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BACKGROUND: Heart failure (HF) is a highly prevalent disorder for which disease mechanisms are incompletely understood. The 
discovery of disease-associated proteins with causal genetic evidence provides an opportunity to identify new therapeutic 
targets.

METHODS: We investigated the observational and causal associations of 90 cardiovascular proteins, which were measured 
using affinity-based proteomic assays. First, we estimated the associations of 90 cardiovascular proteins with incident heart 
failure by means of a fixed-effect meta-analysis of 4 population-based studies, composed of a total of 3019 participants with 
732 HF events. The causal effects of HF-associated proteins were then investigated by Mendelian randomization, using cis-
protein quantitative loci genetic instruments identified from genomewide association studies in more than 30 000 individuals. 
To improve the precision of causal estimates, we implemented an Mendelian randomization model that accounted for linkage 
disequilibrium between instruments and tested the robustness of causal estimates through a multiverse sensitivity analysis 
that included up to 120 combinations of instrument selection parameters and Mendelian randomization models per protein. 
The druggability of candidate proteins was surveyed, and mechanism of action and potential on-target side effects were 
explored with cross-trait Mendelian randomization analysis.

RESULTS: Forty-four of ninety proteins were positively associated with risk of incident HF (P<6.0×10–4). Among these, 8 
proteins had evidence of a causal association with HF that was robust to multiverse sensitivity analysis: higher CSF-1 
(macrophage colony-stimulating factor 1), Gal-3 (galectin-3) and KIM-1 (kidney injury molecule 1) were positively associated 
with risk of HF, whereas higher ADM (adrenomedullin), CHI3L1 (chitinase-3-like protein 1), CTSL1 (cathepsin L1), FGF-23 
(fibroblast growth factor 23), and MMP-12 (matrix metalloproteinase-12) were protective. Therapeutics targeting ADM and 
Gal-3 are currently under evaluation in clinical trials, and all the remaining proteins were considered druggable, except KIM-1.

CONCLUSIONS: We identified 44 circulating proteins that were associated with incident HF, of which 8 showed evidence of a 
causal relationship and 7 were druggable, including adrenomedullin, which represents a particularly promising drug target. 
Our approach demonstrates a tractable roadmap for the triangulation of population genomic and proteomic data for the 
prioritization of therapeutic targets for complex human diseases.
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Heart failure (HF) is a clinical syndrome arising from 
disease processes that either injure or overload 
the heart muscle leading to inadequate function 

at normal filling pressures.1 Despite primary prevention 
through treatment of known antecedent risk factors, 
the prevalence is rising, and the burden of associated 
morbidity and mortality remains high.2 The challenge of 
recapitulating a complex age-associated disease entity 
such as HF in model systems is reflected in a history of 
late-stage failures of new therapeutics in clinical trials.3–5 
More robust approaches to drug target identification and 
validation for HF are therefore required.5

Proteins are frequently the principal regulators of 
molecular pathways and the target of the majority of 
drugs.6 The circulating proteome is composed of pro-
teins derived from almost all cells and tissues, which are 
either actively or passively secreted into the circulation 
or released during cell damage or turnover.7 Studies of 
the human circulating proteome measured using affin-
ity or aptamer-based multiplexed assays have identified 
a large number of circulating proteins associated with 
HF onset, progression, and recovery.8–10 However, the 
causal relevance of associations from these nonran-
domized, observational studies (referred to as observa-
tional associations in the present article) remains largely 
undetermined; they may arise because of confounding 
factors, reverse causation, or inclusion of undetected 
or asymptomatic prevalent cases at the time of protein 
measurement.

Mendelian randomization (MR) can be used to esti-
mate the causal effect of protein levels on disease out-
comes,11 on the condition that 3 core assumptions are 
met: that genetic instrumental variables are associated 
with the exposure (relevance assumption); that they are 
not associated with confounding factors (independence 
assumption); and that they affect the outcome only 
through their effects on the exposure of interest (exclu-
sion restriction assumption).12,13 In addition to the bio-
logical relevance of proteins, the use of genetic variants 
associated with protein level (protein quantitative trait 
loci) as instrumental variables in MR has desirable prop-
erties in relation to these assumptions14 (Figure 1, Table 
S1). Protein quantitative trait loci variants are frequently 
derived from genomewide association studies (GWAS) 
using population-based genetic and circulating protein 
level data,15,16 fulfilling the relevance assumption by defi-
nition. The selection of genetic instruments mapping to 
the vicinity of the transcriptional gene unit (cis-acting 
variants), as opposed to those located more remotely 
(trans-acting variants), limits the scope for violating the 
exclusion restriction assumption, because protein quan-
titative trait loci variant effects on the outcome are likely 
mediated through expressions of the protein under con-
sideration (no horizontal pleiotropy).17 Last, on the basis 
of the central dogma of molecular biology, it is implau-
sible that cis variant instruments for protein exposures 

Clinical Perspective

What Is New?
• Among 90 proteins investigated for their associa-

tion with heart failure onset, 44 were observation-
ally associated, and 8 were causally associated, 2 
of which are the target of drugs in early clinical trials 
for heart failure.

• Targeting adrenomedullin was estimated to protect 
against new-onset heart failure consistent with the 
agonist effect of adrenomedullin drug antibodies, 
which are under evaluation in clinical trials.

What Are the Clinical Implications?
• Findings provide confirmatory evidence for the 

development and evaluation of therapeutics target-
ing galectin-3 and adrenomedullin, which are cur-
rently being pursued in clinical trials for heart failure.

• Integrating population-scale genomic and proteomic 
data through triangulation of observational and Men-
delian randomization analyses facilitates prioritization 
of drug targets and provides insights into molecular 
mechanisms of a complex clinical syndrome.

Nonstandard Abbreviations and Acronyms

BNP B-type natriuretic peptide
CAD coronary artery disease
cis-MR  Mendelian randomization using cis-

acting protein quantitative trait loci 
instruments

GWAS genome-wide association study
Health ABC  Health Aging and Body Composition
HERMES  Heart Failure Molecular Epidemiology 

for Therapeutic Targets Consortium
HF heart failure
HOMAGE Heart Omics in Ageing
IVW  Mendelian randomization with 

inverse-variance weighted estimator
LD linkage disequilibrium
MR Mendelian randomization
NT-proBNP N-terminal pro-BNP
PIVUS  Prospective Investigation of the 

Vasculature in Uppsala Seniors
PREDICTOR  Valutazione della Prevalenza di Dis-

funzione Cardiaca Asintomatica e di 
Scompenso Cardiaco

PROSPER  Prospective Study of Pravastatin in 
the Elderly at Risk

RR risk ratio
SCALLOP  Systematic and Combined Analysis 

of Olink Proteins Consortium
ULSAM  Uppsala Longitudinal Study of Adult 

Men
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are conditional on the disease outcome, and therefore, it 
is reasonable to assume that protein traits are upstream 
of the disease outcome in any causal model. Throughout 

the article, we refer to this technique as cis-MR, which 
has been demonstrated to be able to predict efficacy of 
known drug targets for coronary heart disease.14

Figure 1. A flow chart of the study design and a schematic illustration of cis-MR.
AF indicates atrial fibrillation; BMI, body mass index; CAD, coronary artery disease; cis-MR, Mendelian randomization using cis-acting protein 
quantitative trait loci instruments; DBP, diastolic blood pressure; eGFR, glomerular filtration rate; GWAS, genome-wide association study; HF, heart 
failure; LD, linkage disequilibrium; MR, Mendelian randomization; pQTL, protein quantitative trait loci; SBP, systolic blood pressure; and T2DM, type 
2 diabetes mellitus.
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Here, we report an integrated observational and cis-
MR analyses of circulating protein levels for therapeutic 
target identification and prioritization in HF, focusing on 
up to 90 cardiovascular disease–related circulating pro-
teins measured with the Olink Cardiovascular I circulat-
ing protein biomarker panel (Olink CVD-1) multiplexed 
affinity-based proximity extension assay18 (Figure 1). 
We perform meta-analysis of observational associations 
between circulating protein levels with incident HF8,9 
estimated from 4 independent samples. We estimate 
the causality of these associations with cis-MR analysis 
by leveraging summary-level data from large GWASs 
of circulating levels of proteins under study15 and HF 
risk.19 We identify several likely causal proteins, report 
the anticipated effects on HF-related traits estimated 
through cross-trait cis-MR analysis, and characterize 
the druggability properties of these proteins as potential 
therapeutic targets for HF.

METHODS
Data and Code Availability
For purposes of reproducing the results or replicating the pro-
cedure, the data and analysis code used in the main analysis 
have been made available to other researchers at https://
github.com/alhenry/cvd1-hf. Other supporting data are avail-
able in the article, supplemental files, and referenced public 
datasets.

Circulating Protein Level Measurement
Circulating protein levels were assessed using Olink Proseek 
Multiplex proximity extension assay7,18 technology and were 
quantified in a normalized protein expression unit, where 1 U 
difference represents a doubling of protein concentration.20 The 
present study focused on cardiovascular-disease related pro-
teins available on the Olink CVD-1 panel, for which both obser-
vational associations with HF and genetic association estimates 
for cis-MR analysis were uniquely available at the time of the 
study. Observational association estimates with incident HF 
were available for 90 proteins reported in Ferreira et al9 and 
Stenemo et al,8 of which 88 had autosomewide genetic asso-
ciation results reported in Folkersen et al.15 In the observational 
studies, protein measures were taken at baseline. A detailed 
description of the methods used for protein quantification and 
the proteins measured by each of the included studies is pro-
vided in the Supplemental Methods, Table S2, and Figure 1.

Study Population for Observational Analysis
We meta-analyzed observational association estimates 
between circulating protein level and incident HF from 4 inde-
pendent samples reported in Ferreira et al9 and Stenemo et al8: 
HOMAGE (Heart Omics in Ageing)21 discovery, HOMAGE vali-
dation, PIVUS (Prospective Investigation of the Vasculature in 
Uppsala Seniors),22 and ULSAM (Uppsala Longitudinal Study of 
Adult Men).23 The HOMAGE discovery and validation samples 
were derived from 2 population cohorts and 1 clinical trial pop-
ulation: Health ABC (Health Aging and Body Composition),24 

PREDICTOR (Valutazione della Prevalenza di Disfunzione 
Cardiaca Asintomatica e di Scompenso Cardiaco),25,26 and 
PROSPER (Prospective Study of Pravastatin in the Elderly 
at Risk).27–29 Individuals with prevalent HF at enrollment were 
excluded from the analysis. Incident HF was defined as the first 
diagnosis of HF, ascertained on the basis of hospital record 
review by trained physicians. The combined sample was com-
posed of 3019 individuals (median age ranged from 70 to 78 
years), among whom 732 incident HF events were observed 
during follow-up (median follow-up time ranged from 1.8 to 10 
years). The studies were not able to differentiate between HF 
with reduced and preserved ejection fraction because of a lack 
of data on left ventricular ejection fraction. Characteristics of 
included studies are provided in Table 1 and the Supplemental 
Methods and in previous reports.8,9

Statistical Analysis
Meta-Analysis of Observational Associations
We performed a fixed-effect meta-analysis using effect esti-
mates from (1) HOMAGE discovery, (2) HOMAGE replication, 
(3) PIVUS, and (4) ULSAM. Effect estimates for HOMAGE 
discovery and HOMAGE replication were extracted from odds 
ratios calculated using multivariable logistic regression adjust-
ing for age, sex, cohort, and follow-up time—which were used as 
matching variables in a matched, nested case-control design.9 
For PIVUS and ULSAM, effect estimates were taken from haz-
ard ratios calculated using Cox proportional hazard regression 
adjusting for age and sex.8 Hazard ratios and odds ratios were 
assumed to approximate to an equivalent risk ratio (RR), given 
that the outcome is rare.30 To make results comparable across 
studies and proteins, study-level circulating protein measures 
in the normalized protein expression unit are standardized by 
setting the mean to 0 and SD to 1 before running regression 
models, with an assumption that the SDs of circulating protein 
levels are similar across studies. To account for multiple testing, 
we implemented a Bonferroni-corrected allowable type I error 
rate (α) of 0.05/90 (number of proteins under study).

MR Analysis
We assessed the causality of associations for proteins that 
survived multiple testing correction in the observational 
analysis by performing 2-sample cis-MR using estimates 
of genetic association with circulating protein levels under 
study and with HF. Genetic associations with circulating 
protein levels were extracted from a GWAS meta-analysis 
of 14 cohorts composed of 30 931 subjects of European 
ancestry included in the SCALLOP consortium (Systematic 
and Combined Analysis of Olink Proteins).15 Genetic asso-
ciations with HF were extracted from a GWAS meta-analysis 
of 47 309 all-cause HF cases from 26 studies of European 
ancestries included in the HERMES consortium (Heart 
Failure Molecular Epidemiology for Therapeutic Targets).19 
Details of participating studies in each GWAS meta-analysis 
are provided in Tables S3 and S4.

Genetic instruments for proteins were selected from all bial-
lelic single-nucleotide polymorphism available in both protein 
and outcome GWAS summary statistics with minor allele fre-
quency >0.01 and located within 200 kbp upstream or down-
stream of the cognate protein-encoding transcription start 
and stop sites. Given that a gene cis- region constitutes only 
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a small proportion of the genome, we relaxed the conventional 
genomewide significance P value threshold for instrument 
selection to P<1×10–4. To allow for an increased statistical 
power to detect an association, we implemented a relaxed link-
age disequilibrium (LD) r2 threshold 0.4 and used MR models 
accounting for residual correlation.31 This threshold was based 
on a simulation study finding that unstable estimates caused 
by multicollinearity started to occur at a threshold correlation of 
around r2=0.36.32 Using these thresholds, we performed vari-
ant clumping implemented in PLINK 1.933 to select cis- genetic 
instruments for each protein, with an LD model derived from 
individual-level genotype data imputed against the Haplotype 
Reference Consortium34 reference panel from a random sam-
ple of 10,000 UK Biobank35 participants.

MR estimates were calculated using the Wald ratio estima-
tor for proteins with a single instrument selected, or the inverse-
variance weighted (IVW) estimator for proteins with 2 or more 
instruments. The Wald ratio estimates are calculated as the 
regression coefficient for genetic association with the outcome 
divided by the regression coefficient for genetic association 
with circulating protein levels. The IVW estimates are calculated 
as the average of instrument ratio coefficients weighted by the 
inverse variance. Both estimates from observational association 
and MR analyses approximate a RR of HF per 1 SD increase 
in normalized protein expression unit (equivalent to per SD per 
doubling circulating protein concentration).

Multiverse Sensitivity Analysis for MR
To test the robustness of estimates from the primary MR analy-
sis, proteins with MR estimates surviving multiple testing cor-
rection (P value <0.05/numbers of observationally associated 
proteins with at least 1 instrument) were taken forward to 
undergo an in-depth, multiverse sensitivity analysis36 in which 
the stability of the effect estimates was evaluated under a wide 
combinations of instrument selection parameters and MR mod-
els. Thresholds for instrument selection (P value and r2) and 
alternative MR models were prioritized more than other possible 
parameters, such as LD reference population and genomic dis-
tance, because these parameters were observed to have the 

greatest influence on estimate stability in a previous systematic 
evaluation of methods for drug target MR.14 For each MR model, 
we computed causal estimates for all possible combinations of 
5 LD r2 thresholds (0.05, 0.1, 0.2, 0.4, and 0.6) and 6 P value 
thresholds (5×10–8, 1×10–5, 1×10–4, 1×10–3, 1×10–2, and 1/no 
threshold). These combinations included the parameters used in 
the primary MR analysis above and stringent parameters com-
monly used in conventional MR analysis of complex trait expo-
sures.37 For proteins with a single cis instrument, the Wald ratio 
was the only model that could be tested; where 2 or more instru-
ments were available, estimates were calculated with the IVW 
estimator and MR models using principal components32 with 
90% variance and 99% variance explained; and where there 
were 3 or more instruments, we in addition calculated estimates 
using MR with Egger regression estimator12 (Figure S1). MR 
with principal components is an alternative model to account 
for correlation between instruments,32 and MR with Egger 
regression estimator provides estimates accounting for residual 
horizontal pleiotropy.12 To reduce spurious associations that may 
arise because of excess multicollinearity or bias toward the null 
because of weak instruments in 2-sample MR,14 outlier point 
estimates with a value outside 1.5 times the interquartile range 
above the upper quartile and below the lower quartile were 
removed. An association was declared as robust if all point esti-
mates from the multiverse sensitivity analysis were directionally 
concordant with estimates from the primary MR analysis, includ-
ing those on the basis of strict instrument selection parameters 
and a standard IVW model.

The IVW and MR with Egger regression estimates were 
calculated using the MendelianRandomization package in R,38 
with a fixed-effect model for 3 or fewer genetic instruments, 
or a multiplicative random-effects model otherwise. To mini-
mize erroneously low P value caused by a multicollinearity 
issue, correlation between instruments was accounted for by 
incorporating the instrument pairwise LD correlation matrix in 
the IVW and MR with Egger regression estimator models.14,31 
The MR method with principal components was implemented 
using sample codes from the original publication.32 Genomic 
coordinates for all relevant analyses were based on Ensembl 
GRCh37 reference.39

Table 1. Summary of Study Characteristics Included in the Observational Meta-Analysis

Reporting study Study design Cohort
Median age at 
baseline (years)

Median follow-up 
(years) [range]

Heart failure 
events/N total 
sample

Ferreira et al 
(2019)9

Nested-matched case-
control (logistic regres-
sion)

HOMAGE21 discovery

Health ABC24 74 8.3 [0.0–14.4] 215/648

PREDICTOR25,26 77 2.5 [0.2–3.8] 15/44

PROSPER27–29 77 2.0 [0.2–3.9] 56/185

HOMAGE21 validation

Health ABC24 73 9.0 [0.1–14.4] 109/208

PREDICTOR25,26 76 2.2 [0.1–4.5] 29/58

PROSPER27–29 76 1.8 [0.1–3.8] 138/290

Stenemo et al 
(2018)8

Time-to-event analysis 
(Cox proportional haz-
ards regression)

PIVUS22 70.2 10.0 [0.1–10.9] 80/901

ULSAM23 77.8 8.0 [0.2–10.9] 90/685

Health ABC indicates Health Aging and Body Composition; HOMAGE, Heart Omics in Ageing; PIVUS, Prospective Investigation of 
the Vasculature in Uppsala Seniors; PREDICTOR, Valutazione della Prevalenza di Disfunzione Cardiaca Asintomatica e di Scompenso 
Cardiaco; PROSPER, Prospective Study of Pravastatin in the Elderly at Risk; and ULSAM, Uppsala Longitudinal Study of Adult Men.
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Cross-Trait MR Analysis
To investigate the potential mechanisms through which candi-
date target proteins may influence HF risk, we performed an 
exploratory cross-trait MR to estimate the causal association 
of genetically predicted circulating protein levels with common 
risk factors and comorbidities of HF: coronary artery disease 
(CAD), atrial fibrillation, estimated glomerular filtration rate 
(eGFR), systolic blood pressure, diastolic blood pressure, type 
2 diabetes, and body mass index. MR analysis was performed 
with the primary instrument selection strategy and MR model 
described in the MR Analysis section using publicly available 
GWAS statistics for the relevant traits (Table S5).40–45 To allow 
comparison across protein-trait pairs, effect estimates were 
converted to Z scores, calculated as log odd ratios divided by 
their SEs. The protein-trait MR association was considered 
potentially causal if the P value from the MR analysis was 
less than a conservative Bonferroni adjusted threshold of 0.05 
divided by the number of protein-trait pairs.

Evaluation of Druggability and Clinical 
Development Activity
We extracted the druggability profile of candidate target pro-
teins from an updated list of druggable genes.6 To evaluate 
clinical development activity of candidate drugs targeting 
the candidate proteins, we queried the ChEMBL46 (release 
27) database to get information on drug molecule types, 
approved indications, and target outcomes in clinical trials. 
We complemented this query by performing a manual search 
through the https://www.ClinicalTrials.gov website for each 
candidate target.

Ethical Statement
All included studies were ethically approved by local insti-
tutional review boards, and all participants provided written 
informed consent. The analysis was conducted in accordance 
with guidelines for study procedures provided by the University 
College London Research Ethics Committee.

RESULTS
Meta-Analysis of Observational Studies 
Reveals 44 Circulating Proteins Associated With 
Incident HF
Through a meta-analysis of observational associations 
from 4 independent samples, composing up to 732 in-
cident HF events in 3019 subjects, we found 44 out of 
the 90 proteins were associated with incident HF after 
multiple testing adjustment at P<6.0×10–4 (α=0.05/90 
proteins), including 22 associations that were not re-
ported in the individual participating studies.8,9 Increasing 
circulating levels of all the 44 observationally associated 
proteins showed a risk-increasing effect on incident HF, 
with a median RR of 1.33 (interquartile range, 1.26–
1.46). The largest effect sizes were observed in BNP (B-
type natriuretic peptide; RR, 1.92 [95% CI, 1.70–2.18]) 
and NT-proBNP (N-terminal pro-BNP; RR, 1.85 [95% 

CI, 1.63–2.10]), 2 biomarkers that have been routinely 
used in the clinic to diagnose HF. We found no evidence 
of heterogeneity of the effect estimates after adjustment 
for multiple testing (Pheterogeneity<0.05/44). Full study-level 
and meta-analysis estimates are provided in Table S6.

Causal Effect Estimation With cis-MR
Of the 90 proteins being studied, cis region genetic as-
sociation summary statistics were available for 83 proteins 
encoded by autosomal genes (Table S2). Cis region sizes 
varied according to gene length from 401 to 705 kbp and 
contained a mean of 1181 variants (SD, 498). Using the 
primary instrument selection parameter with LD r2 thresh-
old of 0.4 and P value threshold of 10–4, we identified 75 
proteins with 1 to 125 (median, 23) cis- genetic instrument, 
including 40 of the 44 observationally associated proteins. 
For comparison, conventional instrument selection param-
eters (LD r2<0.05, P<5×10–8) identified 70 proteins with 1 
to 28 (median, 5) cis- genetic instruments. Instrument-spe-
cific estimates are provided in the data and code at https://
github.com/alhenry/cvd1-hf/tree/main/resources.

The primary MR analysis suggested causal relation-
ships for 17 of the 40 (43%) observationally associated 
proteins (P<0.05/40). The direction of effects for 16 of 
17 proteins were consistent with those calculated using 
conventional MR parameters; however, only CHI3L1 sur-
vived the multiple testing correction (Figure 2). We also 
investigated the remaining 35 proteins that did not have 
an observational association with HF and with at least 1 
cis- genetic instrument. Of these, we found an additional 
9 proteins (26%) with evidence suggestive of a causal 
association with HF in MR (P<0.05/35). Full MR results 
are provided in Table S7.

Multiverse Sensitivity Analysis Demonstrates 
Robust Causal Estimates for 8 HF-Associated 
Proteins
Noting that MR estimates are highly sensitive to choice 
of parameters for instrument and model selection,17,47 we 
tested the stability of the association estimates for each 
of the 17 HF-associated proteins for which the primary 
MR analysis suggested underlying causal effects, using 
a multiverse sensitivity analysis. We tested up to 120 
combinations of commonly used parameters for instru-
ment selection and MR models per protein, focusing on 
parameters that explain the largest variability in MR esti-
mates on the basis of previous simulation and empirical 
studies,14,32 resulting in a total of 1850 individual effect 
estimates. We evaluated the distribution of the point es-
timates generated and compared these with the primary 
cis-MR analysis estimates and with estimates from con-
ventional instrument selection parameters (Figure 2b, 
Table S8). For all 17 proteins under analysis, estimates 
from the primary cis-MR analysis were directionally  
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concordant with median values of the multiverse analy-
sis point estimate distributions and showed overlapping 
95% CIs with estimates from cis-MR using conventional 
strict instrument selection parameters.

Furthermore, we identified robust evidence of a causal 
association with HF as indicated by sign concordance 
of all MR point estimates from the multiverse sensitivity 
analysis for 8 proteins: ADM (adrenomedullin), CHI3L1 
(chitinase-3-like protein 1), CSF-1 (macrophage colony-
stimulating factor 1), CTSL1 (cathepsin L1), FGF-23 
(fibroblast growth factor 23), Gal-3 (galectin-3), MMP-
12 (matrix metalloproteinase-12), and KIM-1 (kidney 
injury molecule 1). Increasing circulating levels of all 8 

proteins were positively associated with risk of incident 
HF in the observational analysis. In the MR analysis, 
however, only 3 proteins (CSF-1, Gal-3, and KIM-1) 
showed positive associations with risk of HF, whereas 
the remaining 5 (ADM, CHI3L1, CTSL1, FGF-23, and 
MMP-12) showed negative associations, suggesting 
causal protective effects (Figure 3).

Cross-Trait MR Analysis for Candidate 
Therapeutic Targets for HF
We took forward the 8 proteins robustly associated with 
HF and explored their causal effects on 7 HF-related 

Figure 2. Observational and MR estimates of protein–heart failure association.
A, Circular heatmap of association from 40 proteins associated with incident heart failure in observational studies (P<0.05/83=0.0006). The 
2 circular lanes refer to results from 2 analyses: (1) observational analysis and (2) cis-MRwith partially correlated instruments. Color represents 
direction of effect and strength of association with heart failure measured by P value. B, Forest plot of risk ratio (hazard ratio from observational 
analysis and odds ratio from MR analysis) from 17 proteins associated with heart failure in MR analysis (P<0.05/40=0.001). Colored dots 
and error bars indicate the point estimate and 95% CIs. The gray violin plots around the MR estimates illustrate the distributions of odds ratio 
point estimates estimated from combinations of up to 30 instrument selection parameters and 4 MR models in multiverse sensitivity analysis, 
with medians of distribution shown as vertical lines within the violin plot. Proteins with consistent direction of effect as indicated by multiverse 
sensitivity analysis are highlighted in bold and italic font. Full protein names are provided in Table S2. cis-MR indicates Mendelian randomization 
using cis-acting protein quantitative trait loci instruments; and MR, Mendelian randomization.
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traits (CAD, atrial fibrillation, estimated glomerular filtra-
tion rate, systolic blood pressure, diastolic blood pres-
sure, type 2 diabetes, and body mass index), using the 
primary cis-MR analysis method (Figure 3). Of the 8 
candidate proteins, 1 (ADM) was not associated with 
any trait other than HF, whereas the remaining 7 were 
associated with at least 1 other trait after multiple test-
ing correction (P<0.05/8 proteins/7 traits excluding 
HF). Consistent with evidence from overexpression per-
turbation studies in animal models, Gal-348 and CSF-
149 were positively associated with body mass index, a 
biomarker of adiposity and a known risk factor for HF.50 
CHI3L1 and CTSL1 were protective for CAD, consis-
tent with reports of cardioprotective effects in animal 
models of cardiac ischemia.51,52 A higher circulating 
CSF-1 level was associated with an increased risk of 
CAD,53 whereas MMP-12 showed a protective effect, 
consistent with previous reports.16 A higher level of 
FGF-23 was associated with a lower estimated glomer-
ular filtration rate, consistent with findings from preclini-
cal models in which FGF-23 deficiency was associated 
with worsening renal failure and cardiac hypertrophy.54

Appraisal of Druggability and Existing Approved 
or Clinical-Phase Drug Candidates for 
Candidate Protein Targets
To evaluate the druggability and drug development ac-
tivities of candidate targets, we searched through a list 
of druggable genes,6 the ChEMBL (release 27) drug 
discovery database, and a clinical trial registry (https://
www.clinicaltrials.gov, accessed on December 1, 2020). 
We grouped candidate targets into 3 categories corre-
sponding to the highest status in the drug development 
pipeline: approved (targeted by drugs already approved 
for 1 or more conditions), in development (currently be-
ing investigated in clinical trials), and druggable (listed 
as druggable targets; Table 2). A candidate drug target-
ing adrenomedullin, adrecizumab (a humanized, mono-
clonal, nonneutralizing antibody against the N terminus 
of ADM55), is entering phase II trials for septic shock 
(URL: https://www.ClinicalTrials.gov; Unique identi-
fier: NCT03085758), cardiogenic shock (Unique identi-
fier: NCT03989531), and acute HF (Unique identifier: 
NCT04252937). A modified citrus pectin Gal-3 inhibitor 

Figure 3. Estimated effect of prioritized circulating protein levels with HF and related traits.
Left, Approximate relative risks of HF per doubling circulating protein levels as estimated with meta-analysis of observational data and cis-MR. 
Right, A matrix of estimated causal effect size of prioritized circulating protein levels (rows) on HF and related traits (columns) from cis-MR 
analysis as represented by bullet points. The size of the bullet represents the magnitude of estimated causal effect measured in absolute Z score. 
Bullet points with a darker shade indicate associations that survived multiple testing at P value <0.0009 (α=0.05/[8 proteins*7 traits, excluding 
HF]). Red indicates a risk/trait-increasing effect, and blue indicates a risk/trait-decreasing effect. ADM indicates adrenomedullin; AF‚ atrial 
fibrillation; BMI, body mass index; CAD, coronary artery disease; CHI3L1‚ chitinase 3-like 1; CSF-1‚ colony stimulating factor 1; CTSL1‚ cathepsin 
L; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; FGF-23‚ fibroblast growth factor 23; Gal-3‚ galectin-3; HF, heart 
failure; KIM-1‚ kidney injury molecule 1; MMP-12‚ matrix metallopeptidase 12; MR, Mendelian randomization; SBP, systolic blood pressure; and 
T2D, type 2 diabetes.
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has been evaluated for effects markers of collagen me-
tabolism in patients with hypertension in a proof-of-con-
cept clinical trial for cardiac fibrosis.56 CSF-1 and MMP-
12 inhibitors are currently being evaluated in clinical 
trials for non-HF conditions. Burosumab, a monoclonal 
antibody FGF-23 inhibitor, has already been approved 
for treating X-linked hypophosphatemia and hypophos-
phatemic rickets. Although we found no ongoing trials 
specific for CHI3L1 or CTSL1, inhibition of CTSL1 is 
proposed as potential treatment for SARS-CoV-2 infec-
tion, and several approved agents show inhibitory activ-
ity against CTSL1.57 With the exception of KIM-1, all 7 
other proteins are predicted to be secreted in at least 1 
tissue according to the Human Protein Atlas database.58 
KIM-1 is also not currently listed as a potential drug tar-
get according to the druggable gene list, ChEMBL re-
lease 27, and https://www.ClinicalTrials.gov databases.

DISCUSSION
Principal Findings
We investigated 90 circulating proteins for their associa-
tion with incident HF in a population of 3019 individuals 
with 732 events. A total of 44 proteins had positive as-
sociations with risk of incident HF, 22 of which were not 
reported in the participating studies. These included as-

sociations with incident HF reported elsewhere such as 
Gal-3, HGF, and Resistin,59–61 proteins such as CXCL16 
with reported associations with prognosis in HF,62 and 
with cardiac fibrosis on cardiac magnetic resonance im-
aging in HF including MMP3.63 Among the novel associa-
tions to highlight, CTSL1 is a potent endoprotease linked 
to the development of dilated cardiomyopathy and HF in 
mouse models.64,65 We used cis-MR to estimate whether 
the observational protein-HF associations reflected an 
underlying causal relationship. Of the 40 proteins for 
which cis genetic instruments were available, 17 showed 
evidence suggestive of causal effects, of which 8 were 
robust to multiverse sensitivity analysis. Among these 
8 HF-associated proteins, 3 were positively associated 
with risk of HF (CSF-1, Gal-3, and KIM-1), and 5 were 
negatively associated, consistent with causally protective 
effects (ADM, CHI3L1, CTSL1, FGF-23, and MMP-12). 
Seven are known or predicted to be druggable by con-
ventional therapeutic modalities, and therapeutic agents 
targeting 2 of the identified proteins are currently under 
evaluation in phase II clinical trials: adrecizumab, an ADM 
agonist, for acute HF and cardiogenic shock,55 and modi-
fied citrus pectin, a Gal-3 antagonist, for cardiac fibrosis.56 
We note that CTSL1 inhibition has been proposed as a 
potential treatment for COVID-1966; our results signal HF 
as a potential safety liability of this therapeutic approach. 
Our findings provide evidence supporting the therapeutic 

Table 2. Summary of Druggability and Clinical Development Activity for Heart Failure Associated With Causal Associations on 
Mendelian Randomization Analysis

Target Status Compound name Molecule type Action type Clinical development activities

ADM (adrenomedullin) In development Adrecizumab† Antibody Redistributing 
interstitial to 
plasma ADM

Phase I/II trials: septic shock (NCT03085758)† 
Cardiogenic shock (NCT03989531)† Acute 
heart failure (NCT04252937)†

CHI3L1 (chitinase 
3-like 1)

Druggable* – Antibody* – –

CSF-1 (colony stimu-
lating factor 1)

In development MCS-110‡ (CHEM-
BL2109512)

Antibody Antagonist Phase I/II trials: melanoma, stomach neoplasms, 
breast neoplasms 

PD-360324‡ (CHEM-
BL2109513)

Antibody Antagonist Phase I/II trials: arthritis, rheumatoid arthritis, 
lupus erythematosus, cutaneous sarcoidosis

CTSL1 (cathepsin L) Druggable* – Small molecule* – –

FGF-23 (fibroblast 
growth factor 23)

Approved Burosumab‡ (CHEM-
BL3707326)

Antibody Antagonist Approved for X-linked hypophosphatemia,
hypophosphatemic rickets

Gal-3 (galectin-3) In development GB1211† Small molecule* Antagonist Phase I/II trials: nonalcoholic steatohepatitis 
(NCT04607655)†

In development Modified citrus pectin 
(MCP)

Carbohydrate oral 
supplement

Antagonist Phase I/II trials: hypertension (NCT01960946)†

MMP-12 (matrix metal-
lopeptidase 12)

In development FP-025† Small molecule Antagonist Phase I/II trials: asthma (NCT03858686)†

MARIMASTAT‡ 
(CHEMBL279785)

Small molecule Antagonist Phase III trials‡: lung neoplasms, breast neo-
plasms

KIM-1 (kidney injury 
molecule 1)

Not currently list-
ed as druggable

– – – –

ADM indicates adrenomedullin; CHI3L1, chitinase 3-like 1; CSF-1, colony stimulating factor 1; CTSL1, cathepsin L; FGF-23, fibroblast growth factor 23; Gal-3, 
galectin-3; KIM-1, kidney injury molecule 1; and MMP-12, matrix metallopeptidase 12.

*Data from druggable gene list.6

†Data from https://www.ClinicalTrials.gov (clinical trial ID in brackets).
‡Data from ChEMBL release 2746 (compound ID in brackets).
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hypotheses underpinning 2 drug development programs 
for HF and more broadly highlight the emerging oppor-
tunities to explore human causal biology of complex dis-
ease using population-scale genomic and proteomic data.

Concordance of Observational and Causal 
Associations for Identified Proteins
One of the key strengths of study is the triangulation of 
evidence between observational and MR analyses for a 
consistently measured set of cardiovascular proteins. For 
all the protein-HF associations that were identified in our 
meta-analysis, there was a positive association, ie, a higher 
protein concentration was associated with an increased 
risk of incident HF. This is consistent with previously re-
ported biomarker association studies with incident HF; for 
example, a study of incident HF in the Framingham popu-
lation identified 18 associated circulating biomarkers, of 
which 17 were positive associations.67 When we estimated 
the causal association of the observationally associated 
HF proteins, however, we found that the observational and 
causal association estimates were frequently discordant 
with opposing direction of effects. For example, 5 proteins 
with an estimated causally protective effect were found 
to have a positive association with incident HF, including 
MMP-12 and ADM. In the case of MMP-12, our findings 
are consistent with previous reports on the associations 
between MMP-12 and CAD.16,68 These discordant find-
ings may be explained by subclinical or predisease leading 
to higher levels of these proteins that precedes the clini-
cal diagnosis of HF, potentially as an adaptive feedback 
response to mitigate the disease process. The median 
baseline age in the included studies ranged from 70 to 78 
years, and it is likely that subclinical alterations in cardiac 
structure and function occurred before incident HF, which 
was defined as the first HF hospitalization. Concordant 
observational and causal associations (CSF-1, Gal-3, and 
KIM-1) may be explained either by upstream processes 
driving risk or by reverse causation where a positive feed-
back loop exists between the HF and expression of the 
protein. For several proteins, including established clinical 
biomarkers NT-proBNP and ST2, we found positive ob-
servational associations but were unable to detect causal 
effects by MR analysis. In these, the observational as-
sociations may be interpreted as noncausal, arising from 
reverse causation. We cannot, however, exclude a type 2 
error caused by imprecision of the MR estimates.

Comparison With Other Studies
To our knowledge, our study represents the first large-
scale analysis of incident HF that combines observation-
al associations of circulating proteins with a systematic 
appraisal of causal effects using MR. Our results were 
consistent with previously reported findings from MR 
studies of NT-proBNP and GDF-15, which did not re-

port evidence of a strong causal relationship between 
these proteins and risk of HF.69,70 Our approach of tri-
angulating evidence from observational association and 
MR represents a pragmatic approach to screen and pri-
oritize targets for therapeutic development, according 
to the relative strength of evidence from analysis of the 
data available.71 In our study, we used a method for cis-
MR that incorporates the LD correlation structure within 
the causal model and provides estimates with higher 
precision.31 We combined this primary approach with a 
new technique to evaluate the robustness of the identi-
fied protein-HF associations that involved systematically 
testing multiple combinations of model parameter selec-
tion in a multiverse sensitivity analysis, enabling us to 
deprioritize proteins with unstable estimates. Using this 
framework, we found evidence supporting a causal rela-
tionship for 8 of the 40 HF-associated proteins tested, 
compared with a single association for CHI3L1 that was 
identified using conventional approaches. For example, 
the estimates for CTSL1 and FGF-23 generated with 
this approach more clearly suggest a causal effect com-
pared with those on the basis of more stringent instru-
ment selection (Figure 2b, Table S7).

Implications for Therapeutics Targeting HF
All 8 proteins with estimated causal effects, except ADM, 
were associated with HF-related traits in an exploratory 
cis-MR cross-trait analysis, including upstream HF risk 
factors. Distinct pathobiological pathways and proteomic 
signatures are described for subgroups of patients with 
HF, such as those defined by left ventricular ejection frac-
tion72; however, we were unable to perform a stratified 
analysis because of the limited phenotype data available 
at the time of HF diagnosis. To leverage the full potential 
of proteomics and genomics in understanding HF and 
identifying drug targets, there is a need to decompose 
HF into phenotypic components, including those of car-
diac dysfunction and fluid congestion, which characterize 
this condition. ADM and CTSL1 are notable among our 
findings because their protective effect against the risk of 
HF was not explained by association with upstream risk 
factor traits. ADM is a circulating peptide hormone syn-
thesized by endothelial and vascular smooth muscle cells, 
the biologically active form of which has been proposed 
as a marker and inhibitor of tissue fluid congestion, a hall-
mark feature of HF.55 Consistent with our results, it has 
been hypothesized that ADM may play a protective role in 
HF development and progression by maintaining vascular 
integrity, inducing vasodilatation, and inhibiting the renin-
angiotensin-aldosterone system.55

Limitations
Although the clinical ascertainment of HF was consistent 
across the studies included in the observational analysis 



ORIGINAL RESEARCH 
ARTICLE

Circulation. 2022;145:1205–1217. DOI: 10.1161/CIRCULATIONAHA.121.056663 April 19, 2022 1215

Henry et al Proteogenomic Target Identification for HF

and in HF GWAS, the interpretation of our findings is lim-
ited by the lack of detailed phenotyping by pathogenesis 
and phenotypes of cardiac structure and function. Our 
MR framework, including the prioritization of parameters 
for the multiverse analysis, was based on previous stud-
ies of gene transcript exposures which demonstrated 
robust and reproducible MR estimates73; however the 
scope of our multiverse analysis was limited by the com-
putational burden inherent in the approach. There is a 
lack of consensus about the optimal approach to cis-MR, 
and we were unable to empirically replicate our findings 
in an independent sample because none were available 
at the time of the study. It is possible for proteins with an 
important causal contribution to HF risk to have a null 
observational association in this study because of nega-
tive confounding or imprecision of the estimates. Given 
that circulating protein concentrations are measured in a 
relative normalized protein expression unit,20 the derived 
effect estimates are rarely representative of the absolute 
magnitude of effect on HF and are not directly compa-
rable across proteins. The expected causal direction of 
effects, however, can inform potential efficacy and on-
target side effects, which can be formally investigated 
further in clinical trials. Further studies are needed to 
corroborate and extend our findings, to include a larger 
number of protein biomarkers, and to explore the rela-
tionship of the identified proteins with disease subtypes. 
These studies will be enabled by the rapidly increasing 
availability of proteomic and genomic information in large 
populations from large health care–linked biobanks.

CONCLUSIONS
In conclusion, we evaluated 90 cardiovascular-related 
proteins through observational and MR analysis using 
population-based proteomic data and identified 7 can-
didate drug targets for HF. Of these, 2 proteins (ADM 
and Gal-3) are currently under evaluation in clinical tri-
als for HF, and 5 (CHI3L1, CSF-1, CTSL1, FGF-23, and 
MMP-12) represent novel putative therapeutic targets 
for HF. This study provides an example of the opportuni-
ties for human target prioritization that are enabled by 
emerging population-based genomic and proteomic data 
resources. Proteomewide studies incorporating both di-
rect association with target outcomes and genetic-based 
inference through MR are likely to provide important new 
tools for therapeutic target discovery and prioritization.
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