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Understanding the sources of error is critical before models of the musculoskeletal system
can be usefully translated. Using in vivo measured tibiofemoral forces, the impact of
uncertainty in muscle–tendon parameters on the accuracy of knee contact force estimates
of a generic musculoskeletal model was investigated following a probabilistic approach.
Population variability was introduced to the routine musculoskeletal modeling framework
by perturbing input parameters of the lower limb muscles around their baseline values.
Using ground reaction force and skin marker trajectory data collected from six subjects
performing body-weight squat, the knee contact force was calculated for the perturbed
models. The combined impact of input uncertainties resulted in a considerable variation in
the knee contact force estimates (up to 2.1 BW change in the predicted force), especially at
larger knee flexion angles, hence explaining up to 70% of the simulation error. Although
individual muscle groups exhibited different contributions to the overall error, variation in
the maximum isometric force and pathway of the muscles showed the highest impacts on
the model outcomes. Importantly, this study highlights parameters that should be
personalized in order to achieve the best possible predictions when using generic
musculoskeletal models for activities involving deep knee flexion.
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INTRODUCTION

Musculoskeletal models have been widely used to estimate in vivo loading conditions within the knee
(Richards and Higginson, 2010;Worsley et al., 2011; Trepczynski et al., 2012; Gerus et al., 2013; Stylianou
et al., 2013; Chen et al., 2016; Trepczynski et al., 2018; van Rossom et al., 2018; Imani Nejad et al., 2020).
Outputs of musculoskeletal simulations can be used to predict postoperative functional outcomes of
different surgeries (Barry et al., 2010; Chen et al., 2016), optimize rehabilitation protocols (Barry et al.,
2010; Jamwal et al., 2020; Li et al., 2020), and enhance athletic performance (Heron, 2015; Langholz et al.,
2016; Ataei et al., 2020; Seow et al., 2020). However, when musculoskeletal predictions of knee loads are
compared against in vivo measurements, substantial errors are common (Lundberg et al., 2012; Valente
et al., 2014; Charles et al., 2020; Koller et al., 2021), especially when generic models are used (e.g., errors of
up to 150% for body-weight squat (Schellenberg et al., 2018; Imani Nejad et al., 2020)).
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Generic musculoskeletal models are generally developed based
on averaged anatomical data obtained from cadavers or living
subjects (Delp et al., 1990; Arnold et al., 2010; Rajagopal et al.,
2016). To represent a specific subject, certain model parameters
are usually scaled based on the individual’s weight and skin
marker locations in a static pose (Kainz et al., 2017; Imani
Nejad et al., 2020; Ma et al., 2021). However, the scaled
parameters possess inherent uncertainty due to marker
placement inaccuracy, on top of considerable inter-subject
variability due to skeletal morphology, for example, femoral
anteversion angle (Kainz et al., 2021; Modenese et al., 2021)
and muscle parameters, for example, tendon slack length (Winby
et al., 2008; Heinen et al., 2016). As a result, the importance of
using subject-specific muscle parameters to reduce uncertainty in
modeling outcomes has been consistently emphasized in the
literature (Barry et al., 2010; Gerus et al., 2013; Myers et al.,
2015; Chen et al., 2016; Koller et al., 2021), but such parameters
are generally difficult to measure. For example, to determine the
exact muscle pathway, multiple MR images should be captured
along the length of the muscle and preferably during different
body poses (Schmid et al., 2009; Fernandez et al., 2016). Muscle
force generation parameters also play an important role: the
maximum isometric force (MIF) of muscles can be estimated
during maximum voluntary contraction trials using either force
or torque sensors (Be Groote et al., 2010; Ivanovic and Dopsaj,
2013; Kainz et al., 2018; Higa et al., 2019) or electromyography
(EMG) data (Pizzolato et al., 2015; Hoang et al., 2019); however,
these assessments are generally not sufficiently repeatable or
sensitive to determine the MIF of a single muscle (Bolliger
et al., 2008). It is also known that EMG signals measured
during some dynamic activities can exceed the values
measured during maximum voluntary contraction trials
(Burden, 2010), thus the measured MIF may not accurately
represent the real muscle strength. As a result, measurement
and implementation of all subject-specific muscle parameters for
all muscles modeled is extremely difficult, expensive, and
consequently impracticable. Therefore, it is crucial to limit
subject-specific measurements to the muscles and parameters
that have a considerable impact on the modeling outputs.

A probabilistic analysis can provide important insights into
the relative impact of different sources of uncertainty on the
muscle and joint reaction force estimates of generic
musculoskeletal models (Barry et al., 2010; Valente et al., 2014;
Myers et al., 2015; Lamberto et al., 2017; Zuk et al., 2018). Using
experimental gait data collected from a single subject as inputs to
a generic musculoskeletal model, Myers et al. (2015) found that
measurement inaccuracies including marker placement and skin
movement artifact have a relatively small contribution toward the
overall uncertainty in muscle force estimates for level walking
(e.g., 20 N variation in estimated gastrocnemius force due to
marker placement errors, compared to 80 N variation due to
errors in muscle input parameters). Nevertheless, they found
1.7 times greater impact on muscle force outputs due to
uncertainty in muscle parameters, particularly maximum
isometric force and tendon slack length. Similar findings were
reported by Navacchia et al. (2016), who used a global
probabilistic modeling approach to assess uncertainty in knee

contact forces (KCFs). Although these investigations provide an
underlying understanding of how uncertainties propagate
through different stages of musculoskeletal simulations, they
generally focused on level walking with experimental data
collected from a single subject and without reliable in vivo
data for validation. As a result, to date, there is no
comprehensive probabilistic analysis that provides a reference
for guiding the selection of influential model parameters that
need to be personalized, especially for activities involving deep
knee flexion.

In this study, a probabilistic musculoskeletal modeling
approach was exploited to quantify the impact of uncertainty
in lower limb muscle parameters on KCF estimates of a generic
musculoskeletal model used to simulate squat activity. We used
skin marker trajectories, ground reaction forces (GRF), and in
vivo measured tibiofemoral joint contact forces reported within
the CAMS-Knee data sets (Taylor et al., 2017) to perform the
simulation and validate the results. The findings of this study aim
to provide an improved understanding of the influence of model
uncertainty on musculoskeletal simulation outcomes, as well as
highlight parameters that should be personalized in order to
achieve the best possible predictions of knee contact force.

METHODS

Skin marker trajectories, ground reaction forces, and in vivo KCF
data, measured in six subjects (74 ± 6 years, 89 ± 13 kg, and 172 ±
4 cm) with an instrumented knee implant (INNEX FIXUC,
Zimmer, Switzerland) were obtained from the CAMS-Knee
data sets (Taylor et al., 2017).

A generic musculoskeletal model (Rajagopal et al., 2016)
developed within the OpenSim modeling environment (Delp
et al., 1990) with 37 degrees of freedom (DoFs) and 80
muscle–tendon units actuating the lower limb was selected for
this study. To obtain the so-called baseline models representing
each subject’s anthropometry, the position of selected bone
landmarks and anatomic joint centers (3D position of these
landmarks are extracted from the segmented CT images and
available within the CAMS-Knee data sets) were used to scale
each bone in the lower limb. More specifically, the 3D distances
between six bone landmarks on the pelvis (left and right anterior
and left and right posterior iliac spine as well as the two hip joint
centers) were calculated based on the data obtained from CT
images and compared against the distance between
corresponding landmarks on the generic bone to scale the
pelvis in three dimensions. The distance between proximal
and distal joint centers was used to scale the lengths of the
tibiae and femora. An average scale factor was calculated based on
the distance between the medial and lateral epicondyles as well as
the distance between the medial and lateral malleoli to scale the
width and thickness of each femur, tibia, and patella. The feet and
upper limb segments were scaled based on skin marker positions
in a static pose. Optimal fiber length and tendon slack length were
scaled based on the standard methods built into the OpenSim
Scale Tool, while maximum isometric forces of the muscles were
taken directly from the generic model.
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Muscles in the generic model were represented by an elastic
tendon Hill-type muscle model (Millard2012EquilibriumMuscle
(Millard et al., 2013)) with MIF, tendon slack length (TSL), and
pennation angle (PEN) obtained from cadavers (Ward et al.,
2009; Handsfield et al., 2014). The pathway of each
muscle–tendon unit was specified using its origin and
insertion points (OIPs), as well as via points (VIA) and/or
wrapping objects, which were additionally used to represent
the curvilinear path of the muscles. Using the OpenSim/
MATLAB application programming interface, values for MIF,
PEN, TSL, OIP, and VIA of seven major groups of the lower limb
muscles (Table 1) were perturbed around their baseline values to
perform a series of Monte Carlo (MC) simulations (Figure 1).
Here, in addition to a general MC analysis where all muscles of

the lower limb were perturbed simultaneously, individual MC
analyses were performed to assess the relative contribution of the
knee (flexors and extensors), ankle, and hip muscles toward the
overall uncertainty in KCF estimates. In addition, the biarticular
muscles were investigated separately to understand how much
uncertainty propagates from neighboring joints to the knee.

The muscle–tendon model parameters were probabilistically
represented as Gaussian distributions based on the inter-
individual variability reported in the literature (Friederich and
Brand, 1990; Fukunaga et al., 1996; Lloyd and Besier, 2003; Ward
et al., 2009), Supplementary Table S1). In case different
coefficients of variation were reported for the same parameter,
the weighted average coefficient was used, where the weight was
determined based on the number of studied subjects. If the

TABLE 1 | Skeletal muscle groups included in the probabilistic simulation.

Muscle group Muscles in the musculoskeletal model

Lower limb muscles Adductor brevis (addbrev), adductor longus (addlong), adductor magnus distal (addmagDist), adductor magnus ischial
(addmagIsch), adductor magnusmiddle (addmagMid), adductor magnus proximal (addmagProx), biceps femoris long head
(bflh), biceps femoris short head (bfsh), extensor digitorum longus (edl), extensor hallucis longus (ehl), flexor digitorum longus
(fdl), flexor hallucis longus (fhl), lateral gastrocnemius (gaslat), medial gastrocnemius (gasmed), gluteus maximus (glmax, 3
bundles), gluteus medius (glmed, 3 bundles), gluteus minimus (glmin, 3 bundles), gracilis (grac), iliacus, peroneus brevis
(perbrev), peroneus longus (perlong), piriformis (piri), psoas, rectus femoris (recfem), sartorius (sart), semimembranosus
(semimem), semitendinosus (semiten), soleus, tensor fasciae latae (tfl), tibialis anterior (tibant), tibialis posterior (tibpost),
vastus intermedius (vasint), vastus lateralis (vaslat), and vastus medialis (vasmed)

Knee extensors Recfem, vasint, vaslat, and vasmed
Knee flexors bflh, bfsh, gaslat, gasmed, grac, sart, semimem, and semiten
Hip muscles addbrev, addlong, addmagDist, addmagIsch, addmagMid, addmagProx, glmax (3bundles), glmed (3 bundles), glmin (3

bundles), iliacus, piri, psoas, and tfl
Ankle muscles edl, ehl, fdl, fhl, perbrev, perlong, soleus, tibant, and tibpost
Knee-hip biarticular muscles bflh, grac, recfem, sart, semimem, and semiten
Knee-ankle biarticular muscles gaslat and gasmed

FIGURE 1 | Probabilistic modeling flowchart. GRF, ground reaction force; IK, inverse kinematics; SO, static optimization; JRF, joint reaction force; KCF, knee
contact force.
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parameter variability for a specific muscle was not available in the
literature, the mean of the reported coefficients of variation for
other muscles was used to sample random input parameters.
Regarding lack of information about the range of variability in
muscle pathway parameters, similar to a previous probabilistic
study (Navacchia et al., 2016), 5 mm was used as the standard
deviation for OIP and VIA distributions.

To assess the overall impact of uncertainty in muscle model
parameters on predicted muscle and knee contact forces, we
performed one general MC simulation with 2000 iterations for
each subject and muscle group, where all the five input
parameters of the included muscles were perturbed. In
addition, to assess the isolated effect of each source of
uncertainty, five individual MC simulations each with 500
iterations were performed where only a single muscle
parameter was perturbed at a time. The number of iterations
was chosen based on convergence at approximately 1,600 and 350
simulations during early model testing. Here, similar to previous
probabilistic musculoskeletal modeling studies (Valente et al.,
2014; Myers et al., 2015), convergence of the Monte Carlo
simulations was ensured when adding 10% more iterations
resulted in less than 1% change in the mean confidence bound
of the outcome KCF. In order to ensure that convergence could be
reasonably reached for all models within the analysis pipeline,
higher values of 2000 and 500 iterations were chosen. During
post-processing, all simulations were checked and confirmed that
convergence had indeed been reached within these provided
analysis conditions. As a result, the designed MC had a total
number of 189,000 iterations.

For each subject, skin marker trajectory and GRF data of a
single representative squat trial were input to the standard
OpenSim tools. Inverse kinematics (IK), static optimization
(SO), and joint reaction force (JRF) analysis tools were used to
calculate muscle activation and total KCFs in the baseline as well
as in the perturbed models by minimizing the sum of the squared
muscle activations. To assess the influence of using more
simplified muscle models, baseline model simulations were
repeated without muscle–tendon force–length characteristics in
the static optimization tool.

The measured EMG signals were processed within MATLAB
(R2017b, MathWorks, United States) where the raw signal was
bandpass filtered (fourth order Butterworth, lowpass 10 Hz, and
highpass 300 Hz), offset corrected, rectified, and finally lowpass
filtered using a moving average filter. The maximum activation
value recorded across all trials of all activities performed for each
subject was used to normalize the processed EMG signals.
Regarding measurement errors/artefacts and uncertainty
introduced by normalization technique, EMG signals were
only used for qualitative validation of the muscle activation
patterns estimated by the baseline models. In addition, the
5th–95th percentile range of the muscle activation outputs was
used to understand how model parameter uncertainty influenced
muscle redundancy solutions. The calculated 5th–95th percentile
range of the KCF error distributions obtained from general MC
was compared between different muscle groups to identify the
muscle group with the highest contribution toward the overall
KCF uncertainty. In addition, for each muscle group, the ratio

between 5th–95th percentile range of individual and general MC
outputs was calculated to assess the relative contribution of each
muscle parameter to the overall uncertainty observed in the
KCFs. Finally, perturbed models with the least root mean
squared error (RMSE) between predicted and measured KCFs
were selected to understand whether subject-specific
measurement of all muscle parameters can guarantee fully
accurate KCF estimates when squat activity is simulated using
generic models.

RESULTS

Activation patterns of the knee extensor muscles predicted by the
baseline models displayed similar trends to the measured EMG
signals, especially during the descending phase of the squat
(Figure 2). The flexion-dependent increase in EMG patterns
of the rectus femoris and vastii was also present in the
simulation outcomes. However, while the simulation results
showed minimal activation of almost all muscles at the end of
the squat cycle, the measured EMG signals indicated some
residual co-contraction of the extensor and flexor muscles.
The estimated muscle activation for the biceps femoris long
head displayed a distinct peak at deep knee flexion, where the
EMG signals showed minimal activation of this muscle. The
models predicted very minimal activation of the gastrocnemii
throughout the entire squat cycle, which was also observed in the
EMG signals. However in some subjects, EMG sensors measured
a relatively high activation in these muscles at the beginning or
end of the activity cycle.

Simultaneous perturbation of the MIF, PEN, TSL, OIP, and
VIA parameters of the lower limb muscles resulted in variations
of up to 80% in the activation levels of the rectus femoris, vastus
medialis, and biceps femoris long head, as well as up to 50%
variation in activation of the vastus lateralis and
semimembranosus (Figure 2). These variations were generally
subject-specific and flexion-dependent. However, the impact of
uncertainty in input parameters on the activation of tibialis
anterior and gastrocnemii muscles was generally very small
(Figure 2).

As required to balance the external knee moment, predicted
muscle forces from the baseline models generally showed the
greatest forces in the knee extensor muscles (Figure 3). For
example, vastus lateralis force reached 1.8–2.5 BW at the
instance of deepest squat. However, antagonist forces were
also predicted in the biarticular knee flexors to generate the
necessary hip and ankle moments (Figure 4). Here, the
greatest force in the knee flexors was about 0.6 BW generated
by the biceps femoris long head. Interestingly, forces in the vastus
muscles were clearly flexion-dependent, while other knee muscles
showed subject-specific force patterns. During the flexion phase
of squat, force in the gastrocnemius muscles exhibited a rapid
decline, directly after knee flexion was initiated, followed by a
gradual decrease with increasing knee flexion angle (Figure 4).
During the extension phase, this pattern was reversed.

Simultaneous perturbation of the input parameters of all lower
limb muscles resulted in considerable variations in the estimated
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FIGURE 2 | In vivo measured EMG (dotted lines) vs. predicted muscle activation levels for selected lower limb muscles during the studied squat trials. Solid lines
represent average (baseline) activation patterns obtained from baseline models, whereas shaded areas display 5th–95th percentile range of the muscle activations
obtained from general Monte Carlo simulations. The downward and upward arrows represent the descending and ascending phases of the squat activity.
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muscle forces (Figures 3, 4 and Supplementary Figures S1, S2).
These variations were generally subject-specific (e.g., 3.4 BW
variation in vastus lateralis force for K2L compared with 2.2 BW
for K8L, both values occurring at deepest squat) and more
pronounced at larger knee flexion angles.

Baseline simulations showed relatively large inter-subject
variability in KCF estimates, with peak forces ranging from 3 to
5 times body weight. However, the KCFs showed a consistent
flexion-dependent pattern across the studied subjects. Simulation
error exhibited a similar flexion-dependent trend with the largest
errors of up to 100% occurring at deepest squat when compared to
the in vivo measured forces (Figure 5). Using simplified muscle
models (no muscle force-length characteristics) resulted in a general
increase in KCF estimates (up to 50% BW change in the KCF
predictions of the baseline OpenSim models) and up to 50% change
in the corresponding simulation errors (Supplementary Figure S3).

The MC simulations revealed that uncertainty in the lower
limbmuscle parameters can result in considerable variation of the
KCF, especially at larger knee flexion angles (e.g., 2.1 BW at 88°

knee flexion for K5R). Similarly, the KCF simulation error was
greatly influenced by the input uncertainty and showed large
variation at deep knee flexion that could explain up to 70% of the
simulation error (Figure 5). Here, the knee flexor muscles showed
the highest contribution (50–100%) to the overall KCF

uncertainty at small flexion angles, whereas knee extensors
were the main contributors (70–80%) at larger flexion angles
(Figure 6). Variation of the hip muscle parameters had a very
small impact until around 50° knee flexion but became more
influential thereafter. Ankle muscles had a considerable
contribution toward the overall uncertainty when the knee was
close to full extension; however, their influence declined with
increasing knee flexion angle.

Among the studied parameters, MIF and PEN were the most
and least influential factors, explaining around 70% and 10% of
the overall uncertainty (Figure 7; Table 2). Variability of the TSL
had a considerable impact on the KCF estimates until around 50°

knee flexion, but its influence declined thereafter. Interestingly,
the contribution of the VIA parameter toward the overall KCF
uncertainty was almost linearly dependent on the knee flexion
angle, with around 60% contribution at 90° knee flexion. Here,
perturbation of the VIA of the knee extensor muscles introduced
up to 15 mm variation in the muscle moment arms
(Supplementary Figure S4) that consequently resulted in
around 1.2BW variation in the KCF estimates (also explaining
up to 40% of the simulation error, Supplementary Figure S5).
Similar to MIF and PEN, variability induced by OIP variation
remained consistent over the entire range of knee flexion,
explaining about 35% of the overall KCF variability.

FIGURE 3 | Estimated forces in the knee extensor muscles obtained from the baseline musculoskeletal models (solid lines) and 5th–95th percentile range of the
general Monte Carlo simulation outputs (shaded area) for the studied squat trials.
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Perturbed models with the lowest RMSE of the simulation
results showed the greatest improvements in the KCF predictions
(27% decrease in average RMSE, Supplementary Table S2 and
Figure S6). However, these improvements were mostly
highlighted at larger flexion angles where baseline model
errors of up to 100% were decreased to less than 10% for
models with optimized muscle parameters reported in
Supplementary Table S3–S8. It should be noted, however,
that even in these models with minimal KCF RMSE over the
complete squat cycle, KCF predictions were not substantially
better than those obtained from baseline models at the beginning
and end of the cycle. Regarding the discrepancy between the
estimated muscle activation and measured EMG signals
(Figure 2), errors at the start and end of the squat cycle
mainly originated from the inability of the static optimization
method to account for the observed muscle co-contractions.

DISCUSSION

This study assessed the influence of muscle model parameter
uncertainty on simulation predictions of a generic
musculoskeletal model used to estimate KCFs in six

instrumented TKA subjects performing a body-weight squat.
The results indicate uncertainties in model parameters
propagated through the simulation workflow, resulting in a
significant impact on the muscle and knee joint contact force
predictions. Simultaneous variation of the muscle force-length
and geometric pathway parameters of the lower limb muscles
resulted in more than 2 BW variations in the KCF and 70%
variation in the modeling error. We also found that the
contribution of different muscle groups and input parameters
toward the overall uncertainty in the KCF outcomemay vary over
the range of knee flexion angle. These results indicate that, to
reduce uncertainty in the predicted KCFs, subject-specific MIF
and VIA of the lower limb muscles in generic models must be
determined through measurement or calibration, especially when
activities with larger flexion angles are considered.

Similar to the in vivo measured tibiofemoral forces, KCFs
predicted by the baseline models indicated flexion-dependent
patterns, with peaks occurring at the largest flexion angles during
squat. While at small flexion angles, KCFs were both over- and
under-predicted by the baseline models, at larger knee flexion
angles, model estimates were substantially greater than the
measured outputs. Other studies that used the CAMS-knee
data sets have reported similar KCF errors obtained not only

FIGURE 4 | Estimated forces in the knee flexor muscles obtained from the baseline musculoskeletal models (solid lines) and 5th–95th percentile range of the
general Monte Carlo simulation outputs (shaded area) for the studied squat trials.
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FIGURE 5 | (A) In vivo measured (dotted lines) vs. predicted knee contact forces (solid lines) for the studied squat trials. (B) Simulation errors of the baseline
musculoskeletal models. (C) Mean (solid lines) and 5th–95th percentile range (shaded area) of the knee contact force obtained from general Monte Carlo simulation
outputs. (D) Mean (solid lines) and 5th–95th percentile range (shaded area) of the modeling error calculated from general Monte Carlo simulations.

FIGURE 6 | Contribution of different muscle groups toward the overall variability in KCF estimates. Solid lines represent average contributions
obtained from the general Monte Carlo analysis with a total number of 72,000 joint reaction force simulations (2000 iterations per subject and muscle
group). KH (Knee-Hip) and KA (Knee-Ankle).
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from the same generic model used in the current study but also
when using a different generic model (Gait 2,392) (Schellenberg
et al., 2018; Imani Nejad et al., 2020). In an another modeling
study (Ding et al., 2016), when KCF estimates from squat
simulation were compared against the in vivo data reported in
the sixth Grand Challenge Competition (Fregly et al., 2012),
errors of up to 100% BWwere identified. van Rossom et al. (2018)
used a six DoF knee model integrated in a full body
musculoskeletal model to estimate KCFs in 15 young healthy
subjects performing squats. They found an average maximum
KCF of around 4 times BW, which is comparable with the results
reported by Shelburne and Pandy (2002), who used a simpler
musculoskeletal model. Despite using a different generic model,
the results of our baseline model simulations concur well with
those reported from these aforementioned studies. It is important
to note, however, that the majority of predictions presented to
date are generally higher than the tibiofemoral forces measured in
living subjects performing squat (2.2-3BW, (Mundermann et al.,

2008; Fregly et al., 2012; Trepczynski et al., 2012; Bergmann et al.,
2014; Mizu-uchi et al., 2015; Catelli et al., 2019)).

We found varying contributions between the studied muscle
groups toward the overall uncertainty in KCF estimates. Here, the
knee flexor muscles played a greater role at lower flexion angles,
while knee extensors became considerably more influential at
larger flexion angles (Figure 6). We also found a slightly higher
contribution of the knee extensor muscles during the extension
phase of the squat compared with the flexion phase. These
findings can be partially explained by the different activation
patterns of the leg muscles during squat. Escamilla et al. (2001)
measured EMG patterns of different muscle groups in 10 subjects
and found that the peak quadriceps activity occurs at 80–90° knee
flexion and that the activity is 25–50% greater in the knee
extension phase. Conversely, knee flexor muscles are more
active at smaller flexion angles during squat. In particular, at
the beginning of the flexion phase, the biceps femoris,
gastrocnemius, and semitendinosus all act together to initiate
flexion of the knee (Robertson et al., 2008). Although knee flexor
muscles remain less active after their initial burst (Wilk et al.,
1996; Isear et al., 1997), biceps femoris long head,
semimembranosus, and semitendinosus continue lengthening
and thus apply a considerable passive force until around 60°

flexion (Sinclair et al., 2017). From 60° to 90°, the hamstring
muscles remain nearly isometric and minimally activated (Wilk
et al., 1996; Isear et al., 1997; Sinclair et al., 2017). This can explain
our results indicating a decline in contribution of knee flexors
toward uncertainty in the KCF after 60° knee flexion. The
increasing contribution of the hip muscles after around 50°

knee flexion is likely due to the increases in hip moment
magnitudes (in all 3 DoF) and increased inaccuracies in

FIGURE 7 | Contribution of different muscle parameters toward the overall variability in KCF estimates. Solid lines represent average contribution factors obtained
from the general and individual MCs with a total number of 24,000 JRF simulations (4,000 iterations per subject). MIF, maximum isometric force; TSL, tendon slack
length; PEN, pennation angle; OIP, origin and insertion point; VIA, VIA points.

TABLE 2 | Contribution factor (in percent) of the input parameters of the studied
muscle groups toward the overall variability in the knee contact force
estimates at deepest knee flexion angle during squat.

MIF TSL PEN OIP VIA

Lower limb muscles 66 30 9 40 61
Knee extensors 36 19 8 33 52
Knee flexors 31 22 4 18 26
Hip muscles 49 27 8 31 25
Knee-hip biarticular muscles 26 27 2 14 21
Ankle muscles 0 0 0 0 0
Knee-ankle biarticular muscles 0 0 0 0 0
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muscle pathway representations and resulting moment arms of
these muscles.

MIF was found to be the most influential parameter on the
resultant KCF throughout the entire range of knee flexion
(Figure 7), which concurs with findings of previous
probabilistic studies performed on level walking (Navacchia
et al., 2016; Zuk et al., 2018). However, it should be mentioned
that, due to the nature of SO, changing the MIF of all muscles
surrounding the joint by the same amount (e.g., 30%) is unlikely
to greatly alter the KCF estimates. Regarding the substantial
inter-subject variability of MIF of the lower limb muscles
(Friederich and Brand, 1990; Ward et al., 2009; Yucesoy
et al., 2010; Bakenecker et al., 2020; Montefiori et al., 2020),
using the baseline values from generic models may result in
sizable KCF errors. Medical imaging techniques (e.g., MR and
ultrasound imaging) and isokinetic dynamometers can be used
to estimate subject-specific MIF of major muscle groups
(Maganaris et al., 2001; Correa and Pandy, 2011; Ivanovic
and Dopsaj, 2013; Kainz et al., 2018; Higa et al., 2019).
Although, these methods have limited accuracies and are not
applicable to all individual muscles, subject-specific
determination of MIF inputs for major muscle groups seems
to be able to considerably reduce uncertainty in KCF estimates
of generic musculoskeletal models.

After MIF, VIA showed the largest impact on KCF
predictions (Figure 7). Variation of the muscle VIA
influences the muscle moment arm and thereby the
recruitment strategy selected by the static optimization
approach to balance the external joint moment. In the
current study, variation in VIA was found to have a flexion-
dependent contribution toward the overall KCF variability,
with a maximum contribution of around 70% at deepest squat.
Using a global probabilistic approach, Navacchia et al. (2016)
found that the uncertainty in VIA can explain around 50% of
the overall variability in the estimated KCFs for level walking.
However, they did not provide details on how VIA
contribution changes over the range of knee flexion. The
large contribution of VIA uncertainty in our study is due to
the high range of loaded knee flexion during squat, whereas the
flexion-dependent pattern is likely to be associated with the
decreased accuracy in muscle pathway representation in
generic models. Musculoskeletal models have been mainly
developed to assess walking tasks, and hence their muscle
moment arms are validated for a small range of knee and hip
flexion (Delp et al., 1990; Arnold et al., 2010; Rajagopal et al.,
2016). Therefore, as the knee flexion angle increases, variation
of the VIA points of the highly loaded muscles (mainly knee
extensors) has a more highlighted effect on the KCF output.
This is not limited to the knee muscles. For example, variation
of the VIA of the hip muscles (mainly hip adductors) can
change the entire force distribution between the hip muscles,
which consequently affects the KCF due to the changes
induced in biarticular muscle forces. Regarding the
increasing contribution of VIA and extensor muscles with
increasing knee flexion angle, the observed flexion-dependent
errors in our baseline simulations most likely originate from
inaccurate representation of the knee extensor muscle

pathways in the scaled generic models. Our results,
therefore, highlight the importance of subject-specific
modeling of the muscle pathway geometry when activities
with large knee flexions are investigated using generic
musculoskeletal models. To reduce uncertainty in muscle
moment arms, more accurate VIA pathways can be
obtained from MRI images (Blemker et al., 2007; Scheys
et al., 2008); however, implementation of these parameters
in the model necessitates the use of simplified wrapping
objects. As a result, even personalized models have an
inherent uncertainty in their muscle geometry
representation. Moreover, other sources of inter-subject
variability such as bone geometry (e.g., femoral anteversion
angle or tibial torsion) may also influence the muscle
attachment points and pathway geometry, thereby
impacting the predicted KCFs (Kainz et al., 2020; Modenese
et al., 2021).

Our data suggest that parameters with low impacts can be
directly taken from the generic model (or scaled based on
subject’s anthropometry). The pennation angle of the muscle
fibers (PEN) is a clear example of such a parameter, considering
its relatively small impact on the KCF estimates (Figure 7, also
reported by Navacchia et al. (2016)). For the studied squat cycles,
TSL had a considerable impact on KCF variability, especially
between 20° and 50° knee flexion. The large sensitivity of
predicted KCFs to uncertainty in TSL has been also reported
in previous studies on level walking (Myers et al., 2015; Carbone
et al., 2016; Navacchia et al., 2016). However, plausibly due to the
very large ±20% range of variation of the TSL (compared to 2–9%
used in the current study), Carbone and co-workers found TSL to
be more influential than MIF in prediction of the muscle forces.
Regarding technical challenges in subject-specific measurement
of TSL in living subjects, the baseline values from the generic
models are either directly used or adjusted such that the
differences between experimental and model-based joint
moments is minimized (Van Campen et al., 2014; Heinen
et al., 2019). It is also possible to ignore the force-length
characteristics of the muscle-tendon units in the static
optimization procedure. This approach excludes the role of the
tendon slack length and optimal fiber length, while the maximum
isometric force and muscle pathway geometry (which determines
the muscle moment arm) remain influential. In the current study
ignoring muscle force–length relationships did not play a
dominant role in the knee contact force estimates; however, it
did result in a general increase in KCF estimates and changes of
up to 50% in simulation error (Supplementary Figure S3).
Similar results were reported when muscle models were
simplified during KCF estimation in level walking simulations
(Modenese et al., 2018). Therefore, inclusion of force-length
characteristics of the muscles in static optimization seems to
be necessary in order to reduce uncertainty in modeling
outcomes. Hence, a probabilistic modeling approach, as used
in the current study, can provide an estimate of the range of
possible errors that might originate from TSL uncertainty.
Nevertheless, a complete understanding of the real influence of
PEN and TSL on the model outcomes is limited by the 1D
representation of the muscles in the selected musculoskeletal
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model. Therefore, volumetric modeling of muscles (Murai et al.,
2016; Modenese and Kohout, 2020) may better clarify interaction
between uncertainty in muscle parameters and variation in the
joint contact force estimates, but such modeling approaches are
extremely expensive and technically challenging.

Our results indicate that uncertainty in muscle parameters
cannot completely explain KCF errors when generic models are
used to simulate activities involving high knee joint flexion
(Supplementary Table S2 and Figure S6). As a result,
considerable errors, especially at small flexion angles, can still
be expected even with subject-specific muscle parameters. A
comparison between the predicted muscle activation and
measured EMG signals (Figure 2) confirms the inability of
utilized static optimization technique to account for co-
contraction of the flexor and extensor muscles at the
beginning and end of the squat cycle. Here, it is entirely
plausible that subjects change neuromuscular control from
stability and balance during standing to a more economical/
preservation mechanism to avoid muscle overloading and/or
damage during higher loading scenarios. Such control
programs might nicely be accounted for through adapting the
cost-function within the SO to account for, for example, muscle
co-contractions. Thresholds or optimal approaches to implement
and validate such novel methods would, however, need to be fully
verified in future investigations.

Several limitations need to be considered when interpreting
the results of this study. First, we chose the generic model
developed by Rajagopal et al. (2016) because it has been
widely used to assess KCFs during different activities. It is
likely that uncertainty in input parameters may propagate
differently into the outcomes of other generic models with
different numbers of muscles and joint DoFs (Cleather and
Bull, 2011; Kainz et al., 2016). Moreover, while CAMS-Knee
data sets provide access to the fluoroscopically measured
tibiofemoral implant kinematics, lack of subject-specific
patellofemoral kinematics and bone geometries precluded
prescription of the tibiofemoral kinematics within the IK
process. As a result, similar to many other studies in the field,
the model joints were driven by skin marker trajectories, and their
kinematics may, therefore, differ from the subject-specific joint
movements. In addition, while a large number of factors may
affect the accuracy of musculoskeletal modeling knee contact
force predictions, we only perturbed the muscle parameters in the
selected generic musculoskeletal model. Although inclusion of
other sources of uncertainty (e.g., skin marker location and body
segment parameters) may also change the predicted results,
previous probabilistic simulations reported no major influence
of such factors (Valente et al., 2014; Myers et al., 2015; Navacchia
et al., 2016). It is also important to mention that our probabilistic
approach did not account for inter-subject variability of bone
geometry. Such variations can impact the 3D pathways of the
muscles and thereby the joint contact force estimation (Kainz
et al., 2020; Modenese et al., 2021). More importantly, we only
used SO to solve the muscle redundancy problem through
minimizing the sum of the squared muscle activation levels. It
is known that different optimization approaches may lead to
different modeling outcomes (Li et al., 1998; Mokhtarzadeh et al.,

2014). In addition, the unknown level of antagonistic muscle co-
contraction (Trepczynski et al., 2018) and inability of the routine
muscle optimization approaches to accurately predict such
contributions (Mokhtarzadeh et al., 2014) may also hinder a
clear understanding of uncertainty propagation in
musculoskeletal modeling. Moreover, the assumed
distributions for the uncertain muscle parameters also
influence the variability in the predicted KCF, and since the
range of variation in input parameters for some muscles was
missing in the literature, the average of the reported values for
other muscles was used to generate random inputs for the MC
simulations. Finally, we assessed KCFs during squat cycles with a
limited range of flexion performed by only six TKA subjects.
Uncertainty propagation through the modeling framework may
be different at larger knee flexion angles during squats performed
by young healthy population.

CONCLUSION

Personalization of musculoskeletal models remains technically and
financially challenging. This study provides a more complete
understanding of the impact of uncertainty in the input
parameters on the estimated KCFs and can help to identify the
most influential parameters that need to be accurately measured and
implemented. The results suggest that attention should be paid to the
subject-specific measurement of MIF and VIA in order to ensure
errors in musculoskeletal modeling remain minimal. In addition,
adaptive muscle optimization techniques that enable accurate
prediction of the muscle co-contractions at the beginning and
end of the squat cycle might well present improvements in KCF
prediction deficits revealed in this study.
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