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An enormous challenge in the post-genome era is to annotate and resolve the
consequences of genetic variation on diverse phenotypes. The genome-wide
association study (GWAS) is a well-known method to identify potential genetic loci for
complex traits from huge genetic variations, following which it is crucial to identify expression
quantitative trait loci (eQTL). However, the conventional eQTLmethods usually disregard the
systematical role of single-nucleotide polymorphisms (SNPs) or genes, thereby overlooking
many network-associated phenotypic determinates. Such a problem motivates us to
recognize the network-based quantitative trait loci (QTL), i.e., network QTL (nQTL),
which is to detect the cascade association as genotype→ network→ phenotype rather
than conventional genotype→ expression→ phenotype in eQTL. Specifically, we develop
the nQTL framework on the theory and approach of single-sample networks, which can
identify not only network traits (e.g., the gene subnetwork associated with genotype) for
analyzing complex biological processes but also network signatures (e.g., the interactive
gene biomarker candidates screened from network traits) for characterizing targeted
phenotype and corresponding subtypes. Our results show that the nQTL framework can
efficiently capture associations between SNPs and network traits (i.e., edge traits) in various
simulated data scenarios, compared with traditional eQTL methods. Furthermore, we have
carried out nQTL analysis on diverse biological and biomedical datasets. Our analysis is
effective in detecting network traits for various biological problems and can discover many
network signatures for discriminating phenotypes, which can help interpret the influence of
nQTL on disease subtyping, disease prognosis, drug response, and pathogen factor
association. Particularly, in contrast to the conventional approaches, the nQTL

Edited by:
Lei Deng,

Central South University, China

Reviewed by:
Jianxin Wang,

Central South University, China
Bingqiang Liu,

Shandong University, China

*Correspondence:
Tao Zeng

zengtao@sibs.ac.cn
Luonan Chen

lnchen@sibs.ac.cn

Specialty section:
This article was submitted to

Molecular and Cellular Pathology,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 04 June 2021
Accepted: 13 December 2021
Published: 26 January 2022

Citation:
Yuan K, Zeng T and Chen L (2022)

Interpreting Functional Impact of
Genetic Variations by Network QTL for

Genotype–Phenotype
Association Study.

Front. Cell Dev. Biol. 9:720321.
doi: 10.3389/fcell.2021.720321

Abbreviations: CCLE, Cancer Cell Line Encyclopedia; eQTL, expression quantitative trait loci; GWAS, genome-wide asso-
ciation study; nQTL, network quantitative trait loci; NSCLC, non-small-cell lung cancer; PBMC, peripheral blood mononuclear
cell; PLSDA, partial least squares discriminant analysis; PPI, protein–protein interaction; SCLC, small-cell lung cancer; SNP,
single-nucleotide polymorphisms; SSN, single-sample network; TF, transcriptional factor.

Frontiers in Cell and Developmental Biology | www.frontiersin.org January 2022 | Volume 9 | Article 7203211

ORIGINAL RESEARCH
published: 26 January 2022

doi: 10.3389/fcell.2021.720321

http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2021.720321&domain=pdf&date_stamp=2022-01-26
https://www.frontiersin.org/articles/10.3389/fcell.2021.720321/full
https://www.frontiersin.org/articles/10.3389/fcell.2021.720321/full
https://www.frontiersin.org/articles/10.3389/fcell.2021.720321/full
https://www.frontiersin.org/articles/10.3389/fcell.2021.720321/full
http://creativecommons.org/licenses/by/4.0/
mailto:zengtao@sibs.ac.cn
mailto:lnchen@sibs.ac.cn
https://doi.org/10.3389/fcell.2021.720321
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2021.720321


framework could also identify many network traits from human bulk expression data,
validated by matched single-cell RNA-seq data in an independent or unsupervised
manner. All these results strongly support that nQTL and its detection framework can
simultaneously explore the global genotype–network–phenotype associations and the
underlying network traits or network signatures with functional impact and importance.

Keywords: genetic variation, expression quantitative trait loci, network quantitative trait loci, data integration,
single-sample network, single cell, network trait, network signature

INTRODUCTION

An enormous challenge in the post-genome era is to annotate and
resolve the consequences of diverse genetic variations (Lynch and
Hsiao, 2019; Strober et al., 2019; Young et al., 2019), particularly
within the context of human diseases (Gibbs et al., 2010; Liang
et al., 2013; Zeggini et al., 2019). The genome-wide association
study (GWAS) is a well-known method to identify potential
genetic loci for complex diseases from a large number of
genetic variations (Gamazon et al., 2010); however, the target
genes and underlying mechanisms remain massively unknown
due to absent functional information for the vast majority of loci
(Zhu et al., 2016; Mason et al., 2018). As a crucial mechanism of
genetic variants that affect gene expression (Kang et al., 2012;
Peters et al., 2016; Strunz et al., 2018), expression quantitative trait
loci (eQTL) indicate genomic loci that contribute to variations in
gene expression levels, which reveals the connection between
single-nucleotide polymorphisms (SNPs) and genes on
functions rather than on sequences (Li et al., 2016), supplying
detailed functional explanations of GWAS outcomes (Michaelson
et al., 2009; Holloway et al., 2011; Peterson et al., 2016; Joehanes
et al., 2017; Son et al., 2017; Guo et al., 2018).

To date, the eQTL method can be carried out across different
genetic populations (Chen et al., 2020) in a cell-type-specific
manner (Westra et al., 2015; Kasela et al., 2017; Vuckovic et al.,
2020), which can generate specificmolecular hypotheses (Wu et al.,
2008; Thibodeau et al., 2015), e.g., the lineage-specific regulators
(Liu et al., 2015; O’Brien et al., 2018) or additional pathway
members (Kabakchiev and Silverberg, 2013; Zhang et al., 2018).
However, the efficiency issues of eQTL methods are still widely
focused in many methodology studies, such as how to illuminate
the full structure of the eQTL data (Huang et al., 2009); how to
distinguish true causal polymorphisms or causal factors (Suthram
et al., 2008; Lee et al., 2009; Chipman and Singh, 2011; Wang and
Zhang, 2011); how to implement multiple-comparison adjustment
(Chen et al., 2008) or confounding factor removal (Ju et al., 2017;
Yuan et al., 2017); how to detect group-wise and individual
associations between SNPs and expression traits (Cheng et al.,
2015; 2016); and how to calculate fast for the computationally
intensive part of the eQTL identification algorithm (Shabalin,
2012). Particularly, an urgent task nowadays is to capture the
functional impact of detected eQTLs. Although many of the
conventional eQTL methods tend to use the network concept
or model to interpret the biological or biomedical significance of
their discovery (Sun et al., 2007; Verbeke et al., 2013; Cheng et al.,
2014; Ho et al., 2014; Zhang and Kim, 2014; De Maeyer et al.,
2016), most of them derive the associations between SNP and gene

groups rather than between SNP and gene-pair/edge groups
(networks); i.e., they usually disregard the systematical role of
those discovered SNPs or genes, thereby overlooking many
network-associated phenotypic determinates.

Such a problem motivates us to investigate network QTL
(nQTL), which indicates the cascade association of
genotype→ network→ phenotype rather than traditional
genotype→ expression→ phenotype in eQTL. Of note,
conventional SNP–gene–gene triplets (Fraser et al., 2010;
Budach et al., 2016) would directly contain two SNP–gene
pairs as eQTLs. By contrast, nQTL consists of associated
genotype on the SNP variant and network on gene co-
expression. Several recent works have combined the eQTL and
gene co-expression (module) (Kugler et al., 2013; Saha et al., 2017;
Kolberg et al., 2020; Cui et al., 2021). Dissimilar to them, the
SNP–gene involved in nQTL is not strictly limited to eQTL; thus,
the identification of nQTL would be more general to model the
genotype–phenotype association on the gene network level,
which might be disregarded on the gene level.

In this work, we propose a new nQTL analysis framework to
study the associations from genotypes to networks and further to
phenotypes at a system level (Figure 1A). The first stage is to convert
the transcriptome data of individual samples from genes’ expression
data into gene-pairs’ correlation-like data based on the single-sample
network (SSN) theory and method (Zhang et al., 2014; Hu et al.,
2018) (see Figure 1B and step 1 of the nQTL framework in
Methods); then the second stage is to apply the MatrixEQTL
(Shabalin, 2012) approach to capture the edge/network traits,
i.e., associations between SNPs and edges/gene-pairs across
samples (see Figure 1C and steps (ii) and (iii) of the nQTL
framework in Methods), in contrast with expression/gene traits
identified by conventional eQTL methods; the third stage is to
extract the edge/network signatures (i.e., the network signature
generally includes a set of edge signatures where one edge
signature is an edge/gene-pair corresponding to network traits),
anchoring with hot SNPs (see Figure 1D and steps (iv) and (v) of the
nQTL framework in Methods); in particular, an edge trait (a gene-
pair trait) of nQTL in a specific sample includes additional
association information from other samples (same type or
phenotype), different from traditional co-expression gene-pair
(with the information of only this specific sample) due to our
edge-like correlation scheme. And the last stage is to infer the
links/associations between network signatures and targeted
(interested) phenotypes/factors, which construct the complete
cascade associations of genotype→ network→ phenotype (see
Figure 1E and steps (vi) and (vii) of the nQTL framework in
Methods). The simulation studies demonstrate the efficiency of the
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FIGURE 1 | Flow chart of the nQTL framework. It includes upstream nQTL identification and downstream biological and biomedical significance analyses of nQTL
gene, network, and module. (A) Concept of nQTL compared to conventional eQTL. (B) Organization of input data for eQTL and nQTL analyses. (C) Computational
model for eQTL and nQTL analyses. (D) The output of nQTL analysis as a network trait, which is different from the conventional expression/gene trait of eQTL analysis. (E)
Downstream output of network signatures in the nQTL analysis framework, including nQTL module identification, biological enrichment of module, correlation
between module and relevant factors, network structure of module, discriminative model, and Cox model based on the nQTL module.
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nQTL framework to capture network traits, compared with
traditional eQTL methods. And several case studies by the nQTL
framework have been carried out for various real datasets. The first
case study on lung cancer data detected lung-cancer-associated
network signatures, whose efficiency was validated in an
independent survival analysis. The second case study on Cancer
Cell Line Encyclopedia (CCLE) tumor cell line data supports the
efficiency of the nQTL framework again by providing additional
evidence of network signature interpretation on both disease and
drug treatment phenotypes. Importantly, the third case study
on both healthy human bulk and single-cell RNA-seq data
identified immune-associated network traits, network
signatures, and a posteriori targeted phenotypes (e.g.,
inflammatory factors) with the corresponding genotypes at
the single cell level. Collectively, these results show that the
nQTL framework as a novel computational tool can detect the
global genotype–network–phenotype associations, which
reveals the underlying network traits and network
signatures, indicating the significantly functional impacts of
nQTL on biology and biomedicine.

MATERIALS AND METHODS

Edges in nQTL
For nQTL analysis, the input data in concept consists of two data
matrices. One is the sequence variant data matrix (e.g., SNP data of
each sample), and the other one is the network datamatrix (e.g., co-
expression data of individual samples), where a row represents a
gene-pair/edge, a column represents the matched sample as same
as that in the sequence variant data matrix, and every element
represents the co-expression level of one gene-pair/edge in one
sample. Notably, the sample-specific co-expression is a key to
achieve nQTL analysis. Recent studies have supplied a fewmethods
to estimate such network measurements in one sample.
Considering the generality of nQTL analysis, the single-sample
Pearson correlation coefficient (PCC) is adopted in this work by
edge-like transformation (Zeng et al., 2014) and can be viewed as a
correlation-like expression at an individual sample level because
the summation of such information for all single-samples is
actually the PCC in terms of mathematical representation. This
kind of measurement is originally developed to explain the
heterogeneity of cancer samples (Zhang et al., 2014; Yu et al.,
2015; Zhang et al., 2015) and has also been applied in some other
fields recently (Hu et al., 2018; Lu et al., 2019). Given the original
gene expression matrix, the PCC between genes i and j in
population samples can be calculated as follows:

PCC(i, j) � 1
n
∑n
k�1

(xik − μi
σ i

· xjk − μj
σj

) � 1
n
∑n
k�1

eijk

where there are n samples; for sample k, its expressions on genes i
and j are xik and xjk, respectively; the average expression and
variance for gene i (or gene j) on population samples are μi and σi
(or μj and σj), respectively. The strength of each edge is obtained
by transforming the expressions of two genes (i.e., xik and xjk) to
the edge-like correlation of the gene-pair (i.e., eijk) in sample k.

Clearly, as indicated by the above equation, the mean of the edge-
like correlation of a gene-pair in all samples is just the PCC
(i.e., PCC(i, j)) on all n samples, so that this measurement has an
equivalent numerical meaning for any sample. Repeating this
data transformation for candidate gene-pairs (e.g., all matched
gene-pairs in numeric or prior selected gene-pairs in a biological
context), we obtain the network data matrix. Finally,
MatrixEQTL can be applied to infer the association between
SNPs and gene-pairs (i.e., network trait) directly and efficiently.
And as mentioned above, many other alternative sample-specific
network construction methods could be applied in the nQTL
framework (Liu et al., 2016; Yu et al., 2017; Dai et al., 2019; Kuijjer
et al., 2019; Tanaka et al., 2020), although they would hold by
particular mathematical/biological hypothesis different from
conventional QTL analysis. For example, the SSN approach
would associate genotype with sample-specific network
changes due to its different quantifications on Pearson
correlation change of gene-pairs (Liu et al., 2016; Yu et al.,
2017), and the cell-specific network (CSN) approach could
link genotype to nonlinear correlation of gene-pairs on the
basis of mutual information (Dai et al., 2019).

nQTL Framework
Based on our nQTL concept andmodel, the whole nQTL framework
is designed and implemented to carry out the association cascade
analysis among genotype→ network→ phenotype. It includes
several calculation steps (where the front three steps are
identifying nQTL and the remaining steps are evaluating the
biological or biomedical significance corresponding to genes,
networks, and modules involved in nQTL):

(i) Preparing the datasets for nQTL analysis, e.g., genotype
dataset, molecular phenotype dataset, physiological
phenotype dataset, and some optional datasets (e.g.,
covariates). The network (phenotype) dataset, especially,
can be produced from the molecular phenotype dataset
(Figure 1), and it is a new data matrix whose row
represents the gene-pair, column represents the sample,
and matrix element indicates the single-sample co-
expression level of one gene-pair on one sample. As
required in such a study, all types of data should have
values on the same samples; e.g., the samples and their
ID labels should be matched in all datasets;

(ii) Carrying out the nQTL analysis for edge traits as introduced
above, where an edge trait is the significant association
between a SNP and an edge/gene-pair across samples and
an expression/gene trait is the significant association
between a SNP and a gene across samples;

(iii) Filtering the nQTL or eQTL associations (i.e., edge traits or
expression traits) according to hot SNPs and hot gene-pairs/
edges (or hot genes); e.g., the SNPs with significantly more
interactive gene-pairs relative to other SNPs or the gene-pairs
with significantly more interactive SNPs compared with other
gene-pairs are kept in the following analysis (thus, their
associationmatrix would bemore dense than the original one);

(iv) Obtaining the network signatures (e.g., gene/gene-pair
modules) based on their association profiles with SNPs,
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e.g., the so-called nQTL module from hierarchical clustering
on the nQTL association matrix, where a network signature
is a cluster of edges corresponding to their edge traits (an
edge signature is an edge corresponding to its edge trait) and
a gene signature is a gene corresponding to its expression/
gene trait;

(v) Estimating the functional enrichment of each network
signature, e.g., GO or KEGG enrichment;

(vi) Inferring the link/association between network signatures
(e.g., gene-pair co-expression measurements) and
physiological phenotypes (e.g., clinical indices or factors)
by partial least squares discriminant analysis (PLSDA) or
canonical correlation analysis (CCA); for instance, in the
following formula, when we expect to infer the association
between a cluster of gene-pairs and a set of clinical indices
(e.g., several markers), the co-expression data matrix of
gene-pairs (e.g., X) and the phenotypic data matrix of
indices (e.g., Y) on a group of same samples can be
applied to calculate the canonical correlation (e.g.,
cca(X, Y)).

X′ � aTX

Y′ � bTY

cca(X,Y) � max
a,b

cov(X′, Y′)						
D(X′)√ 						

D(Y′)√
(vii) Ranking and selecting the association cascades on

genotype→ network→ phenotype based on significance
of network trait, functional enrichment, and phenotypic
relevance of network signatures together.

Besides, the “guilt-by-association” analysis can be carried out
with nQTL, such as the comparison and combination with results
from conventional eQTL, WGCNA, PCA, etc.

Note that an edge (gene-pair) is represented by its correlation
strength (eijk for genes i and j on sample k), while a gene (node) is
represented by its expression (xik for gene i on sample k) in this paper.

Synthetic Data Production and Method
Assessment
For conventional eQTL analysis, the required data usually consist
of two data matrices. One is the sequence variant data matrix
(e.g., SNP data), where each row represents a SNP, each column
represents a sample, and each element represents the genotype of
one SNP in one sample. The other one is the expression data
matrix (e.g., gene expression data), where one row represents a
gene, one column represents the matched sample as same as that
in the sequence variant data matrix (i.e., matched samples), and
each element represents the expression level of one gene in one
sample.

The general eQTL model of the association between SNPs and
genes (i.e., expression trait) can be calculated as a simple linear
regression or ANOVA. On the one hand, for each gene–SNP pair,
with SNP encoded by the variant frequency, the linear association
between gene expression g and genotype s is modeled as

g � α + β · s + ε , where ε ∈ i.i.d. N(0, σ2)
On the other hand, for each gene–SNP pair, with SNP encoded

by the categorical dominant effect, the ANOVAmodel for a linear
regression between gene expression g and genotype s (e.g., s1 and
s2 are dummy variables) is described as

g � α + β1 · s1 + β2 · s2 + ε, where ε ∈ i.i.d. N(0, σ2)
To effectively solve these models and handle covariate issues,

the MatrixEQTL has been implemented to analyze different types
of eQTL problems (Shabalin, 2012). Of note, in the above two
models, the ε is measured for noise.

We generated eight sets of simulated datasets for identifying
eQTL and nQTL, as supplied in MatrixEQTL (Shabalin, 2012).

For the first four sets of simulated data, the relation between
gene and SNP (i.e., expression trait) is implemented by following
formula:

pop � 0.2prnorm(n)
snps � rnorm(npnss) + pop

ind � snps[, sample(1: nss, ngs)]p(1: ngs)/ngs9/2
gene � rnorm(npngs) + pop + ind

where n is the number of samples, ngs is the number of genes, nss
is the number of SNPs, pop is the common signal in all variables,
and ind is the individual genetic signal to gene expression. We set
the sample number as 100, the gene number as 2,000 and 5,000,
and the SNP number as 2,000 and 200,000. Obviously, there are
four kinds of data combinations from gene and SNP. Of note, in
order to make comparable eQTL evaluation with MatrixEQTL,
we adopted the above data simulation approach as available
through MatrixEQTL.

For the other four sets of synthetic data, SNP and gene data are
generated randomly, and we associate gene-pair data with SNP
(i.e., edge trait) according to the following formula:

gene � rnorm(npngs);
cordata � cor + pop + ind;

where the additional variable cor means the value of gene-pairs.
Then, we set the sample size as 100, the gene and gene-pair
number as (2,000, 1,999*1,000) and (5,000, 4,999*2,500), and the
SNP number as 2,000 and 200,000; again, there are four kinds of
data combinations from gene/gene-pair and SNP.

Data Collection and Organization of Lung
Cancer Dataset
As reported in the original study of Data GSE28571 (Micke et al.,
2011), the surgically treated patients with primary non-small-cell
lung cancer (NSCLC) were selected with fresh frozen NSCLC
tissues, and patients with a history of other cancers or
neoadjuvant treatment were excluded. Array experiments were
performed according to the standard protocols for Affymetrix
GeneChip Mapping 250K Nsp I arrays. In our reanalysis on these
data, we have chosen 97 samples (as listed in Supplementary
Table S1) because they have tested both the matched expression
and SNP data with 261,549 SNPs and 23,322 annotated genes.
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These samples also include short-term (<20 months; n = 52) and
long-term survivors (>58 months; n = 45), which can be used as a
clinical phenotype index. And the protein–protein interaction
(PPI) network from the STRING database was applied to select
gene-pairs for this, and following nQTL analysis on human data,
where we have chosen the gene-pairs whose PPI score is >900.
Thus, three preprocessed data matrices were used for
conventional eQTL and new nQTL analyses. The SNP data S
as a matrix consists of 261,549 rows and 97 columns, and each
element indicates the SNP mutation type or score of one SNP in
one sample. The expression data E consists of 23,322 rows and 97
columns, and each element indicates one gene’s expression level
in one sample. The co-expression data C consists of 147,645 rows
and 97 columns, and each element indicates one gene-pair’s co-
expression level in one sample. Thus, S and E were the inputs of
conventional eQTL analysis; S and C were the inputs of the new
nQTL analysis.

Data Collection and Organization of CCLE
Hematopoietic Data
We collected the CCLE: a compilation of gene expression,
chromosomal copy number, and massively parallel sequencing
data from 947 human cancer cell lines (Barretina et al., 2012).
Coupled with pharmacological profiles for 24 anticancer drugs
across 479 of these cell lines, this collection allowed identification
of genetic, lineage, and gene-expression-based predictors of drug
sensitivity. Genotyping/copy number analysis was performed by
Affymetrix Genome-Wide Human SNP Array 6.0, and
expression analysis used the GeneChip Human Genome U133
Plus 2.0 Array. Eight-point dose–response curves were generated
for 24 anticancer drugs by an automated compound-screening
platform.

We chose the hematopoietic and lymphoid tissue as a case
study of nonsolid tumor. In this CCLE hematopoietic data, we
selected 21,544 gene expression data and 906,600 SNP data for
151 matched samples (as listed in Supplementary Table S1). Of
note, we focused on the nQTL compared to conventional eQTL,
where the expression level of mRNA/protein is proportional to
the quantitative trait and the prior-known gene/protein network
are abundant. Thus, the data of annotated long noncoding RNA
(ncRNA) or micro-RNA in the original CCLE hematopoietic data
were not used in this study. In addition to these eQTLs and
nQTLs in protein-coding genes, the QTLs in ncRNAs would also
be attractive in future work, which could reveal the association
between genotype and regulation of diverse ncRNAs (Ye et al.,
2020).

Data Collection and Organization of the
Human Peripheral Blood Mononuclear Cell
(PBMC) Dataset
The original study focused on the cell-type-specific effects of
genetic variation on genome-wide gene expression, which
generated scRNA-seq data of ~25,000 PBMCs from 45 donors
of the population-based cohort study Lifelines Deep (van der
Wijst et al., 2018). To assure sufficient analysis power, cell types

were merged to a more general classification: CD4+ T cells, CD8+

T cells, NK cells (CD56dim CD16+ and CD56bright CD16+/−),
monocytes (CD14bright CD16– cMonocyte and CD14dim CD16+

ncMonocyte), B cells and DCs (CD1C+ myeloid, mDC, and
plasmacytoid, pDC). In detail, the original study had proposed
the concepts of co-expression QTLs by associating the SNP type
and gene-pair co-expression based on single-cell data (van der
Wijst et al., 2018), which can be thought of as a supervised way to
infer the SNP and gene-pair association. It prepared the gene
expression data of one individual/sample by averaging his/her
single cells’ gene expression, which could be thought of as a
mimic bulk expression of individuals; and it also generated the
gene co-expression data of one individual/sample by calculating
the gene expression correlation of two genes on single cells from
this individual; and then it carried out the eQTL analysis by
combining the SNP vs. individual matrix and mimic bulk
expression vs. individual matrix; it also detected co-expression
QTL through the eQTL model on SNP vs. individual matrix and
co-expression vs. individual matrix. Similar to such a study, in
this work, we carried out eQTL and nQTL analyses, based on the
expression data of CD4+ T cells. Thus, in the 45 individuals, there
are 7,478 genes in the expression matrix and 4,017,251 SNPs in
the genotype matrix.

RESULTS

Assessment of nQTL Framework on
Synthetic Datasets for Gene and Network
Traits
Similar to the simulation experiment used by a conventional
eQTL study (Shabalin, 2012), we generated eight sets of simulated
datasets. The parameter setting includes the following: (1) for the
first four datasets with preset expression traits, the sample size is
100, the gene number is from 2,000 to 5,000, and the SNP number
is from 2,000 to 200,000; (2) for the latter four datasets with preset
edge/network traits, the sample size is 100, the gene and gene-pair
numbers are from (2,000, 1,999*1,000) to (5,000, 4,999*2,500),
and the SNP number is from 2,000 to 200,000.

As known in GWAS, there will be a large deviation at one SNP
site in the QQ-plot, suggesting that the deviation of the observed
value of this SNP site is caused by the genetic effects of this SNP
mutation. With the results shown in the QQ-plot, it is obvious
that the eQTL analysis can find significant SNP–gene associations
in the first four datasets with preset expression/node traits rather
than other datasets with preset edge traits (Figure 2A and
Supplementary Figure S1); the eQTL analysis can find the
SNPs which have a bigger deviation; meanwhile, the nQTL
analysis is comparable in spite of less deviation (Figure 2B
and Supplementary Figure S1). By contrast, the nQTL
analysis can detect significant SNP–(gene-pair) associations in
the latter four datasets with preset edge traits (Figure 2D and
Supplementary Figure S1), but the eQTL analysis only can detect
a limited number of associations (Figure 2C and Supplementary
Figure S1). In further quantitative comparison, the area under
the curve (AUC) measurement was applied to compare the
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method performance, which is an accuracy measurement
considering the identification specificity and sensitivity under
different threshold adoptions. As shown in Figure 2E, on
multiple datasets with preset expression/node traits, the nQTL
analysis has slightly small but comparable AUC values to those of
eQTL (i.e., nonsignificant difference observed, p = 0.3463);
meanwhile, as shown in Figure 2F, on multiple datasets with
preset edge traits, nQTL analysis indeed has larger AUC values
than those of eQTL analysis (i.e., significant difference observed,
p = 0.031). These results on synthetic datasets support the ability
and efficiency of the nQTL framework to detect novel network
traits, in which each edge trait means an association between a
genotype and a gene-pair co-expression (or an edge in network)
and an expression trait (or a gene trait) means an association
between a genotype and a gene expression (or a node in network).

nQTL Framework Identified Network Traits
and Network Signatures Effective for
Phenotype Discrimination and Disease
Prognosis on Lung Cancer
We carried out the nQTL analysis on the public data GSE28571
(Micke et al., 2011) to detect new genotype–phenotype
associations of lung cancer on a network level, with a
comparison of conventional eQTL analysis.

According to the detected eQTLs (Supplementary Table S2)
and nQTLs (Supplementary Table S3) with their QQ-plot
(Figure 3A and Supplementary Figure S2), we found that the
nQTL framework obviously tends to have more significant
discoveries on edge traits. Several extremely significant SNPs,
especially, can be filtered and shown in the Manhattan plot
(Figure 3B and Supplementary Figure S3) by nQTL rather
than eQTL analysis. Although these two methods can
significantly detect similar SNPs and genes (Supplementary

Figure S4), nQTL analysis can provide more alternative
candidates than eQTL analysis. Of note, in this and following
case studies, there is no more additional preprocessing or control
(Micke et al., 2006; Nguyen et al., 2006; Botling et al., 2009; Platig
et al., 2016) on the SNPs involved in nQTL or eQTL, which can
reserve sufficient association information for downstream
network and function analysis.

For the downstream analysis of the nQTL framework, the top-
ranked 1,000 gene-pairs/edges (hot edges) with many SNP
connections (i.e., each gene-pair can associate with more than
330 SNPs) are selected. Their association matrix can be extracted
and clustered as in Figure 3C and Supplementary Figure S5A,
and those edges can be obviously grouped into several network
signatures (i.e., edge/gene-pair clusters in Supplementary Figure
S5B). Many network properties of PPI subnetworks corresponding
to such network signatures (e.g., Supplementary Figures S6 and
S7) indicate that nQTL identification can effectively detect the
SNPs associated with gene networks; by contrast, the gene cluster
based on eQTL analysis would produce lots of small gene groups or
even individual genes, which cannot reflect the biological network
underlying QTL (Supplementary Figure S7). Here, a network
signature is a gene-pair/edge cluster in terms of not their
expressions but their correlations, whereas a gene signature is a
gene in terms of its expression.

Then, according to the enriched biological functions of
network signatures by enrichment analysis (Supplementary
Figure S8), we found that nine network signatures have many
enriched pathways or functions related to lung cancer, and
especially one signature with our nQTL Module 1 (Figure 3D)
is significantly associated with lung cancer. We also can find
pathways in cancer (Takayama et al., 2006), small-cell lung cancer
(Sanchez-Cespedes, 2003), and NSCLC (Breuer et al., 2005),
which support that network signatures accurately detect the
phenotype-associated common functions across samples.

FIGURE 2 | Comparison of eQTL and nQTL identification on synthetic datasets based on expression traits and network traits. (A,B) QQ-plot of eQTL and nQTL,
respectively, on a simulated data with preset expression traits. (C,D) QQ-plot of eQTL and nQTL, respectively, on a simulated data with preset edge traits. (E) AUC
measurement comparison between nQTL and eQTL identifications onmultiple datasets with preset expression traits. (F) AUCmeasurement comparison between nQTL
and eQTL identifications on multiple datasets with preset edge traits.
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Furthermore, some detailed signaling-related functions are also
found, such as the phosphatidylinositol 3′-kinase (PI3K)-Akt
signaling pathway (Hers et al., 2011), which is a key pathway
associated with distinct metabolic phenotype characterized by
low oxidative phosphorylation in small-cell lung cancer (SCLC)
(Tripathi et al., 2017) or tumor angiogenesis in NSCLC (Zhou
et al., 2017); Ras signaling pathway, which has been reported to be
related with the proliferation, migration, and invasion of NSCLC
cells (Levallet et al., 2012; Abdel-Rahman, 2016; Zheng et al.,

2017); and MAPK signaling pathway whose activation would
regulate lung cancer growth (Tang et al., 2016) and promote cell
invasion and metastasis in NSCLC (Levallet et al., 2012). Besides,
we also observed two well-known functions like the p53 signaling
pathway and cell cycle pathway. The most recent studies have
revealed that the suppression of the p53 signaling pathway could
accelerate tumor progression in lung cancer (Hao et al., 2018) and
that the cell cycle pathway is involved in leptomeningeal
metastasis of NSCLC (Fan et al., 2018).

FIGURE 3 | nQTL analysis results from lung cancer dataset. (A) QQ-plot of edge trait on the gene level. (B) Manhattan plot of edge trait on the SNP level. (C)
Network signature from edge/gene-pair clustering. (D) The network structure and function of one network signature. (E) PLSDA of one significant network signature for
subtyping a disease. (F) Survival analysis and validation of one significant network signature.
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Finally, based on the subtypes of lung cancer available in the
original study (e.g., large cell carcinoma, adenocarcinoma, and
squamous cell carcinoma) (Micke et al., 2011), PLSDA can be
executed and visualized on each network signature (Figure 3E
and Supplementary Figure S9), and most network signatures
showed significant phenotype discriminations on different
subtypes. Besides, based on the binary survival data available
in the original study (e.g., two groups of patients with long
survival time or short survival time) (Micke et al., 2011),
network signatures display satisfactory discrimination power
again by PLSDA (Figure 3E, Supplementary Figures S9 and
S10, and Supplementary Table S4). In addition, we also carried
out independent survival analysis by nQTL network signatures’
genes on independent lung cancer datasets from SurvExpress
(Aguirre-Gamboa et al., 2013) (Figure 3F and Supplementary
Figure S10), where all network signatures have p-values less than
0.05. Of note, compared to traditional methods using gene
expression alone (e.g., WGCNA co-expression modules),
nQTL analysis would be more efficient (Supplementary Table
S5), where the nQTL framework has found six modules with a
p-value <1E−10 and three modules with a p-value <1E−20;
meanwhile, WGCNA has found five modules with a p-value
<1E−10 and two modules with a p-value <1E−20. Thus, nQTL
analysis can build functional association cascade as
genotype→ network (module)→ phenotype. Furthermore, the
nQTL framework also displays competitive and robust
performance on distinguishing different cancer subtypes
(Supplementary Figures S11 and S13), because all WGCNA
modules had worse effects on large cell carcinoma identification
(Supplementary Figures S12 and S14), indicating potential
discovery bias of conventional methods. For example, the fifth
WGCNA module can only separate samples from
adenocarcinoma and squamous cell carcinoma but can mix
samples from large cell carcinoma (Supplementary Figure
S12); meanwhile, the AUC of the corresponding PLSDA (e.g.,
large cell carcinoma vs. others) is lower at 0.6284 (Supplementary
Figure S14). Besides, on another large independent survival
analysis on TCGA data (Gao et al., 2013), we have found one
nQTL module with a p-value of 2.03E−03, which is below the
Bonferroni significance threshold when doing 10 tests; by
contrast, no WGCNA modules show such significance
(Supplementary Table S5). Of course, there are indeed many
ways to factorize or cluster expression data, and the additional
benchmark comparison in the future would recover more
characteristics of gene clusters or gene subnetworks associated
with genotype, e.g., nQTL modules.

nQTL Framework Identified Network Traits
and Network Signatures Effective for Drug
Response Phenotype Discrimination and
Interpretation on Cancer Cell Line
In this second case, we carried out nQTL analysis on the public
CCLE dataset (Barretina et al., 2012) to detect new
genotype–phenotype associations in different cancer cell lines
on a network level, and we chose the hematopoietic and lymphoid
tissues as an example of nonsolid tumor to illustrate the results.

According to the detected eQTLs (Supplementary Table S6)
and nQTLs (Supplementary Table S7) with their QQ-plot
(Figure 4A and Supplementary Figure S15), we found that
nQTL analysis obviously tends to have more significant
discoveries on edge traits and concentrate on less genes than
eQTL analysis, although these methods have significant overlap
on the detected SNPs and genes (Figure 4B and Supplementary
Figures S16 and S17).

By the downstream analysis of the nQTL framework on the
hematopoietic and lymphoid data, the top-ranked 1,000 edges
(hot edges) with many SNP connections (more than 2,000) are
selected. Their association matrix can be extracted and clustered
as in Figure 4C and Supplementary Figure S18A, and those
edges can be obviously grouped into several network signatures
(Supplementary Figure S18B). Again, many network properties
of PPI subnetworks corresponding to these network signatures
(e.g., Supplementary Figure S19) indicate that nQTL
identification can effectively detect the SNPs associated with
interacting genes; meanwhile, the gene cluster based on eQTL
analysis would only detect separate or incomplete structures of
biological networks underlying QTL (Supplementary
Figure S19).

Next, considering the enriched biological functions of network
signatures (Supplementary Figure S20), we found they have
similar enriched pathways or functions relevant to lymphoid
cancer and leukemia, and especially the signature Module-1
(Figure 4D) is significantly associated with lymphoid cancer.
We also found pathways in cancer, lymphocyte differentiation,
and lymphocyte migration, which support that network
signatures are able to detect the phenotype-associated shared
functions across samples efficiently. Some detailed signaling-
related functions were also found. The PI3K-Akt signaling
pathway is activated by many types of cellular stimuli or toxic
insults and regulates fundamental cellular functions such as
transcription, translation, proliferation, growth, and survival
(Engelman et al., 2006). The mammalian (mechanistic) target
of rapamycin (mTOR) is a highly conserved serine/threonine
protein kinase, and NPM-ALK induces GC resistance in
lymphoid cells through the activation of the mTOR signaling
pathway (Gu et al., 2008). The tumor necrosis factor (TNF), as a
critical cytokine, can induce a wide range of intracellular signaling
pathways including apoptosis and cell survival as well as
inflammation and immunity (MacEwan, 2002).

Then, based on the binary category of cell lines derived from
disease samples available in the original study (e.g., two groups of
patients with acute leukemia and chronic leukemia (i.e., A vs. C)
or two groups of patients with myelogenous leukemia and
lymphocytic leukemia (i.e., M vs. L)), PLSDA can be executed,
evaluated, and visualized for each network signatures’ association
with phenotypes (Figure 4E and Supplementary Figure S21).
Many network signatures (i.e., correlations between genes)
actually showed significant phenotype discriminations on two
groups of samples (Supplementary Figure S8). Furthermore, we
carried out independent survival analysis for these network
signatures’ genes by using independent data of chronic
lymphocytic leukemia (Ramsay et al., 2013) (Figure 4F and
Supplementary Figure S22), where seven of eight network
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FIGURE 4 | nQTL analysis results from CCLE hematopoietic data. (A)QQ-plot of edge trait on the gene level. (B)Manhattan plot of edge trait on the SNP level. (C)
Edge/network signature from edge/gene-pair clustering. (D) The biological function of one significant network signature. (E) PLSDA of one significant network signature
for two groups of patients withmyelogenous leukemia and lymphocytic leukemia (i.e., M vs. L). (F)Survival analysis and validation of one significant network signature. (G)
CCA of network signatures and drug-target genes. (H) Association among network signature genes and drug-target genes on the STRING network, where nodes
in dark blue and green are two groups of signature genes and nodes in light blue are drug-target genes.
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signatures have p-values less than 0.05 and half of eight modules
are still significant after multiple testing corrections, which
indicates the efficiency of the nQTL framework and its
network signature discovery for disease subtyping and
prognosis potential.

Considering mainly two different hematopoietic and
lymphoid cell lines, we have summarized the differentially
expressed genes between different types of cell lines. We found
that on average only 7% of genes in the nQTL module were
differentially expressed. Thus, cell type would be a partial driver
of the conventional co-expression module; however, the nQTL
approach could discover many new modules relevant to genotype
independent of cell type.

Finally, according to the drug and drug-target information
from the CCLE database, we collected a drug-target gene list:
IGF1R, TUBB1, MDM2, TOP1, EGFR, XIAP, CKD4, ALK, etc.
By CCA, we detected the significant expression associations
among our network signature genes and these drug-target
genes. Interestingly, there are few associations between sole
gene and network signatures; by contrast, the network
signatures tend to associate with a combination of drug-target
genes (Figure 4G). This is also supported by the STRING
subnetwork among network signature genes and drug-target
genes (Figure 4H), where TUBB1, TOP1, and EGFR can
interact with a group of network signature genes enriched in
the functional pathway “Pathways in cancer” and MDM2 and
CKD4 can cooperate with another group of network-neighbor
genes enriched in the functional pathway “Chronic myeloid
leukemia”.

nQTL Framework Identified Network Traits
and Network Signatures Effective for
Healthy Immunity Phenotype Discrimination
on Both Human Bulk and Single-Cell
Transcriptomes
In this third case, we conducted nQTL analysis on scRNA-seq-
induced bulk expression data corresponding to CD4+ T cells (van
der Wijst et al., 2018), and we especially validated our discovered
edge/network traits on the original scRNA-seq data in a
unsupervised manner, which should be more efficient than the
original method “co-expression QTL” (van der Wijst et al., 2018)
when single-cell data are not available. Here, the supervision is
different from that in the conventional classification model.
Although co-expression QTL analysis did not require a priori
selection of specific genes to test, it did require a priori selection of
specific edges by a full scan of significant modifiers of edges. In
other words, the co-expressions of edges are directly calculated
from additional single-cell data, which can be considered as
certain supervised information from external sources. By
contrast, nQTL analysis is able to infer a similar association
between SNPs and the correlated edges on the basis of bulk
expression data, which would be validated by single-cell data
independently. Thus, as summarized and shown in
Supplementary Figure S39, we consider that nQTL analysis
can make association analysis in an unsupervised manner,
different from co-expression QTL analysis.

Of note, different from the disease study with prior-targeted
phenotype, the healthy human data might have many potential
phenotypes of interest. And we could focus on the nQTL analysis
relevant to a post-targeted phenotype (i.e., immune factors or
inflammatory factors), although some significant results might be
relevant to other phenotypes.

Similarly, the obtained eQTLs (Supplementary Table S9),
nQTLs (Supplementary Table S10), and their QQ-plots
(Figure 5A and Supplementary Figure S23) suggest that
nQTL analysis is able to identify more significant discoveries
on edge traits and that nQTL analysis indeed can detect more
phenotype-associated SNPs than eQTL analysis according to the
extremely significant SNPs filtered (Figure 5B and
Supplementary Figure S24). Meanwhile, nQTL analysis can
provide more alternative candidates than eQTL analysis
although these two methods can find significantly overlapping
SNPs and genes (Supplementary Figure S25).

Next, by selecting the top-ranked gene-pairs (hot edges) with
significantly more associations to all SNPs than other edges, the
association matrix can be extracted and clustered (Figure 5C and
Supplementary Figure S26A), based on which those edges/gene-
pairs can be grouped into a few network signatures
(Supplementary Figure S26B). The network properties of PPI
subnetworks induced from nQTL modules corresponding to
these network signatures reveal larger network centralities than
those induced from eQTL analysis (Supplementary Figures S27
and S28). Thus, the nQTL framework can effectively detect the
SNP-associated gene networks, and the network signatures
(Figure 5D) would be more general on annotating biological
functions rather than simply considering network structure. In
accordance with the biological background of the data, we
observed several pathways relevant to immunity, viruses, and
antigens in the biological context of PBMC. Enriched in antigen
processing and presentation pathway, the genes encoding MHC
class II molecules are transcribed according to a strict cell-type-
specific and quantitatively modulated pattern, which is pivotal for
the adaptive immune system by guiding the development and
activation of CD4+ T-helper cells MHC class II molecules (Reith
et al., 2005). And enriched in the autoimmune thyroid disease
pathway, both autoantibodies and thyroid-specific cytotoxic T
lymphocytes (CTLs) have been proposed to be responsible for
autoimmune thyrocyte depletion (Stassi and De Maria, 2002),
and self-reactive CD4+ T lymphocytes (Th) recruit B cells and
CD8+ T cells (CTL) into the thyroid (Tsatsoulis, 2006).

Considering that the enriched biological functions for many
network signatures (Figure 5E and Supplementary Figure S29)
actually show significant relations with viruses, interferons,
antigens, and especially immunity, we collected and used
literature-reported immune factors or inflammatory factors as
a post-targeted phenotype for the following association inference.
These functional factors include IFIT5, IFITM1, IFIT2, IFI6,
ISG20, ISG15, IFI35, IFIT3, and HERC6. By calculating the
CCA between a group of gene-pairs from one network
signature and a group of functional factors (Figure 5F and
Supplementary Figure S30), several network signatures
showed significant relevance with many functional factors,
underlying the onset of the immune system of healthy
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humans. On the other hand, we also carried out survival
analysis by these network signature genes on independent
pan-cancer datasets, assuming the immune-associated
survival risks detectable in our identified network
signatures. On six cancer datasets with survival data from
more than 500 samples (Figure 6, Supplementary Figures

S31–S36, and Supplementary Table S11), all network
signatures have p-values less than 0.05; and even after
multiple testing corrections, there are still about 83%
network signatures showing significant survival analysis
(Supplementary Table S11), again indicating the efficiency
of nQTL discovery.

FIGURE 5 | nQTL analysis results from the human PBMC dataset. (A)QQ-plot of edge trait on the gene level. (B)Manhattan plot of edge trait on the SNP level. (C)
Network signature from edge/gene-pair clustering. (D) The network structure of one network signature. (E)GO analysis of one significant network signature. (F) CCA of
network signatures and immune factors or inflammatory factors.
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As our design, the nQTL framework is able to detect the
potential association between SNP and edge in an unsupervised
manner. In fact, the strategy of one work to find “co-expression
QTL” is directly using single-cell data to calculate the co-
expression of a gene-pair (van der Wijst et al., 2018); however,
it would not always be applicable in many applications due to
there being no individual-specific single-cell data available.
Actually, the original work reported only one detailed case of
co-expression QTL, involving a gene-pair RPS26 and RPL21. In
Figures 7A,B and Supplementary Figure S37A, they have
differential co-expression corresponding to a particular SNP

type. But it is obvious that these cells have distinguishing
expression differences for different SNP types on gene RPS26;
thus, this originally reported case would be one of the expected
co-expression QTLs; however, it also dominated in conventional
differential expression. By contrast, we selected two genes with
the most significant association to one SNP according to our
nQTL analysis on the given mimic bulk expression data, and we
could also observe or validate their potential co-expression
difference on unseen single-cell data (Figures 7C–F and
Supplementary Figure S37B). Motivated by this idea, we
rescreened the gene-pairs corresponding to edge traits from

FIGURE 6 | Independent survival analyses of nQTL modules from the human PBMC dataset. (A–F) The validation on brain, breast, colon, kidney, lung, and ovarian
cancer, respectively. And these analysis results are obtained from the SurvExpress web server, where p-values are produced from the Cox model.
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our nQTL analysis on the mimic bulk expression data and further
assessed their conditional co-expressions on the single-cell data
from different groups of samples. As summarized in
Supplementary Figure S38, nQTL analysis indeed can detect
many similar “co-expression QTLs” without the supervised
information from single-cell data, benefiting from the SSN
approach.

DISCUSSION

The main merit of nQTL analysis is to capture the association of
genotype and (molecular) phenotype on a sample-specific
network level rather than a population level, which is different
from previous methods including “co-expression QTLs” (van der
Wijst et al., 2018) and “context-specific eQTL” (Zhernakova et al.,

FIGURE 7 | SNP–edge associations (edge traits) detected unsupervised by the nQTL framework and their assessments on single-cell data from the human PBMC
dataset. (A,B) Single-cell plot of previously reported SNP and gene-pair association. (C–F) Single-cell plot of our newly identified SNP and gene-pair associations.
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2017). Of course, a feature of nQTL would reflect the association
between genotype and network activity. As already known, the
inference of network activity from its member genes’ expressions
would be an option when the experimental measurements of
network activity are not directly available at present, which could

be similarly used to build the association between genotype and
network activity in the nQTL framework. Meanwhile, how to
accurately infer the network activity is still another open question,
which would be further investigated in our future work. With
such an assumption, we aim to provide a proof-of-principle case

FIGURE 8 | Association analysis on the nQTL module and different factors. (A) The association between the nQTL module and (GSVA) pathway enrichment/
activity. (B) The association between the nQTLmodule and (CIBERSORT) cell composition. (C) The association between the nQTLmodule and (WGCNA) co-expression
module. A few nQTL modules are associated with or driven by potential biological mechanisms, e.g., pathway function, cell composition, or gene co-expression. And
many other nQTL modules should be new ones that are determined by particular genotypes through biological network rewiring, according to their GO enrichment
and network association.
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study on lung cancer data, by associating the genes’ expressions
from the nQTL module to sample-specific pathway enrichments
from GSVA (Hanzelmann et al., 2013). As shown in Figure 8A,
nQTL modules indeed can identify several networks altered by
the genetic variants that are associated with a disease (e.g.,
subtype discriminations) and also be able to translate into
upregulation or downregulation of a network/pathway (e.g.,
lung-cancer-related pathways).

And a previous work (Zhernakova et al., 2017) found that the
different gene modules are not driven by individual biological
networks but result in differences in cell type composition
between the different studied samples. Thus, we have carried
out additional investigation on the relationship between nQTL
module and cell type composition. Mainly on the lung cancer
data as a case study, we used CIBERSORT (Newman et al., 2015)
to obtain the potential cell type composition of each sample and
analyzed the associations between nQTL module gene
expressions and cell type compositions. Indeed, there are a few
module genes which are associated with a few cell types
(Figure 8B), like naive CD8 or CD4 T cells. Thus, the nQTL
framework can detect some modules similar to previous findings,
which are partially driven/explained by cell type compositions.
However, the nQTL framework is also able to find many new
modules that cannot be simply explained by cell type
compositions. Thus, cell type composition differences might
act as a biomarker, worthy of future study.

Different from conventional co-expression-based modules,
the nQTL module captures the genotype-associated co-
expressions. It is possible that a transcriptional factor (TF) is
an important mediator or regulatory driver between the genotype
andmolecular phenotype; thus, we have investigated the potential
TF and its motifs for nQTLmodules on the lung cancer data, by g:
Profiler (Raudvere et al., 2019). We found that module1,
module5, and module10 would be enriched by the E2F family,
AHR, and NFR-1, respectively. Thus, nQTL modules are actually
different from conventional co-expression modules like the
WGCNA module (Figure 8C), and its relation with TF can be
further detected directly by combining more experimental data
including Hi-C and ATAC data. Of note, in these co-expression-
based methods, genes within the same pathway or genes with a
PPI are assumed to be co-expressed; however, their associations
would be not necessarily related to particular genotypes. To avoid
potential bias in pathway enrichment from co-expression, we
could carry out multiple testing corrections for enriched
pathways from multiple nQTL modules, and our findings are
still consistent in this study (e.g., almost all enrichment p-values
are less than the corrected threshold of 0.05/10, as shown in
Supplementary Figures S8, S20, and S29).

It is well known that GWAS has provided many candidate loci
for human phenotypes (e.g., complex diseases). However, more
andmore reports show that the efficiency of GWAS is limited due
to the unknown functions of most recommended loci. Thus, the
eQTL analysis is further adopted to investigate the reasonability
of the locus by linking the locus’ mutation type and gene
expression type so as to introduce the molecular phenotype to
explain the functional relevance of particular GWAS-suggested
locus. Obviously, this is an integration strategy, which can

combine the GWAS summary results and eQTL quantitative
results together by the same candidate locus, e.g., SNPs. However,
it is still limited by the loss of sample match information, and this
means the risk to overlook individual specificity. By contrast,
nQTL analysis can avoid this issue by integrating the multiple
omics information from the same group of samples and
introducing the sample-specific network to link the individual
specific genotypes to networks and further to phenotypes, thus
improving the genotype detection and functional explanation
associated with the target phenotype. For instance, the summary-
data-based Mendelian randomization analysis (Zhu et al., 2016)
or Bayesian statistical framework (He et al., 2013) can be similarly
used to integrate the GWAS summary data and nQTL analysis
outcomes. Besides, the joint matrix decomposition model (Hu
et al., 2020) is also an alternative approach for integrating GWAS
and nQTL associations on the basis of their shared SNPs. Indeed,
the identification of nQTL and GWAS combination with new
knowledge of a common disease is worth studying in the future.

From a technical viewpoint, the key of nQTL analysis is to
obtain the individual network for one sample from gene
expression data. As well known to us, reconstructing a
network generally requires multiple samples to estimate the
associations between variables of the network, where the
variables are represented as nodes/genes in terms of expression
in a network and the variable associations are represented as
edges/gene-pairs in terms of correlation/strength in the same
network. Not only nQTL analysis but also other approaches in
biological and biomedical studies are facing the problem of how
to estimate the network (or its feature) when only one sample is
available for a target phenotype. To address this issue, a few
sample-specific network construction methods have been
developed and applied. Differential edge-like transformation
(DET) based on single-sample PCC (sPCC) has been
developed by using the additivity of PCC on multiple samples
and assigning the individual additive factors to each sample (Zeng
et al., 2014), which can estimate the significant co-expression of
two variables compared to the population average. Particularly,
the mean of DET between two variables from a group of samples
equals the PCC of this variable-pair on these samples. Meanwhile,
the SSN method constructs the sample-specific differential
network of one sample against a set of reference samples (Liu
et al., 2016; Yu et al., 2017), which develops a statistic on the co-
expression change when one sample is added into the reference
samples. And the CSN focuses on the inference of network
representation for each single cell from scRNA-seq data by
transforming the data from an “unstable” gene expression
form to a “stable” gene association form based on statistical
independence (Dai et al., 2019). Besides, the Linear Interpolation
to Obtain Network Estimates for Single Samples (LIONESS)
reconstructs the individual specific network in a population of
samples for each detailed sample, by calculating the correlation
statistical significance between all samples and the samples
without a given single sample (Kuijjer et al., 2019). In fact, the
model of nQTL is comprehensive, and these sample-specific
network construction methods are alternatives for it.
Considering that the conventional eQTL model and its
biological question always focus on the linear association
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among population samples, the DET approach is adopted in this
nQTL study. The integration of other methods such as SSN, CSN,
and LIONESS is worthy of future evaluation, dependent on
biological background and questions in research context. In
addition to enriched genes and their associations within prior-
known networks/contexts in the current nQTL analysis, using
network reconstruction or prediction can further improve the
power of nQTL analysis.

Different from GWAS/eQTL applications, nQTL analysis has
great potential in studying many complex biological problems
and provides new insights from a system/network viewpoint, e.g.,
individual specific association discovery on diverse cell types
based on new single-cell technologies (van der Wijst et al.,
2018; Camp et al., 2019). As known, using nQTL or eQTL
analyses for the integration of omics data at multilevels
requires multilevel data from the same experimental subject in
concept. For example, in the conventional study, we required the
SNP and expression data for the same person in eQTL analysis
although the test sample might be from different locations or
times for this person, and this kind of data is well known as
matched-data organization. However, it is hard to obtain such
multilevel data for the same cell with current single-cell
technologies. Thus, we have to approximately apply nQTL or
eQTL analysis or a similar integrative model in single-cell studies
currently. It is necessary to develop integrative omics and analysis
methods in focal research of wide single-cell fields. Of note, the
potential extension of the nQTL concept and model on the
integration of multi-omics data would still be burdened by
correlations among and within the different omics layers.
Although this method could help identify causal relations within
and between omics layers, there are still many issues that need to
be further studied, such as causality inference (Leng et al., 2020).

As a unified framework, our nQTL approach provides a
systematical tool to support the whole analysis pipeline to
detect the edge traits, edge signatures, and their relationship
with phenotypes, which builds an association cascade from
genotype to network and further to phenotype. Compared to
conventional eQTL or GWAS analysis, nQTL analysis not only
supplies the potential phenotype drivers corresponding to
genotypes but also reveals functional insights of these relevant
genotypes in the form of global network and local modules.
Therefore, the development and adoption of advanced network
inference methods and module decomposition approaches would
benefit nQTL research by promoting the efficiency and
robustness of analysis.

Of note, the quality control and significance correction should
be further promoted for nQTL analysis. In these experiments, the
used public datasets have no minor allele frequency (MAF)
available, and thus, the MAF filter was not used further. In
future studies with a focus on particular variants like GWAS
outcomes, an nQTL study could use a MAF filter to narrow down
the genotype analysis. Besides, in addition to the FDR used by
MatrixEQTL, the empirical FDR adopted by “co-expression
QTLs” (van der Wijst et al., 2018) and “context-specific
eQTL” (Zhernakova et al., 2017) analyses was also calculated,
where there are no result changes on the simulated data; and the
empirical FDR is also low under the current experimental

threshold setting in real datasets (see Supplementary Table
S12). Indeed, the combination of different permutation
strategies for significance correction should provide reliable
information on the confidence of identified eQTLs and nQTLs.

CONCLUSION

Collectively, the nQTL framework is proposed to detect the
association cascade: genotype→ network→ phenotype, which
not only interprets the biological or biomedical significance of
the discovered nQTL traits or features but also reveals the detailed
function roles of those nQTLs as network determinates associated
with phenotypes. Our multiple simulation studies and case studies
on human healthy and disease phenotypes all support the efficiency
of the nQTL framework, which can identify not only network traits
for analyzing complex biological processes at a network level but
also network signatures for phenotype discrimination.
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