
© 2023 Singapore Medical Journal | Published by Wolters Kluwer - Medknow 27

Abstract

Review Article

INTRODUCTION
It was only 65  years ago that the number of human 
chromosomes was correctly determined to be 46 instead of 
48, highlighting the rapidity with which our knowledge of the 
human genome has developed.[1] This crucial re‑calibration 
provided the framework for the standardised reporting of 
various common chromosomal aneuploidies. It was the use 
of genetics in the paediatric population that paved the way for 
genetic diagnosis by connecting specific clinical phenotype(s) 
to chromosomal aberration(s). Thus, it was only a matter of 
time before genetic testing shifted to the earlier prenatal period 
by means of prenatal testing [Figure 1].[2-24]

One of the first mentions of prenatal diagnosis was the use 
of deviation of optical density at 450  nm  (OD 450) of the 
amniotic fluid to predict foetal anaemia in rhesus isoimmunised 
pregnancies by Sir William Liley in 1961,[25] and the first attempt 
at prenatal genetic diagnosis dates back to the 1950s, where 
sex determination was done prenatally through identification 
of the Barr body.[8,26,27] Subsequent karyotyping was performed 
on cultured cells from amniotic fluid to detect imbalanced 
translocations and Down syndrome in the 1960s.[13,23,28]

In the 1970s, the uptake of invasive testing,  namely 
amniocentesis, increased steadily.[29] It was initially performed 

for the indication of advanced maternal age and subsequently 
for high‑risk results on aneuploidy screening tests or following 
the detection of foetal anomalies on ultrasound that were 
suggestive of chromosomal aneuploidy.

NON‑INVASIVE PRENATAL DIAGNOSIS
Prenatal screening
The ‘triple test’ was first introduced in 1988; it involved 
serum measurements of maternal alpha‑foetoprotein, human 
chorionic gonadotrophin  (hCG) and unconjugated oestriol, 
which when taken together with maternal age, provided a 
detection rate for Down syndrome of 60%.[30] The subsequent 
addition of serum measurements of inhibin‑A to this screening 
method, which became known as the quadruple test, improved 
the detection rate for Down syndrome to 70%.[31]

The combined first trimester screen was then introduced in 
1997, in which serum measurements of pregnancy‑associated 
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plasma protein A (PAPP‑A) and free beta‑hCG were performed. 
Together with the sonographic measurement of foetal nuchal 
translucency between 11 and 14  weeks of pregnancy, the 
combined first trimester screen had a detection rate for 
Down syndrome of 85% to 90% and a false‑positive rate of 
5%.[32,33] In 2003, it was found that addition of the sonographic 
absence of the foetal nasal bone between 11 and 14 weeks of 
pregnancy yielded a detection rate of 90%, while reducing the 
false‑positive rate to 0.5%.[34]

Ultrasound
Before the advent of ultrasound, birth outcomes were a matter 
of providence. The first reported use of a contact compound 
2D ultrasound scanning machine was in 1958,[35] which simply 
aimed to obtain ultrasound images of the pregnancy and 
the foetus. Fast forward to 60 years later, it is impossible to 
conceive of practising obstetrics without the aid of one of the 
several types of ultrasound available today. The introduction 
of ultrasound into obstetrical care has resulted in the routine 
identification of foetal structural anomalies. Ultrasound 
performed in the first trimester has been shown to detect major 
foetal anomalies in 46% of low‑risk or unselected populations 
and in up to 61% of high‑risk populations.[36] Foetal structural 
anomalies are found in up to 3% of all pregnancies and in 1 in 
300 women attending a third‑trimester scan.[37]

Advances in ultrasound technology and use of 3D ultrasound 
can now delineate the exact location and extent of surface 
anomalies such as facial clefts and foetal neural tube defects, 
which aid better operative planning and prenatal counselling in 
the antenatal period. Multiplanar views on 3D ultrasound have 
increased the diagnostic accuracy of neural tube defects.[38] 

Improved prenatal detection of major foetal anomalies has a 
potential impact on the epidemiology of the condition. This was 
demonstrated in Denmark, where up to 89% of cases of spina 
bifida were diagnosed on ultrasound before 22 weeks, leading 
to a lower incidence of spina bifida secondary to women 
choosing to terminate their pregnancies, whereas in Sweden, 
there is lower acceptance of prenatal screening ultrasounds.[39]

Some anomalies such as cystic hygroma, omphalocoele, 
cardiac anomalies  (i.e., atrioventricular septal defect and 
tetralogy of Fallot) and congenital diaphragmatic hernia have 
been shown to be strongly associated with aneuploidy and 
can be detected as early as 12 to 14 weeks. These conditions 
can easily be detected using standard G‑banded karyotype, 
fluorescence in  situ hybridisation  (FISH) or quantitative 
fluorescence polymerase chain reaction (QF‑PCR). However, 
if a structural anomaly is present, the preferred test would 
be chromosomal microarray analysis  (CMA) because of 
the additional yield of pathogenic sub‑chromosomal copy 
number variations  (CNVs). There has been an observable 
reduction in diagnostic procedures involving high‑risk serum 
screening tests globally because of the widespread adoption 
of aneuploidy screening, which involves non‑invasive 
prenatal testing or screening (NIPT/NIPS). However, the rate 
of invasive testing following the detection of an ultrasound 
anomaly has remained steady.[40]

Cell‑free foetal DNA from maternal blood
The discovery of cell‑free foetal DNA in the maternal 
circulation and the subsequent advent of NIPS revolutionised 
the realm of aneuploidy screening.[15] The high sensitivity 
of 99% associated with common aneuploidies has resulted 
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in a significant decline in the number of invasive tests 
performed[29,41] because the high negative predictive value 
of the test often negates the need for a diagnostic test via 
amniocentesis or chorionic villus sampling  (CVS), which 
carry miscarriage risks of 0.11% and 0.22%, respectively.[42]

Cell‑based foetal DNA from maternal blood
Our group, and others, have shown that several different 
nucleated foetal cell types can be isolated from maternal blood 
and could potentially be used for cell‑based non‑invasive 
prenatal diagnosis  (cbNIPD). These include haemopoietic 
progenitors,[43,44] foetal mesenchymal stem cells[45] and 
trophoblasts,[46‑49] but most investigators agree that, by far, the 
best candidate nucleated foetal cell for cbNIPD is the foetal 
primitive erythroblast  (i.e., the foetal nucleated red blood 
cell or FNRBC).[50] DNA derived from foetal cells recovered 
from the cellular fraction of maternal blood is 100% foetal 
in origin. It is essentially equivalent to the cells derived by 
amniocentesis and even has an advantage over CVS in that 
if FNRBCs are used, there is no risk of confined placental 
mosaicism (CPM).

FNRBCs retain all the advantages of nucleated foetal cells 
derived from maternal blood, but most importantly, they 
carry, and reflect, the true foetal genome. More recently, in 
2017, He et  al. used CD147[51‑53] strategy, combined with 
epsilon‑globin foetal cell identifier to develop a nanostructure 
microchip.[54] Then, in 2018, Wei et al. used the Percoll density 
gradient strategy combined with epsilon‑globin to develop 
a microbead‑based sedimentation method.[55] In the same 
year, Feng et al. used the CD147/epsilon‑globin microchip to 
attempt chromosomal aneuploidy detection, but with limited 
success because of high false‑positive rates.[56] The downstream 
analysis needed further refining, and therefore, in 2020, Cheng 
et al. attempted to use the Percoll/anti‑CD147/epsilon‑globin 
selection strategy for the simpler problem of foetal ABO 
genotyping.[57] This highlighted the challenges faced by the 
groups in taking this technology further downstream because of 
the inability to adequately analyse the FNRBC foetal genome.

Trophoblast cells can be isolated non‑invasively as early as 
5 weeks of gestation,[58] and this cell type has recently gained 
popularity as one of the two cells of choice for cbNIPD.[59-66] 
But the yield of these cells from maternal blood is poor, and 
in one study, only half the cells isolated were of high quality 
and suitable for next‑generation sequencing (NGS), whereas 
the rest were of poor quality, in S‑phase or apoptotic.[67] 
Apoptotic trophoblast cells show loss of whole or segments of 
chromosomes, and produce noisy NGS signals, making clinical 
diagnosis difficult.[65] Again, the use of trophoblast cells will 
introduce the risk of CPM and false results. This CPM risk is 
not trivial; it is estimated to be up to 1.3% for CVS and ranges 
between 4.8% and 16.9% in potentially viable embryos.[68-71] 
Trophoblasts may take up to 4 weeks post‑partum to clear 
from the maternal circulation and are unlikely to persist to 

the next pregnancy.[72] Furthermore, these cells allow for 
higher‑resolution (∼1 Mb) genome‑wide CNV analysis.[67,73]

Prenatal diagnosis
Genetic conditions that can afflict an individual range from 
aberrations at the chromosomal level — that is, aneuploidy — to 
single‑base‑pair substitutions, deletions or duplications, each 
with wide‑ranging deleterious effects on normal development 
in utero. Examples of chromosomal aberrations include the 
commonly screened for aneuploidies, trisomy 13, 18 and 
21, which can present with multi‑system abnormalities, some 
of which are potentially lethal. Submicroscopic deletions 
or duplications, otherwise known as copy number variants, 
although found in healthy individuals, are also an important 
known cause of intellectual disability and human disease.[74,75] 
At an even smaller resolution, substitution of a single base pair 
in the coding region of the genome can also result in diseases 
associated with high morbidity and mortality, such as sickle cell 
anaemia and cystic fibrosis. The following section discusses the 
different types of genetic tests available for prenatal diagnosis, 
and they are summarised in Table 1.

G‑banded karyotyping
The gold standard for the investigation of a genetic cause 
for a foetal anomaly detected on ultrasound has traditionally 
been karyotyping. G‑banded karyotype is performed on 
cultured cells obtained via amniocentesis or CVS and is 
able to detect genomic imbalances at a resolution of 5 Mb. 
Karyotyping is able to detect large deletions and duplications 
as well as chromosomal structural variants, such as inversions, 
balanced and unbalanced translocations and ring and marker 
chromosomes. Additionally, the analysis of at least 20 cells 
obtained from a cell culture for karyotype allows for the 
detection of mosaicism, which is defined as the presence of 
two or more cell lineages with different genotypes arising from 
a single zygote, in a single individual.[76]

However, because karyotyping relies on the collection of viable 
foetal tissue for culture and diagnosis, nonviable foetal tissue 
samples often lead to culture failure. In addition, cultured cells 
are prone to maternal decidual cell contamination, which could 
result in false diagnoses, and it may take up to 2 weeks to obtain 
a diagnosis; this is one of the main limitations of the test. To 
overcome this limitation, rapid aneuploidy tests are often used 
in conjunction with karyotyping to provide a quicker result, 
which is advantageous when dealing with parental anxiety 
following a possible foetal anomaly or genetic condition. The 
2 rapid aneuploidy tests commonly used in clinical practice 
are FISH and QF‑PCR.

Fluorescence in situ hybridisation
FISH was developed in the 1970s as a method of evaluating 
the presence or absence of a particular chromosomal segment 
by the labelling of specific DNA probes complementary 
to the genomic region of interest with fluorochromes, 
which are visible under a fluorescence microscope.[77] The 
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method is useful in the detection of an aberrant number of 
copies of a particular chromosome as well as in identifying 
translocations. Three types of probes for FISH are used in 
clinical practice: gene‑specific probes, centromeric probes 
and whole‑chromosome probes, which can detect a range of 
genetic abnormalities depending on the type of probe used. 
FISH does not have to be performed on actively dividing 
cells, and hence cell culture is not required, resulting in a 
turnaround time of 24 to 48 hours. However, despite having a 
higher resolution compared to karyotype of 100 to 200 kb,[78] 
FISH is not an efficient method for interrogating the entire 
genome for imbalances; the genomic sequence of interest must 
be known beforehand, based on clinical suspicion. FISH can 
be used for the rapid detection of the common aneuploidies 
trisomy 13, 18 and 21, sex chromosome aneuploidies and 
specific microdeletion syndromes such as DiGeorge, Prader 
Willi and Angelman syndrome.

Quantitative fluorescence polymerase chain reaction
QF‑PCR is another rapid aneuploidy test that relies on the 
detection and amplification of specific genomic sequences 
called short tandem repeats (STRs) on chromosomes. STRs 
are found throughout the genome in healthy individuals, 
and the number of repeats is polymorphic, resulting in each 
individual having a relatively unique number of STRs on 
each chromosome. Using PCR amplification of specific 
STR markers, QF‑PCR results in the quick identification of 
the number of chromosome copies in a DNA sample. Two 
separate peaks in a 1:1 ratio would suggest that an individual 
has inherited 2 copies of that chromosome  —  1 peak 
representing each inherited allele. For an individual who has 
inherited three copies of that chromosome, there would be 3 
individual peaks in a 1:1:1 ratio, or 2 peaks in a 2:1 ratio.[79] 
Occasionally, STR markers will be non-informative if both 
inherited alleles have the exact same number of repeats, but 
this is overcome by the use of multiple STR markers on a 
single chromosome. QF‑PCR is a cost‑effective method of 
aneuploidy screening,[80] has a very high detection rate for 
aneuploidies of chromosomes 13, 18, 21, X and Y of up to 
98.6% to 100%[81,82] and a zero false‑positive rate,[83] leading to 
its widespread clinical use in prenatal diagnosis of the common 
aneuploidies. However, QF‑PCR does not provide information 

about structural variants, and follow‑up with conventional 
cytogenetic analysis is still recommended to rule out inherited 
Robertsonian translocations, which has implications for 
subsequent pregnancies, particularly in the cases of trisomy 
13 and 21.[83] The second main limitation of karyotype lies in 
its inability to detect submicroscopic deletions or duplications 
that are less than 5 Mb in size.

Chromosomal microarray
In the past decade, CMA has increasingly become the 
test of choice and may even replace the karyotype when 
investigating a foetus with multiple foetal anomalies. CMA 
has the ability to detect copy number variants at resolutions 
as small as 50 kb. In a landmark paper in 2012, it was shown 
that CMA was able to detect clinically relevant deletions or 
duplications in approximately 1 in 60 of structurally normal 
pregnancies (test indications for advanced maternal age or 
positive screening results) and in 1 in 17 pregnancies with 
a structural anomaly.[84] Since then, CMA has been shown 
to provide an incremental diagnostic yield over karyotype 
in foetuses with congenital anomalies in all major organ 
systems.[85-87] Additionally, the incremental diagnostic yield 
is as high as 9% when there are multiple foetal anomalies. 
A systematic review of 17 studies in 2015 showed that CMA 
provides a pooled incremental yield of 5% in foetuses with 
a nuchal translucency of more than 3.5  mm and a normal 
karyotype, which is increased to 7% when other anomalies 
are detected in addition to a thickened nuchal translucency. 
The increased diagnostic yield that CMA provides has led to 
recommendations from various governing bodies that CMA be 
performed as the first‑line genetic test when a foetus is found 
to have a thickened nuchal translucency of more than 3.5 mm 
or has one or more major structural abnormalities.[88-90]

An added benefit of CMA is that it can be performed on 
nonviable tissue, unlike karyotyping. This is advantageous 
when investigating for a genetic aetiology for stillbirths, of 
which up to 13% have been shown to be a result of chromosomal 
abnormalities.[91] In an analysis of 532 stillbirths, CMA was 
able to provide a result in 87.4% of cases, compared to 70.5% 
with karyotype analysis.[92] CMA was also able to detect a 
genetic abnormality in more antepartum stillbirths  (8.8% 

Table 1. Summary of genetic tests.

Resolution Coverage Limitations Turnaround time 
G‑banded 
karyotype 

5–10 Mb Monosomy, trisomy, structural variants, 
triploidy, mosaicism

Deletions/duplications smaller than 5 Mb, methylation 
defects, expansion repeat disorders, mitochondrial

10–14 days 

Chromosomal 
microarray 

100 Kb Copy number variants, 
uniparental disomy, regions of 
homozygosity (SNP‑array)

Deletions/duplications smaller than 100 Kb, methylation 
defects, expansion repeat disorders, mitochondrial, 
structural variants, balanced translocations 

7–14 days

Whole exome 
sequencing

1 base pair Single‑base‑pair substitutions/deletions/
duplications in the coding region

Methylation defects, expansion repeat disorders, 
mitochondrial, intronic variants, Robertsonian translocations 

14 days 

Whole genome 
sequencing 

1 base pair Single‑base‑pair substitutions/deletions/
duplications across entire genome 

Methylation defects, expansion repeat disorders, 
mitochondrial, Robertsonian translocations 

14 days

SNP: single nucleotide polymorphism
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vs 6.5%, P  =  0.02) and stillborn foetuses with congenital 
abnormalities when compared with karyotype analysis (29.9% 
vs 19.4%, P = 0.008).

The use of CMA has also been investigated in growth‑restricted 
foetuses, where a genetic aetiology is known to be responsible 
for up to 20% of cases.[93] In a systematic review of 10 studies 
where CMA was performed for growth‑restricted foetuses with 
a normal karyotype, results revealed a 4% incremental yield 
over karyotyping in foetuses without congenital anomalies 
and a 10% incremental yield when congenital anomalies were 
present in addition to growth restriction.[94]

The 2 main types of CMA techniques are array comparative 
genomic hybridisation and single nucleotide polymorphism 
(SNP) array.[95] The former relies on the quantification of 
genomic DNA in a patient sample using DNA probes that detect 
sequences across the entire genome. Patient DNA and DNA 
from a reference genome are labelled with fluorescent dyes of 
different colours and are mixed together in equal quantities. The 
signal emitted at each probe is interpreted digitally by the CMA 
platform, which is represented as a log2 ratio. When the quantity 
of genomic data in the patient sample is the same as that in the 
reference sample, the log2 ratio is zero, indicating that 2 copies 
of DNA material were detected at that locus. A loss (deletion) 
or gain (duplication) of genomic material is represented by a 
negative or positive log2 ratio, respectively. SNP‑based arrays 
rely on the use of SNPs, which are distributed throughout the 
human genome. The fluorescent signal intensity obtained from 
a patient sample is compared to that from a reference sample to 
determine gains and losses in genomic material. Additionally, 
allelic data obtained from SNP arrays allow the detection of 
regions of homozygosity as well as uniparental disomy, where 
both alleles of a particular chromosome have been inherited 
from the same parent. This is of clinical significance in certain 
chromosomes that carry imprinted genes, resulting in disease 
phenotypes. SNP arrays also have the ability to detect triploidy, 
which can only be determined from allelic data.[95] However, 
because both CMA methods rely on the quantity of genomic data 
as compared to a reference sample, the technique is unable to 
detect balanced translocations where there is no overall net gain 
or loss of genomic material. Additionally, the resolution of CMA 
relies on probe density, which may not be evenly distributed 
across the genome and is platform dependent. Hence, cryptic 
deletions and duplications (usually <50 kb) smaller than the 
distance between probes may be missed. CMA also has limited 
ability in detecting low‑level mosaicism (<20%) compared to 
conventional cytogenetics.[96] Also, genetic conditions that are 
caused by mutations in the mitochondrial genome or repeat 
expansion disorders such as fragile X syndrome cannot be 
detected on CMA. However, with the current evidence of 
improved diagnostic yield with CMA in the prenatal setting 
as well as the availability and affordability of testing, CMA is 
likely to become the first‑line test in the investigation of foetuses 
with structural abnormalities.

Next‑generation sequencing
NGS refers to DNA sequencing technology that has evolved 
beyond the founding Sanger sequencing method described 
in 1975.[97] High‑throughput methods now allow rapid 
and simultaneous sequencing of large volumes of DNA, 
making the interrogation of the entire human genome down 
to single‑base‑pair resolution possible. There are several 
approaches to the use of NGS in prenatal diagnosis, and in 
increasing order of cost and turnaround time, they are as 
follows:  (1) targeted panel sequencing,  (2) whole exome 
sequencing (WES), and (3) whole genome sequencing (WGS).

In targeted panel sequencing, selected genes responsible for 
a group of monogenic disorders are sequenced based on the 
observed phenotype and clinical suspicion. A targeted testing 
approach potentially allows for greater sequencing depth and 
reduced cost and turnaround time of testing compared to WES 
but may result in a lower diagnostic yield, depending on the 
type of abnormality and gene panel available. A  review of 
127 cases of non‑immune hydrops foetalis showed that WES 
provided a diagnostic yield of 29% compared to 18% on the 
largest targeted hydrops foetalis gene panel available at the 
time.[98] Conversely, targeted gene panels appear to have a high 
diagnostic yield in cases of anomalies of a particular organ 
system, such as skeletal dysplasias.[99] Hence, the application 
of gene panels should be individualised to the foetal anomaly 
detected. Additionally, this approach relies heavily on the 
accurate identification and diagnosis of the phenotype observed 
on antenatal ultrasound, which may not be as easily defined 
compared to the postnatal setting.

WES involves selective sequencing of the coding regions of 
the human genome, which constitutes 1% to 2% of all genomic 
DNA. Up to 85% of disease‑causing mutations are found 
within the exome, making it a worthwhile testing strategy 
with a relatively high diagnostic yield. Initial studies showed 
that WES was able to provide a definitive genetic diagnosis in 
21% of 24 cases with ultrasound abnormalities with a normal 
CMA result.[100] Following this, the PAGE cohort study showed 
that WES identified a diagnostic genetic variant in 8.5% of 
610 foetuses undergoing invasive testing for thickened nuchal 
translucency or structural anomaly with a normal karyotype 
and CMA result.[101] Diagnostic rates from subsequent studies 
varied widely depending on the cases selected for WES,[85,102] 
with rates up to 80% in very carefully selected cases.[103] Since 
2015, numerous studies have been performed that look at the 
added advantage that WES has over karyotype and CMA in the 
detection of various foetal anomalies. The additional yield that 
WES provides appears to vary greatly according to the type 
of anomaly detected, with the highest yield in foetuses with 
multiple anomalies of up to 23%.[104] Whether WES is the genetic 
test of choice when investigating an isolated thickened nuchal 
translucency remains to be determined. In foetuses with isolated 
thickened nuchal translucency above the 99th centile, WES has 
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been shown in a systematic review to provide an additional 
diagnosis over CMA in 4% of cases.[105] In view of the higher 
cost of WES compared to CMA and the time‑sensitive nature of 
prenatal diagnosis, current evidence suggests that proper triage 
of which cases might benefit most from WES using a stepwise 
approach is necessary rather than the widespread application of 
WES to all cases of foetal anomalies.

The limitations of WES include the inability to detect intronic 
variants, certain structural variants involving intronic regions 
and expansion repeat disorders. Additionally, despite being able 
to provide an additional diagnostic yield above CMA, WES 
is limited in its accurate detection of copy number variants. 
This is because of the nature of the sequencing method, which 
involves short‑read sequences in which the accurate assessment 
of repetitive elements in the genome is technically difficult, 
as well as PCR‑dependent issues such as GC content bias.[106] 
WGS, which refers to sequencing of both the coding and 
non‑coding regions of the human genome, has the potential 
to overcome the limitations of WES. Sequencing read depth 
refers to the number of copies of each region represented in 
the pool of fragments, and because of the error rate of NGS, a 
depth of 30× is considered adequate for diagnostic WGS.[107] At 
this depth, WGS is able to detect variants at a single‑base‑pair 
resolution across the genome. However, this is at the expense 
of increased cost and turnaround time, limiting its practical 
use in routine prenatal diagnosis. Additionally, the detection 
of variants of unknown significance and secondary findings 
are increased with WES and WGS. This may in turn increase 
parental anxiety and have possible consequences on the 
purchasing of insurance for the individuals tested, highlighting 
the importance of adequate pretest counselling.

EMERGING SEQUENCING TECHNOLOGIES
Low‑pass whole genome sequencing
Low‑pass WGS was first described as a feasible NGS method 
for detecting copy number variants over conventional CMA in 
2016 by Dong et al.[3] At a read depth of 0.25×, this method was 
able to accurately detect all copy number variants detected by 
conventional CMA in prenatal and postnatal samples as well 
as abortuses. The technique was also able to detect mosaicism 
at lower levels of 25% compared with CMA. Additionally, 
diagnostic rates in demised foetuses were higher with this 
technique compared to CMA. Subsequent studies demonstrated 
the ability of low‑pass WGS to accurately detect pathogenic 
CNVs at a higher coverage and resolution of the genome while 
requiring less DNA input compared to CMA.[108,109] Balanced 
translocations and inversions as well as their breakpoints 
are also able to be identified with paired end sequencing in 
low‑pass WGS — a known limitation of CMA and WES.[110] 
The optimised low‑pass WGS protocol was able to achieve a 
turnaround time and cost that was either comparable to or 50% 
less than those for current CMA tests,[111] heralding the likely 
replacement of CMA altogether by low‑pass WGS.

Long‑read sequencing
Current NGS techniques rely on the massively parallel 
sequencing of short sequence reads of about 150 to 300 base 
pairs followed by its alignment to a reference genome to 
determine genetic variants down to a single‑base‑pair level.[112] 
Although it is able to detect a significant number of genomic 
variants, short‑read sequencing has several limitations, such as 
the limited detection of structural variants (>50 bp),[20,113,114] the 
accurate detection of expansion repeat disorders such as fragile 
X syndrome and Huntington’s disease[115] and differentiating 
pseudogenes from the actual gene of interest. Pseudogenes 
are sequences that have high sequence homology to known 
functional genes but do not produce functional proteins and 
can lead to impaired variant detection and false‑positive 
results.[116,117] Additionally, short‑read sequencing also relies on 
the need for PCR amplification, carrying with it the inherent 
challenges of sequencing regions of the genome with high GC 
content, with a significant proportion of the human genome that 
is GC‑rich being inaccessible to such PCR‑based sequencing 
methods.[118] Long‑read sequencing is the latest advancement 
in the field of genetics and holds promise in overcoming the 
aforementioned limitations of current NGS techniques.[119,120] 
Long‑read sequencing technologies involve the generation 
of sequences of up to >1 Mb in length followed by de novo 
assembly instead of alignment to a reference genome.[20,121] This 
has been demonstrated in several studies to have an improved 
ability to detect structural variants[122-124] and expansion repeat 
disorders[125,126] and discriminating pseudogenes from actual 
genes of interest.[127] Additionally, long‑read sequencing has 
the ability to assign genetic variants to the maternally and 
paternally inherited chromosome, known as variant phasing. 
This is of particular importance when investigating compound 
heterozygosity in recessively inherited Mendelian disorders, to 
determine if variants are in cis or trans, which has implications 
for likelihood of pathogenicity and inheritance patterns. This 
advantage of long‑read sequencing has been demonstrated in 
the field of pre‑implantation genetic diagnosis in determining 
the parental origin of mutations to inform the risk of recurrence 
in subsequent pregnancies.[128,129] Long‑read sequencing has 
yet to be widely applied in prenatal diagnosis. A recent study 
demonstrated the clinical utility of long‑read sequencing in the 
determination of the pathogenicity of copy number variants of 
unknown significance in the DMD gene in the prenatal setting 
without the need for familial segregation, which often takes 
a significant amount of time. This testing approach led to the 
provision of timely genetic counselling and prompt pregnancy 
management, highlighting the important potential of long‑read 
sequencing for future use in prenatal diagnosis where the time 
window for diagnosis is limited.[130]

CONCLUSION
As the complexity of options for prenatal genetic testing 
continues to expand, a commensurate increase in the quality 
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and quantity of genetic counselling services must also follow, 
given the paramount importance of adequate pretest and posttest 
counselling. Pretest counselling should cover the scope of the 
genetic tests performed as well as the possible results and their 
implications. Issues that should be covered include the cost, 
turnaround time, limitations of the test, variants of unknown 
significance, secondary findings, the potential implications 
for insurance coverage and the possibility of revealing 
non‑paternity. Posttest counselling is of equal importance in 
explaining the results of the test and whether it provides a clinical 
diagnosis, as well as the options for the current pregnancy and 
future pregnancies. Therefore, referral to a medical geneticist for 
appropriate counselling is an essential component of the patient 
journey when considering prenatal genetic testing.

This article summarises the current practices as well as recent 
advances in the field of prenatal genetic testing, which will 
continue to evolve. The use of genetic testing should be 
carefully considered and individualised, with adequate and 
updated genetic counselling, to empower families to make 
informed choices regarding their pregnancy.
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