PE content for the activity of the ETC
and mitochondrial respiration. Importantly, ATP8B1 knockdown cells phenocopy PEMT
deficient cells, in that they also show mitochondrial fragmentation, increased mitochondrial
PE, and increased OXPHOS activity. In line with this, ATP8B1 knockdown cells show a
~50% reduction in PEMT protein levels with a concomitant ~28% increase in mitochondrial
PE levels. The elevated mitochondrial PE levels might also be responsible for the increased
proton leak observed in ATP8B1 knockdown cells (Figure 2B), although this can also be the
result of the much higher activity of the ETC chain. Altogether these data provide a likely
explanation for the increased OXPHOS activity in ATP8B1 knockdown cells.

The shift towards mitochondrial OXPHOS in ATP8B1 knockdown cells coincided with
an increased dependency on mitochondrial ß-oxidation. Our Seahorse analyses showed that
when no-substrate was provided, and the cells thus depended on substrate intake and/or
release from cellular stores, respiration rates were strongly increased in the knockdown
cells. This increase was completely inhibited by etomoxir, indicating that the cells had a
preference for mitochondrial ß-oxidation. A possible explanation is that the cells respond
to PE-induced enhancement of the ETC activity by increasing mitochondrial ß-oxidation.
In line with this, we observed that CD36 expression was induced in ATP8B1 knockdown
cells (Figure S5), which is involved in the uptake of medium- and long-chain fatty acids
(reviewed in [36]), and which serve as substrates for the ß-oxidation.

At the moment, it is unclear why ATP8B1 knockdown cells have reduced PEMT
levels. One explanation could be that ATP8B1 has a role in the targeting of PEMT to the
mitochondrial-associated membrane. Alternatively, as a phospholipid flippase for i.e., PE,
PS and PC [37–39], ATP8B1 deficiency could interfere with membrane fluidity, including
that of the endoplasmic reticulum (ER), which could result in destabilization and premature
degradation of PEMT. Destabilization and premature degradation of several ER resident
proteins was recently shown in S. cerevisiae, in which PC synthesis was impaired due to
inactivation of the yeast PEMT homologue Opi3 [40]. The authors showed that reduced
PC synthesis (from PE) in opi3∆ cells resulted in reduced membrane fluidity in the ER,
which is associated with a destabilization of ER proteins, providing a likely explanation
for the premature degradation of selected ER residents. In line with these findings is the
observation that a decreased PC/PE ratio contributes to reduced fluidity (due to phase
separation of PE) of the membrane [41]. Thus, ATP8B1 deficiency could result in affected
ER membrane fluidity and consequent premature degradation of PEMT, resulting in an
increased mitochondrial PE content.

In conclusion, we show that ATP8B1 deficiency is associated with an increased mi-
tochondrial respiratory capacity. From our data, we hypothesize that ATP8B1 deficiency
leads to reduced PEMT levels, which results in an elevation of mitochondrial PE content
(Figure 6). Increased mitochondrial PE levels stimulate the ETC activity which results in
an increased OXPHOS utilization. It is likely that the elevated LDLR levels in ATP8B1
knockdown cells are the consequence of this metabolic change, as DCA-induced glycolysis-
to-OXPHOS switching has been shown to be associated with enhanced expression of
LDLR (our study and [18]). Whether such a mechanism contributes to the reduced plasma
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cholesterol levels (and dyslipidemia in general) in PFIC1 patients awaits further studies,
preferably in PFIC1 patients.
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Figure 6. Hypothetical model summarizing the findings described. In mitochondria of con-
trol cells (left), phosphatidylserine (PS) is converted to phosphatidylethanolamine (PE) by phos-
phatidylserine decarboxylase (PSD). PE translocates to the mitochondrial-associated membrane
(MAM), where phosphatidylethanolamine methyltransferase (PEMT) catalyzes the conversion of
PE to PC. In ATP8B1 knockdown cells (right), PEMT is down-regulated, which leads to elevated
mitochondrial PE levels that activate the protein complexes I–IV (IV = ATP synthase) of the electron
transport chain (ETC) resulting in elevated OXPHOS and consequent increased ATP production and
LDLR expression. Figure was created in BioRender.com.

4. Materials and Methods
4.1. Cell Culture

The human hepatocellular carcinoma cell line HepG2 (ATCC, HB-8065) was cultured
in high (4.5 g/L) glucose Dulbecco’s modified Eagle’s medium (DMEM) (Lonza, Geleen,
The Netherlands) supplemented with 10% Fetal Bovine Serum (FBS) (Lonza), 2 mM L-
glutamine (Lonza), 100 U/mL penicillin (Lonza), and 100 U/mL streptomycin (Lonza)
at 37 ◦C in a 10% CO2 humidified atmosphere. The knockdown cell line for ATP8B1
was established by lentiviral transduction with the validated short-hairpin RNA (shRNA)
vector to ATP8B1 (TRCN0000050127) from the Mission shRNA Library (Sigma-Aldrich,
Saint Louis, MO, USA). ATP8B1 knockdown cells did not show any growth defects as
witnessed by trypan blue staining of the cultures. The non-targeting hairpin SHC002 in
pLKO.1-puro (CAACAAGATGAAGAGCACCAA) was included as a control. Lentiviral
construct to enhanced green fluorescent protein (eGFP)-tagged ATP8B1 (ATP8B1-eGFP)
was described previously [38].

4.2. Quantitative RT-PCR

Total RNA was isolated from cells using TriPURE reagent (Invitrogen, Waltham, MA,
USA). cDNA was synthesized from 1–2 µg total RNA with random hexamers, oligo-dT12–18
primer and Superscript III RT (Invitrogen). Real-time PCR measurements were performed
on a Lightcycler 480 (Roche, Basel, Switserland) with Fast Start DNA MasterPlus SYBR
Green I kit (Roche). Expression levels in HepG2 cells were calculated with the LinRegPCR
software [42] and were normalized to the geometric means of three reference genes (RPLP0,
cyclophilin, HPRT). Genomic DNA was isolated from HepG2 cells by incubation in lysis
buffer (200 mM sodium chloride, 0.2% sodium dodecyl sulphate (SDS), 5 mM EDTA,
100 µg/mL proteinase K (Merck, Amsterdam, The Netherlands), 100 mM Tris, pH = 8.0)
for 3 h at 55 ◦C. DNA was precipitated with isopropanol, washed with 70% ethanol
and dissolved in TE. Mitochondrial DNA content was quantified by real-time PCR and
normalized to HepG2 single-copy gene ADCY10. Oligo sequences are in Table S1.
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4.3. SDS Polyacrylamide Gel Electrophoresis (SDS-PAGE) and Western Blotting

Cells were lysed in radioimmunoprecipitation assay (RIPA) buffer (150 mM sodium
chloride, 1% Triton X-100, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulphate (SDS),
50 mM Tris, pH = 8.0) supplemented with EDTA-free protease inhibitor cocktail (Roche)
and PhosStop phosphatase inhibitor cocktail (Roche). Protein concentrations were deter-
mined by Pierce Bicinchoninic Acid (BCA) Protein Assay. Extracts were fractionated by
SDS-PAGE and transferred to Immobilon-P Polyvinylidene difluoride (PVDF) membranes
(Millipore, Burlington, MA, USA) by a semi-dry blotting system (Bio-Rad) using either
10 mM N-cyclohexyl-3-aminopropanesulfonic acid (CAPS), pH 10.5/10–15% methanol
buffer or 25 mM ethanolamine-glycine, pH 11 buffer. Membranes were blocked for 1 h
at room temperature (RT) in blocking solution (PBS/0.05% Tween-20 containing 5% low-
fat milk (Nutricia Profitarplus, Zoetermeer, The Netherlands)), followed by incubation
with antibodies. Primary antibodies used: rabbit anti-LDLR (BioVision, Milpitas, CA,
USA), anti-OXPHOS complex (Abcam, Cambridge, UK), rabbit anti-GAPDH (Millipore,
ABS16), mouse anti-actin (Sigma), rabbit anti-ATP8B1 [43], rabbit anti-ATP1A1 [44] and
rabbit ant-PEMT (SABbiotech, Greenbelt, MD, USA). Immune complexes were visual-
ized with peroxidase-conjugated goat-anti-rabbit or mouse IgGs (Bio-Rad, Lunteren, The
Netherlands), developed with homemade enhanced chemiluminescence reagent (100 mM
Tris–HCl, pH 8.5, 1.25 mM luminol, 0.2 mM p-coumarin and freshly added 3 mM H2O2). Im-
ages were acquired with ImageQuantTM LAS 4000. Densitometric analysis was performed
with ImageJ.

4.4. Indirect Immunofluorescence and Mitochondrial Network Analysis

HepG2 cells were grown on glass coverslips and fixed in paraformaldehyde 3.7%
during 15 min at RT. Fixed cells were permeabilized with PBS/0.1% triton X-100 and incu-
bated with rabbit anti-LDLR (BioVision), rabbit anti-TOM20 (Santa Cruz; FL-145) or rabbit
ant-PEMT (SABbiotech) for one hour at RT. Cells were extensively washed in PBS/0.1%
Triton X-100 amidst antibody incubations. Immuno-reactivity was visualized with goat
anti-rabbit Alexa 594 (Molecular Probes). Sections were mounted in Vectashield/DAPI
(Vector Laboratories, Newark, CA, USA) and images were acquired on a Leica TCS SP8 X
laser scanning microscope with an HC APO 63x/1.4 oil CS2 immersion lens.

The mitochondrial network (visualized by TOM20 staining) was evaluated in three
independent experiments using ImageJ and the Mito Morphology Macro developed for
ImageJ by Dagda et al. [45] (http://imagejdocu.tudor.lu/doku.php?id=plugin:morphology:
mitochondrial_morphology_macro_plug-in:start#installation). In short, images were ac-
quired of stained cells (3–4 cells per image) followed by the setting of thresholds, excluding
very high (punctated) signals and background fluorescence. All images were scored
blinded and in each experiment 3–5 images were analyzed. The average mitochondrial
area/perimeter ratio was normalized to circularity to account for mitochondrial swelling
as recommended by Dagda et al. [45], resulting in a mitochondrial connectivity index.

4.5. Extracellular Flux Analysis

Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were
analyzed by a Seahorse XF96 flux analyzer (Agilent, Santa Clara, CA, USA). Cells were
grown in low (10 mM) glucose-containing medium. For Seahorse analysis, cells were
washed in HBSS and then incubated in HBSS/0.1% BSA for 30 min at 37 ◦C (to deplete
endogenous substrate), after which the cells were incubated in HBSS supplemented with
5.5 mM glucose/0.1% BSA, 125 µM octanoate/0.1% BSA, or no substrate (0.1% BSA)
for 30 min at 37 ◦C. Subsequently, cells were equilibrated in the Seahorse analyzer for
20 min at 37 ◦C and baseline OCR was measured, after which 1.6 µM oligomycin A
(port A), 1.1 µM FCCP (port B), and 4.62 µM antimycin A/2.31 µM rotenone (port C)
were sequentially added (all chemicals from Sigma-Aldrich). Where indicated cells were
incubated in the presence of 3 µM etomoxir (Cayman Chemical, Ann Arbor, MI, USA). ATP-
linked, leak-associated OCR and uncoupled respiration rates were calculated as described

http://imagejdocu.tudor.lu/doku.php?id=plugin:morphology:mitochondrial_morphology_macro_plug-in:start#installation
http://imagejdocu.tudor.lu/doku.php?id=plugin:morphology:mitochondrial_morphology_macro_plug-in:start#installation
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previously [23]. Rates were corrected for protein content of each well. Estimation of ATP
production rates were calculated as described previously [23–25].

4.6. Isolation of Mitochondria and High-Performance Thin-Layer Chromatography

Mitochondria were isolated as previously described (basic protocol 2 in [46]). Phospho-
lipids were extracted from mitochondrial fractions by Bligh and Byer extraction [47]. Lipid
films were dissolved in chloroform/methanol (1:2) and were run on silica gel 60 plates (Merck,
Darmstadt, Germany) as previously described [48]. Briefly, silica plates were pre-run in
methanol/ethylacetate (3:2) and dried for 10 min at 135 ◦C, after which lipid samples were
spotted and run in a buffer containing chloroform/ethanol/milliQ/triethylamine (3:3.5:0.7:3.5).
The following phospholipids were included as standards: cardiolipin (16:0, bovine heart, ICN),
phosphatidyl(L-α)ethanolamine (porcine brain, Avanti), phosphatidyl(L-α)inositol (bovine
liver, Sigma-Aldrich), phosphatidyl(L-α)choline (egg yolk, Sigma-Aldrich), sphingomyelin
(porcine brain, Avanti Polar Lipids, Alabaster, AL, USA). The plate was dried for 3 min
at 135 ◦C, after which the lipid spots were visualized by charring; for this, plates were
incubated for 1 min in Cu(II)acetate/Cu(II) sulphate solution, after which the temperature
of the plate was gradually increased from 60 to 160 ◦C. Spot densities were quantified using
ImageJ software.

4.7. Data Presentation and Statistical Analysis

Graphs were generated, and statistical analyses were performed using GraphPad
Prism version 9.1.0 software. Statistical tests used are indicated in the figure legends.
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