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Precisely timed behavior and accurate time perception plays a critical role

in our everyday lives, as our wellbeing and even survival can depend on

well-timed decisions. Although the temporal structure of the world around

us is essential for human decision making, we know surprisingly little about

how representation of temporal structure of our everyday environment

impacts decision making. How does the representation of temporal structure

a�ect our ability to generate well-timed decisions? Here we address this

question by using a well-established dynamic probabilistic learning task.

Using computational modeling, we found that human subjects’ beliefs about

temporal structure are reflected in their choices to either exploit their current

knowledge or to explore novel options. The model-based analysis illustrates

a large within-group and within-subject heterogeneity. To explain these

results, we propose a normative model for how temporal structure is used in

decision making, based on the semi-Markov formalism in the active inference

framework. We discuss potential key applications of the presented approach

to the fields of cognitive phenotyping and computational psychiatry.

KEYWORDS

decision making, temporal structure, Bayesian inference, active inference, reversal

learning

1. Introduction

The passage of time is a fundamental aspect of human experience. Our behavior is

tightly coupled to our estimate of the elapsed time and the expectations about the time

remaining to fulfill short or long-term goals. We are highly sensitive to the temporal

structure of our everyday environment and capable of forming precise beliefs about

the duration of various events (e.g., a theater play, traffic lights, waiting in a queue).

In practice, temporal structure is typically latent (e.g., not reflected in external clocks)

and we seem to rely on an internalized timing mechanism, such as various implicit

clocking mechanisms (Buhusi and Meck, 2005). This enables us to provide temporal

context and an order to events, and to form beliefs about the underlying temporal

structure (Eichenbaum, 2014). It has been proposed that these temporal beliefs are
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used to make predictions and to adapt our behavior successfully

to ever-changing conditions (Griffiths and Tenenbaum, 2011).

Therefore, understanding how we learn and represent the

temporal structure of our every day environment (Kiebel et al.,

2008) and use these representations for making decisions

(Marković et al., 2019) is essential for understanding human

adaptive behavior (Purcell and Kiani, 2016).

Neuronal and behavioral mechanisms of time perception

have been studied in humans and animals, traditionally using

interval timing tasks (Meck, 1996; Eagleman, 2008). The key

insights of these experiments are that humans and animals

integrate the experience of between event duration, in a given

context, to form beliefs about possible future duration they

might experience. They use these beliefs when estimating or

reproducing a newly experienced interval (Jazayeri and Shadlen,

2010); in line with a Bayesian account of decision-making

(Shi et al., 2013). However, it is still an open question how

we integrate time perception and beliefs about durations into

everyday decision making. Recently, distinct but interlinked

research fields have illustrated the importance of temporal

representations for cognition and decision making in sequential

and dynamic tasks (McGuire and Kable, 2012; Eichenbaum,

2014; Vilà-Balló et al., 2017; Nobre and Van Ede, 2018). The

sequential neuronal activity in the hippocampus has been

suggested to represent elapsed time (Friston and Buzsáki, 2016;

Buzsáki and Llinás, 2017; Eichenbaum, 2017), which have led to

the postulate of time cells in the hippocampus (Itskov et al., 2011;

Eichenbaum, 2014; MacDonald et al., 2014) critical for memory

and decision-making. For example, in the research on temporal

aspects of attention it has been demonstrated that temporal

expectations guide allocation of attentional resources in time

(Nobre and Van Ede, 2018). Similarly, inter-temporal choices or

one’s willingness to wait for higher reward is strongly influenced

by temporal expectations (McGuire and Kable, 2012).

Motivated by the rich literature on temporal representations

in the brain, here we focus on the question of how humans

form complex temporal representation of their environment.

We test how such temporal representations support decisions

about whether to explore or to exploit in anticipation of a

change in the environment.We introduce a novel computational

model of behavior that describes learning of a latent temporal

structure of a dynamic task environment in the context

of sequential decision making. The computational model is

applicable to any task that can be cast as a dynamic multi-

armed bandit problem (Gupta et al., 2011) with semi-Markovian

changes or switches in the underlying latent states (Janssen

and Limnios, 1999). Here we specifically apply the model to

describe learning in a sequential (probabilistic) reversal learning

task (Costa et al., 2015; Reiter et al., 2016, 2017; Vilà-Balló

et al., 2017). We do so by manipulating temporal contexts in

this task: Subjects encountered semi-regular intervals between

contingency reversals in one environment. Their behavior

was contrasted with behavior in another environment where

intervals between contingency reversals were irregular.

The proposed behavioral model was based on three

components: (i) a set of templates representing possible

latent temporal structure of reversals using an implicit

representation of between reversal duration (Yu, 2015), (ii)

the update of beliefs about states and temporal templates

derived via approximate inference (Yu and Kobayashi, 2003;

Parr et al., 2019), and (iii) the action selection, that is the

planning process, cast as active inference (Friston et al., 2017;

Markovic et al., 2021). Together these components allow

us to define an efficient and approximate active learning

and choice algorithm of latent temporal structures based on

variational inference (Blei et al., 2017). Here we extend on

our previous investigation of human behavior in temporally

structured dynamic environments (Marković et al., 2019).

In this work, we demonstrated that a computational model

which infers a between-event duration, can be used to

reveal subjects’ beliefs about the latent temporal structure

in a dynamic learning task. However, a question that has

remained open is how humans acquire temporal structure

in the first place. Understanding the learning of temporal

structure is critical for revealing between-individual variability

in temporal expectations and capturing the evolution of

temporal representations within individuals. Critically, with

the extended model we present here, we are indeed able to

capture the learning of temporal representation and address the

non-stationarity of subjects’ temporal representation during the

course of the experiment.

Our aim is to address the following questions: (i) Are

subjects a priori biased toward expecting regular or irregular

temporal structure? (ii) Are subjects able to learn latent

temporal structure without explicit instructions? (iii) How

does the quality of temporal representation impact their

performance? Using simulations we can illustrate the interaction

of accurate representation of temporal structure and behavior,

mainly performance on the task and the engagement with

exploratory behavior. Using model-based analysis, that is,

by estimating the prior beliefs—under a semi-Markovian

generative model—that best explain observed choice behavior,

we demonstrate high diversity between subjects both in their

prior beliefs about temporal structure, and their ability to

adapt their beliefs to different latent temporal structure.

Crucially, we link the quality of temporal representation to

subjects’ performance both in terms of group-level performance

and within-subject variability of their performance during

the task.

In what follows we will first briefly describe the experimental

task, provide the overall summary of behavioral characteristics,

introduce the behavioral model, and finally show results of the

model-based analysis of behavior. The formal details of the

approach are described in Section 4.
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FIGURE 1

Exemplary trial sequence of the probabilistic reversal learning
task. Subjects were instructed that one card always had a higher
probability of a monetary reward. They were instructed to
choose the card that they thought would lead to a monetary
gain with higher probability, or, alternatively, choose to explore
(small yellow rectangle with question mark). The latter would
provide them with a correct information about what option
would have had a higher probability of reward. (A) If participants
had chosen one of the cards, the corresponding card was
highlighted and feedback was displayed. The feedback
consisted of either the visual display of a 10 Euro cents coin in
the center of the screen for a gain outcome, or a crossed 10
Euro cents for a loss outcome. (B) If the participant had chosen
the explore option, the card with the currently highest reward
probability was highlighted (either the left or the right card).

2. Results

A typical probabilistic reversal learning task asks subjects

to make a binary choice between two options, e.g., A and B,

where each option is associated with a probability of receiving a

reward or punishment. For example, initially choosing A returns

a reward with a high probability pH = 0.8 and choosing B

returns a reward with low probability pL = 0.2. Importantly,

after several trials the reward contingencies reverse, i.e., switch,

such that choosing B returns the reward with high probability

pH . However, subjects are not informed about the reversal and

they have to infer that a change occurred from the feedback they

receive in order to adapt their behavior. From the point of view

of participants, a reversal can be difficult to detect as outcomes

are probabilistic. This means that if someone observes a loss

after a sequence of gains, e.g., when choosing the option A, this

could be caused either by: (i) a true reversal, where now option

B is rewarded with the probability pH or (ii) by an unlucky

outcome of an otherwise correct choice. To obtain a more direct

information about the subjective uncertainty of participants

about the correct choice (i.e., choosing the option with high

reward probability, pH) on any given trial, we extended the

standard design with an additional third exploratory option.

This new option does not result in monetary gain or loss but

provides information about the correct choice on a current

trial. A high uncertainty about the best choice (current context)

can be easily resolved by selecting the epistemic option. We

will label all choices of the exploratory options as exploratory,

and all other choices as exploitative (note that the outcomes of

exploitative options also provide some information about the

current context). A trial sequence of the experimental task is

shown in Figure 1.

To investigate subjects’ ability to learn latent temporal

structure we defined two experimental conditions (manipulated

in a between-subject design), one with irregular reversals and

another with regular reversals (see Figure 2). In the condition

with irregular reversals, the moments of reversals are not

predictable and between-reversal intervals are drawn from

a geometric distribution (Figure 2A). In the condition with

regular reversals, the moments of reversal are predictable, and

they occur at semi-regular intervals, drawn from a negative

binomial distribution (Figure 2B). Subject were randomly

assigned to one of the two possible conditions, as illustrated

in Figure 2. In the first condition, subjects experience irregular

reversal statistics for 800 trials, after which the reversals occur at

semi regular intervals for the last 200. In the second condition,

subjects experience semi-regular reversal statistics for 800 trials,

and then the irregular reversal statistics during the last 200 trials.

Note that when changing the temporal statistics we copied the

time series of reversals from the initial 200 trials of the different

condition. The motivation for using parts of the trajectories

from one condition in another condition comes from the

process we use to define the moments of reversals in both

conditions.We aimed to tailor both experimental conditions in a

way that maximizes the behavioral differences between subjects

entertaining different underlying beliefs about latent statistics of

reversals. Such optimization results in improvedmodel selection

and parameter estimates as distinct latent beliefs result in more

pronounced behavioral differences.

Therefore, we have generated a large number (105) of

trajectories of length T = 800 for each condition and kept the

one for which we found the maximal performance difference

between agents with a correct representation of latent reversal

statistics and an agent with a representation from the opposite

condition. As we kept only single trajectory of reversals for

each condition, we have fixed the moments of reversal for

each subject group (depending on the condition, reversals occur

always on the same trials). Furthermore, the same choice by

different subjects exposed to the same condition leads to the

same outcome on any given trial (the outcome statistics were
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generated only once for each condition and trial, and then

replayed to all subjects depending on their choices and the

condition they were assigned to). Hence, we removed the noise

in behavioral responses which would be induced by unique

experiences of each subject in the experiment, were we to

generate moments of reversal and response-outcomes on-the-fly

for each subject.

2.1. Analysis of choice data

We will first describe the behavioral characteristics of the

two groups of subjects exposed to the two different experimental

conditions. The two behavioral measures of interests here are the

performance (odds of being correct, i.e., odds of choosing the

option with the higher reward probability) and probing (odds

of exploring, i.e., odds of choosing the exploratory option). We

describe all the behavioral measures in detail in Section 4.5.

Subjects (N = 74) were pseudo-randomly assigned to one of

the two experimental conditions, where nr = 41 participants

were assigned to the condition with regular reversals, and

ni = 33 to the condition with irregular reversals. Note

that some subjects rarely engaged with exploratory option.

Out of 50 subjects who where exposed to the variant of the

experiment with exploratory option (24 subjects performed a

standard version of the task without exploratory option, see

Section 4.3 for more details), 5 subjects never engaged with

the exploratory option. In Figure 3, we provide a summary

of average behavioral measures for individual subjects. We

do not find any significant performance differences between

the two regularity conditions (see Figure 3A). However, for

the subset of subjects which interacted with the exploratory

option (45 subjects) we find that the performance is positively

correlated with probing (Pearson correlation coefficient for

all data points r = 0.6, with p < 10−4; for the regular

condition r = 0.73, p < 0.0001, and for the irregular condition

r = 0.52, p < 0.02; see Figure 3B). Interestingly, neither

of the two behavioral measures (when plotted as a within

subject average over the course of experiment), reveals obvious

between-condition differences. However, when comparing the

temporal profile of these measures over the course of experiment

(see Supplementary Figure 1), one notices large variability both

between subjects but also within a subject over the course of

experiment; suggesting ongoing learning of the task structure.

In what follows we will classify the heterogeneity of behavioral

responses using a model-based analysis.

2.2. Behavioral model

The behavioral model will allow us to investigate the

process of learning of the latent temporal structure in different

FIGURE 2

Time series of reward probabilities. (A) Condition with irregular reversals, and (B) condition with (semi-)regular reversals. The reward probability
of the high-probability stimuli at any time step was set to pH = 0.8 and the low-probability stimuli to pL = 0.2. Dashed vertical lines shows the
moment of change of the latent temporal structure: (i) from irregular to semi-regular statistics in the irregular condition, and (ii) from the
semi-regular to irregular statistics in the regular condition. Figures on the right illustrate the generative distribution of the between-reversal
intervals d for each condition. Note that the mean between reversal duration 〈d〉 is identical in both conditions.
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FIGURE 3

Averages of behavioral summary measures. (A) Distribution of the mean performance of subjects with low and high number of exploratory
choices (see Section 4). (B) Dependence of the mean performance on the mean probing, where we excluded participants without exploratory
choices (count = 0). Note that when computing mean performance and mean probing for each participants, we have excluded the first 400
(initial responses during which the subjects might have still been adjusting to the task) and last 200 (responses after the change in the reversal
statistics) responses of each participant, see Section 4.7 for the motivation for the cuto�.

experimental conditions, reveal subjects’ preferences to engage

with an exploratory option (collect information), and subjects’

motivation to collect rewards. We achieve this by fitting free

model parameters to behavioral responses of each subject (see

Section 4 for more details). Our aim with the model based

analysis is to quantify beliefs about temporal structure of

reversals and understand how the belief updating influences

subjects’ behavior.

We conceptualized the behavioral model as an active

inference agent (Friston et al., 2015, 2016) with hidden semi-

Markov models (Yu, 2010), which are capable of representing

and inferring latent temporal structure. In active inference,

besides defining perception and learning as a Bayesian inference

process, action selection is also cast as an inference problem

aimed at minimizing the expected surprise about future

outcomes, that is, the expected free energy (Smith et al.,

2022; see also Equation 18). Through its dependence on the

expected free energy, the action selection has an implicit

dual imperative (see possible factorization of the expected free

energy in Equation 18): The expected free energy combines

intrinsic and extrinsic value of a choice, where intrinsic

value corresponds to the expected information gain, and the

extrinsic value to the expected reward of different choices. The

implicit information gain or uncertainty reduction pertains to

beliefs about the task’s dynamical structure and choice-outcome

mappings (e.g., Schwartenbeck et al., 2013; Kaplan and Friston,

2018). Therefore, selecting actions that minimize the expected

free energy dissolves the exploration-exploitation trade-off, as

every action is driven both by expected value and the expected

information gain. This is a critical feature of active inference

models which allows us to account for exploratory choices (see

Figure 1).

We express the agent’s generative model of task dynamics

in terms of hidden semi-Markov models (HSMM) (Yu, 2015;

Marković et al., 2019). The HSMM framework extends a

standard hidden Markov model with an implicit (or explicit)

representation of durations between consecutive state changes.

HSMM have found numerous applications in the analysis of

non-stationary time series in machine learning (Duong et al.,

2005; Gales and Young, 2008), and in neuroimaging (Borst and

Anderson, 2015; Shappell et al., 2019). HSMM have also been

used in decision making for temporal structuring of behavioral

policies (Bradtke and Duff, 1994) or in temporal difference

learning as a model of dopamine activity when the timing

between action and reward is varied between experimental

trials (Daw et al., 2002).

Here, we use the semi-Markov representation of task

dynamics within the behavioral models to define an agent that

can learn latent temporal structure, form beliefs about moments

of change, and anticipate state changes. We implemented the

learning of the hidden temporal structure of reversals as a

variational inference scheme, where we assume that the agent

entertains a hierarchical representation of the reversal learning

task, with a finite set of models of possible temporal structure

of the dynamic environment. In other words, we assume

that human brain entertains a set (possibly a very large set)

of temporal templates. In Figure 4, we show the graphical

representation of the generative model of behavior, which is

described detail in Section 4.6. Here we will briefly introduce

the relevant parametrization of the behavioral model, which

are critical for understanding the model comparison results

presented in the next subsection.

Each temporal template m corresponds to a pair of

parameters m = (µ, ν) that define the frequency of reversals
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FIGURE 4

Graphical representation of the generative model and model
summary. At the top of the hierarchy is the temporal template
variable m. The total number of temporal templates is finite, e.g.,
m ∈

{

1, . . . ,mmax

}

, and each template m provides an implicit
representation of a prior probability distribution over
between-reversal intervals d, parameterized with a pair
m = (µ, ν), where µ expresses mean between reversal interval,
and ν plays a role of a precision parameter, that defines
regularity of between-reversal intervals. The implicit
representation of temporal structure is encoded with probability
transition matrices LLLm,f of latent phases f. The number of latent
phases depends on precision ν. The reversal can occur only
when the end phase is reached (f = ν + 1). Therefore, the phase
variable f controls the transitions probability BBBs1 ,f between latent
states of the task denoted as random variable s1 ∈

{

1, 2
}

. At
every trial t the subject makes a choice at hence decides on
which option (s2) to select which results in an outcome ot. The
choices are deterministic, meaning that the corresponding
transition probability corresponds to identity matrix, that is,

p
(

s1t |s
1
t−1, at

)

= p
(

s1t |at

)

= δs1t ,at
, hence BBBa = I3. Finally, the

choice-outcome contingencies are treated as latent variables
ρρρs1 ,s2 which have to be learned over the course of the
experiment. We use a vague Dirichlet prior over
choice-outcome contingencies. Inverting the generative model
of outcomes using variational inference defines the inference
and learning component of the behavioral model. In turn,
marginal beliefs about latent states s1t , s

2
t and parameters ρρρs1 ,s2

are used to define action selection, that is compute the choice
likelihoods using the expected free energy (Equation 18).

µ and the regularity of reversals ν (the higher the value the

more regular the changes are). In Figure 12, we illustrate three

of these templates, which differ in their regularity parameter ν,

but all have the same frequency parameter µ. It is important

to note that when ν = 1 (the lowest value) the temporal

templates correspond to the hidden Markov model (HMM)

representation. HMM representation implies that the moments

of reversals are unpredictable, or maximally irregular. Here

we use the HMM representation as a reference point for

determining whether participants were able to learn latent

temporal structure of reversals, and whether they a priori

expected predictable moments of reversal.

When simulating behavior and fitting the model to

participants’ choices, we use a prior probability p (m) over

temporal templatesm to restrict otherwise rich set of all possible

temporal templates m =
(

µ, ν
)

, that span all combinations of

µ ∈ {5, . . . , 45} and ν ∈ {1, . . . , 10}. Hence, template prior

p (m) reflects prior expectations of an agent at the beginning

of the experiment about the possible temporal structure of the

task dynamics. Therefore, to capture a wide range of prior beliefs

we require a flexible prior p(m) that can reflect subjects with

different prior expectations about temporal structure. Posterior

estimates of the most likely parameterizations of the temporal

prior, allows us to infer from the behavioral data if participants’

beliefs are a priori precise and biased toward expecting irregular

reversals, or are imprecise and accommodate a wide range of

possible latent temporal structures. In the model, we use the

following prior over temporal templates:

p
(

m|νmax
)

= p
(

µ, ν|νmax
)

= p(µ)p
(

ν|νmax
)

p(µ) =
1

40

p
(

ν|νmax
)

=

{
1

νmax
for 1 ≤ ν ≤ νmax

0 otherwise

(1)

where νmax ∈ {1, . . . , 10}. Note that the prior regularity

parameter νmax reflects Bayesian prior expectations about the

maximal precision of between-reversal intervals. In other words,

νmax captures the agent’s expectations about the maximal

regularity of reversals, and hence their predictability. Thus,

with this parameterization we assume that subjects, at the

beginning of the experiment, have uniform beliefs about a

possible mean duration between reversal interval, but might

differ in their propensity to represent high or low regularity

of between-reversal intervals. For example, some subjects could

hold precise beliefs that reversals were not under their control

and were therefore inherently unpredictable (corresponding

to νmax = 1). Such a subject would fail to learn—or

accumulate evidence for—the regularity of reversals in the

regular condition. Conversely, some participants may have

imprecise prior beliefs about regularity (νmax > 1); enabling

them to learn that reversals were regular, thus predictable, in the

appropriate condition.

The beliefs about temporal templates, influence the beliefs

about the reversal probability on any given trial (i.e., how likely

is that a reversal occurs in the next trial), and consequently

modulate beliefs about the latent state of the task (i.e., which card

is associated with high reward probability) and corresponding

outcome probabilities. In turn, the beliefs about the latent state

influence the choices. As mentioned above, choices are defined

as the minimizers of the expected free energy (surprise about

future outcomes), typically denoted by G. Given the expected

free energy Ga [PPPo, νmax, t] of action a on trial t we define the

choice likelihood as

at ∼ p(a) ∝ eγGa[PPPo,νmax ,t]. (2)
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Here, the parameter γ denotes choice precision, the vector of

probabilitiesPPPo =
(

p−, p+,
1
2pc,

1
2pc

)

denotes prior preferences

over possible outcomes, that is, losses (−), gains (+), and cues

(c). In active inference (Friston et al., 2017) prior preference

parameter PPPo defines a preference of the agent to observe

rewards and collect information (engage with the exploratory

option). This balance is at the core of active inference and rests

upon choosing actions that minimize expected free energy (see

Section 4). In turn, expected free energy can be decomposed

into epistemic value (i.e., expected information gain) and

extrinsic value (i.e., expected preferences or reward). The

relative contribution of epistemic and extrinsic value depends

upon the precision of preferences over outcomes. In other

words, if subjects do not care which of the four outcomes

they encounter, then they will behave in a purely exploratory

fashion. Conversely, if they have precise or strong preferences,

extrinsic value will dominate. In our setup, the precision of

preferences rests on two differences; namely the difference

between reward and loss, and the difference between collecting

rewards or information. Interestingly, a prior preference for

collecting information has, itself, epistemic affordance (or at

least has greater epistemic value than collecting rewards). This

kind of prior preference emerges during the formation of

epistemic habits. In the terminology of reinforcement learning,

the logarithm of prior preferences lnPPPo assigns a subjective value

to possible outcomes, and the expectation of log-preferences

defines the expected value of different actions (see Equation 18).

Importantly, we use Equation (2) in two different ways:

(i) as a mapping from beliefs into actions which we used to

simulate behavioral choices, and (ii) as a choice likelihood

which we use for inverting the model when fitting the model to

subjects’ choices to derive the posterior estimates of free model

parameters (γ , p−, p+, νmax), individually for each subject.

Details of the model inversion procedure are described in

Section 4.7.

2.2.1. Simulating the behavioral e�ect of prior
expectations over temporal templates

By simulating the model’s behavior given different

values of temporal regularity parameter νmax, we aimed to

demonstrate that the agent can acquire a correct representation

of the latent temporal structure in different experimental

conditions, and that νmax influences the dynamics of both

performance and probing. Importantly, different values of

νmax should lead to sufficiently distinct behavior, if we hope

to accurately associate subjects’ behavior with underlying

model parameterization.

The temporal regularity parameter νmax is the key parameter

in the model to understand how learning about temporal

structure comes about. As νmax constrains the maximal

temporal regularity the agent expects in the task, it is

a measure of subjects’ sensitivity to the latent temporal

structure. Importantly, we find that varying νmax results in

simulated behavior with distinct behavioral patterns in our two

experimental conditions as shown in Figure 5. As we increase

νmax the behavioral performance increases, in both conditions.

In contrast, as we increase νmax the probing decreases, as the

agent is more certain about the moment of reversal and requires

information provided by exploratory option less often. Note

that different values of νmax induce stronger differences in both

performance and probing in the regular condition, compared to

the irregular condition. Practically, this means that we can infer

νmax from behavioral data with higher precision in regular than

in irregular condition. We validate the classification accuracy of

νmax based on posterior estimates given simulated data in the

form of confusion matrix as shown in Supplementary Figure 2.

Note that even in the ideal case when behavior is generated

exactly from the behavioral model, classification accuracy with

regard to νmax is substantially lower in irregular compared

to irregular condition. We will clarify the impact of low

classification accuracy in the next subsection when discussing

the results of model-based analysis.

2.2.2. Demonstrating the learnability of latent
temporal structure

As a next step we will illustrate that the agent with the

highest value of temporal prior (νmax = 10)—that is, the

agent with the most adaptable beliefs about the latent temporal

structure—is capable of accurately inferring the correct temporal

template m, and that the rate at which agent learns correct

representations of the temporal structure depends on the given

temporal context. Hence, we expect that human subjects, with

similar prior expectations about temporal structure, should also

be capable of learning the correct statistics. In Figure 6, we show

posterior beliefs over temporal templates in the form ofmarginal

posterior beliefs about the mean µ and the regularity ν at each

time step of the experiment. We see that the agent quickly

learns the correct mean between-reversal duration (already after

200 trials the highest posterior probability is close to µ =

19), but it takes longer (more than 400 trials) to form precise

beliefs about the level of temporal regularity. In contrast, in

the irregular condition, learning the correct mean between-

reversal-interval (fixed to µ = 19 in both conditions) takes

more time and is less precise, but the posterior estimates

over the precision parameter (ν) converge faster to the correct

values (already after 200 trials). Note that having the correct

representation of both mean and precision parameters is more

important in the regular condition as one can achieve higher

improvements in the performance compared to the irregular

condition, as we demonstrated previously in Marković et al.

(2019).
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FIGURE 5

Model dependent dynamics of behavioral measures for varying νmax. Each line corresponds to an average over n = 50 simulated trajectories
with γ = 5, and PPPo = (0.1, 0.6, 0.15, 0.15). (A) Performance estimated as odds of generating a correct choice within a 200 trials long time window
centered at trial index. (B) Probing, computed as odds of selecting the exploratory option within the 200 trials long time window. The shaded
colored areas around the trajectories correspond to the 95% confidence interval.

FIGURE 6

Posterior beliefs about temporal templates. Posterior beliefs of a single agent in the regular (left) and the irregular condition (right). Posterior
beliefs qt(m) = qt(µ, ν) at each trial t over templates m are marginalized over precision parameter ν obtaining qt(µ) (top) and mean parameter µ
obtaining qt(ν) (bottom). The posterior beliefs are estimates obtained from a single run of the agent in both experimental conditions where we
fixed the temporal prior parameter to νmax = 10, choice precision to γ = 5, and the preference vector to PPPo = (0.1, 0.6, 0.15, 0.15). The lighter the
color the higher is the corresponding posterior probability for that parameter value.
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2.2.3. Simulating the behavioral e�ect of prior
preferences over outcomes

As mentioned above, the prior preference over outcomes

PPPo parameterize agents’ motivation to collect rewards (generate

correct choices) and collect information (engage with the

exploratory option). Therefore, it is important to understand

how prior preferences interact with performance and probing.

We show that the more an agent engages with the exploratory

options (i.e., the higher its preference for choice cues), the

better its representation of latent temporal structure, and

consequently the higher agent’s performance. This is because

selecting exploratory options maximally reduces the uncertainty

about the latent state (which option has higher reward

probability) which in turn allows an agent to learn a more

accurate representation of the latent task dynamics. We visualize

these dependencies in Figure 7, where we show what impact

changing p+ and p− have on performance, probing, and

the quality of temporal representation after 800 trials. In the

Supplementary Figure 3 we show the same dependencies but

with respect to changing p+ and pc, hopefully helping the reader

to build an intuition about interactions between prior preference

parameter and behavior. Note that in both figures we only

consider cases in which p+ ≥ p− as this reflects higher prior

preference for gains than for losses in the agent, which we expect

to hold for all subjects.

2.3. Model-based analysis of subjects’
choices

By estimating the prior beliefs—under a semi-Markovian

generative model—that best explain observed choice behavior,

we next ask whether human subjects can learn latent temporal

regularities in the reversal learning tasks? An individual’s

capacity to learn correct temporal regularity corresponds to

their behavior being associated with a less precise prior over

temporal templates (Equation 1), that is, larger νmax. An

agent with imprecise prior over temporal templates is able to

learn an accurate representation of a distribution of between-

reversal-intervals, and to form expectations about the moment

of reversals (see Figures 6, 7) in both conditions. Thus, we

anticipated that between-subject variability in performance and

probing would be reflected in different posterior estimates of the

most likely νmax value associated with the behavior of individual

subjects.

Therefore, we first classify subjects based on the maximum

a-posteriori estimate over possible values of νmax ∈ {1, . . . , 10},

as shown in Figure 8. For each subject we compute a posterior

probability over νmax and assign the subject the value of the

temporal prior νmax corresponding to the value with the highest

exceedance probability (see Section 4.7). Using this procedure

we find that 11 out of 41 subjects in the regular condition, and

1 out of 33 subjects in the irregular condition are assigned to

the group with temporal prior νmax > 1. For the subjects in

the regular condition this result suggests that about a quarter

of subjects learned to anticipate reversals to a certain extent. As

our aim is not to identify precisely participants’ temporal prior,

but simply to distinguish between subjects that learn temporal

regularities (νmax > 1) from those that do not (νmax =

1), limiting the analysis to binary classification leads to the

following classification accuracy in simulated data: (i) in the

regular condition νmax = 1,ACC = 1, and νmax > 1,ACC = 1,

(ii) in the irregular condition νmax = 1,ACC = 1.0 and νmax >

1,ACC = 0.9. Note that in regular condition we have around

10% chance of misclassifying a subject that actually has a less

precise prior over temporal templates (νmax > 1).

The posterior estimates of model parameters shown in

Figure 8 show that the majority of participants were assigned

to the model class corresponding to the simplest HMM

representation (νmax = 1) which assumes maximal irregularity.

However, in the regular condition we also find a number of

participants (27%) that exhibit more flexible priors, allowing us

to form two subject groups. Importantly, when we plot the time

course of both performance and probing, as shown in Figure 9,

we find a trajectory of behavioral measures over the course of the

experiment similar to what we see in simulated data. Namely,

that the performance is higher and the probing reaches lower

values in the group of participants associated with larger νmax

(compare with Figure 5—regular condition). We excluded the

irregular condition from the visualization as we did not find

sufficient number of subjects with associated with numax > 1.

The behavioral trajectories of individual participants are shown

in Supplementary Figure 1.

These findings show a good correspondence between

simulated behavior for different parameterizations of the model

(νmax = 1 vs νmax > 1 in Figure 5), and the participants’

behavior associated with different model classes (Figure 9).

There are two possible explanations for this: (i) the model

inversion accurately captures the participants behavior and

between-participant sensitivity to temporal regularities of the

task, (ii) the group differences come from other free model

parameters and do not correspond to differences in sensitivity

to temporal structure. To exclude the second option we show

in Figure 10 the mean of the posterior estimates of free model

parameters γ , p− and p+. Note that in both experimental

conditions we see a lack of separation between free model

parameters associated with each model class.

There are a couple of interesting observations to be made

from the posterior expectations of the free model parameters.

First, we find in most participants rather large posterior

estimates of choice precision γ , close to γ = 5 (see

Figures 10B,D), suggesting that choice stochasticity is rather

low in most participants. Low choice stochasticity means

that choices are well aligned with the choice likelihoods

encoded in terms of expected free energy (Equation 18). In
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FIGURE 7

Dependence of performance, probing, and the quality of temporal representations on prior preferences over outcomes. Each dot in the plot

corresponds to a single run with fixed prior preferences Po =
(

p−,p+,
1
2pc,

1
2pc

)

, with temporal prior set to νmax = 10, and with decision

precision set to γ = 5. For each possible pair ((p−,p+) ∈
{

0.05, 0.06, . . . , 0.25
}⊗{

0.5, 0.55, 0.6
}

) we have repeated n = 50 simulations in each
condition. Here RMSEµ,ν stands for the root mean square error of corresponding parameters µ, ν that define temporal template. The RMSE is
computed using posterior probabilities qt(µ, ν) obtained at trial t = 800. The performance and the probing are computed as averages over
responses from trial t = 400 until trial t = 800. Note that probing is increasing as we reduce p− and keep p+ fixed (circles of the same color), and
as we reduce p+ and keep p− fixed, as the larger the sum (p+ + p−) is, the lower is the preference for choice cues pc, and hence the tendency of
the agent to engage with the epistemic option. Higher probing (larger circle size) results in higher performance in both conditions (top row).
Similarly, both RMSEµ and RMSEν are lower for larger exploration odds, with the exception of RMSEν in irregular condition. Note that forming an
accurate temporal representation is especially important in the regular condition, where forming correct anticipatory beliefs can substantially
improve behavioral adaptation and simplify the problem of balancing between exploratory and exploitative choices. In contrast, in the irregular
condition, having a precise representation of temporal structure does not impact performance substantially, and the agent performs better
when engaging with the epistemic option more often.

other words, the chosen option is the option that minimizes

expected free energy and the model is rather accurate in

predicting behavioral responses. Second, the posterior estimates

of outcome preference parameters p−, and p+ split subjects in

two distinct groups, which correspond to their preference for

receiving informative cues when selecting exploratory option.

The 29 subjects who never engaged with the exploratory option

have a higher preference for losses than for informative cues,

hence p− ≥ pc. We marked with the dashed gray line

(Figures 10A,C) the limiting case of p− = pc =
1−p+
2 , which

separates the subjects which did not interact with the exploratory

option (above the dashed line) and subjects that were relying

on exploratory option to reduce their belief uncertainty (below

the dashed line). Similarly, participants who prefer informative

cues over gains would have prior preferences over cues in the

region pc ≥ p+. The dotted gray line (Figures 10A,C) marks the

limiting case of p+ = pc =
1−p−
2 . Note that only one subject

in the irregular condition, and several subjects in the regular

condition fall along this line.

3. Discussion

Sequential activity of neuronal assemblies is one of

principled neuronal operations that support higher level

cognitive functions (Eichenbaum, 2014; Buzsáki and

Llinás, 2017) and allow humans to form complex spatio-

temporal representation of our every day environment

(Frölich et al., 2021). Akin to grid cells known to support

representation of both spatial and non-spatial task states

(Fu et al., 2021), time cells have been linked to temporal

representation of state sequences critical for memory

and decision-making (Eichenbaum, 2014). Importantly,

in spite of these fruitful experimental findings we have
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FIGURE 8

Posterior probability over temporal prior νmax. Posterior probability of possible νmax values for each subject, reflecting a subject’s flexibility to
learn latent temporal structure: (A) regular condition, and (B) irregular condition. On the right hand side, we combine posterior estimates into
two classes, one for the limiting case νmax = 1, and another for all other options νmax > 1. This split di�erentiates subjects not sensitive to
temporal regularities from the ones who a priori expected a regular temporal structure of reversals. Note that lighter colors correspond to
higher posterior probability.

FIGURE 9

Category based mean estimate of behavioral measures. Each line corresponds to a model class average over behavioral trajectories of subjects
assigned to that model class. Note the similarity of the trajectory profiles to the simulated trajectories in Figure 5 regular condition. The shaded
colored areas around the trajectories correspond to the 95% confidence interval.
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FIGURE 10

Posterior median of continuous model parameters. Each dot corresponds to the median of the n = 1, 000 samples from the posterior
distribution of γ , p−, and p+ for each participant. The dashed gray lines denotes equality between preferences for losses and epistemic cues,
that is, when p− =

pc
2 then p− = (1− p+)/2. In turn, the doted grey line indicates equality between preferences for gains and epistemic cues, that

is, when p+ =
pc
2 then p− = 1− 3p+. Note that we use the same color coding as in the previous figure to denote classification of participants

into di�erent model classes.

no clear computational understanding of how humans

learn temporal structure in the service of successfully

behavioral adaptation.

Here we introduced a novel computational model of

behavior capable of learning latent temporal structure of a

probabilistic reversal learning task with multiple reversals

(Costa et al., 2015; Reiter et al., 2016, 2017; Vilà-Balló et al.,

2017). The computationalmodel combines hidden semi-Markov

framework for representing latent temporal structure (Yu,

2015) and active inference for resolving exploration-exploitation

trade-off (Friston et al., 2015, 2016). Crucially, the model

can be used for investigating decision making in changing

environments in any behavioral task that can be cast as a

dynamic multi-armed bandit problem (Gupta et al., 2011;

Markovic et al., 2021); of which the reversal learning tasks is

a special case corresponding to a specific type of two-armed

bandit problem.

The probabilistic reversal learning task, which we utilized

to demonstrate flexibility of proposed model, is one of

the most established paradigms for investigating human

behavior in changing environments and quantifying cognitive

disorders. We used model-based analysis of behavioral data

to infer temporal expectations of subjects exposed to one

of the two task variants: (i) with regular intervals between

reversals, (ii) with irregular intervals between reversals.

Notably, being able to form expectations about the moment

of reversal is critical for achieving high performance in the

probabilistic reversal learning task, which we illustrate using

simulations. We demonstrated that participants behavior is

highly heterogeneous reflecting the differences in participants

expectations about temporal regularities. Crucially, the

participants expectations about temporal regularities influence

their ability to correctly learn latent temporal structure

(especially relevant in the condition with regular between

reversal intervals), and is reflected in their performance

throughout the experiment.

We have extended the standard reversal learning

task and incorporated an explicit exploratory option in

addition to the two standard options whose choice results

in monetary gain or loss. This exploratory option informs

the participant about the currently correct choice. The

additional behavioral response provides us with more direct

access to the individual uncertainty about a correct choice

and improves model selection. Interestingly, in addition

to participants’ diversity of temporal representation, we

find stark differences in their preferences to engage with

the exploratory option, suggesting individual differences

for the value of information (Niv and Chan, 2011) and

utilized strategies for resolving the exploration-exploitation

trade-off. Critically, their epistemic preferences are not

obviously correlated with the quality of the learned temporal

structure, as in both groups participants show heterogeneous

prior expectations about temporal regularities limiting the

available temporal templates, hence the accuracy of temporal

representations. However, the willingness to engage with the

epistemic options does influence participants’ performance,

where higher engagement results in better performance.

Therefore, these joint findings reveal distinct components of the
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computational mechanisms that underlie adaptive behavior in

dynamic environments.

To recapitulate, we have effectively shown that it is

possible to explain a subject’s choice behavior in terms of

their prior beliefs about temporal regularity, that is, a set of

temporal templates they entertain, and other contingencies

that characterize the (generic) paradigm at hand. This is

potentially important because this kind of phenotyping could

be deployed in a neurodevelopmental or psychiatric context

to summarize any subject in terms of a small number of

interpretable priors. Theoretically, this sort of phenotyping

provides a sufficient description of a subject via the complete

class theorem. The complete class theorem says that for any

given pair of reward functions and behaviors there exists

some priors that render the behavior Bayes optimal (Wald,

1947; Brown, 1981). To be Bayes optimal is to conform

to the belief updates and action selection described by

active inference. This means that there is always a set of

prior beliefs that provide a sufficient account of any subject

specific behavior.

Having said this, we have only explored a small subset

of possible sets of temporal templates. We could apply the

same technology (i.e., model inversion) to ask more general

questions. For example, if some subjects a priori exclude

from the templates the possibility of irregular reversals. There

are other priors we could have explored that place various

constraints on belief updating or divergences from particular

prior beliefs. These might be interestingly related to notions

of motivation, cognitive effort and resources in cognitive

science (Pezzulo et al., 2018); however, this would require a

specification of motivation, resources and effort in terms of

belief updating, which is an outstanding challenge. Overall,

we expected that, as we humans are exposed to predictable

changes in our everyday environment, that there should be

profound evidence that subjects utilize a higher order (semi-

Markovian) model. The fact that we do not see that in the

model selection results (in the regular condition the majority of

subjects’ behavior can be associated with the simplest Markovian

assumption) suggests that a better experimental paradigm than

the currently used reversal learning task is required. This

paradigm should be more engaging and intuitively linked to

distinct latent temporal regularities. A notable limitation of

the current experimental paradigm is that it is not obvious to

subjects that anticipating reversals can improve performance,

or that potential performance improvement is sufficiently large

to justify added effort required to keep track of higher-

order statistics.

To accurately predict future it is critical not only to

know that change might be coming but also when the

change will occur. To anticipate the changes in our-everyday

environments and adapt our behavior accordingly, it is critical

to accurately estimate and represent elapsed time between

relevant events. Although the presented model abstracts

elapsed time as a hierarchically structured counting process,

it is straightforward to model events duration in physical

time, by using continues representation of the phase-type

distribution. This way the underlying model corresponds to

continues time semi-Markov processes (Hongler and Salama,

1996) where state transitions follow the master equations,

allowing one to capture decision making in real-time. Notably,

an implicit assumption we make here is that a simple

counting process can represent elapsed time at multiple

time scales. In fact, various experimental findings suggest

that the brain employs counting mechanisms, represented

over multiple timescales, and integrates those representations

when generating behavior (Baldassano et al., 2017; Fountas

et al., 2022). Similarly, a range of experimental findings has

linked timing of events and hence forecasting the future

to underlying Bayesian inference mechanisms (Jazayeri and

Shadlen, 2010; Griffiths and Tenenbaum, 2011). Most recently,

Maheu et al. (2022) has linked sequence learning and prediction

in human subjects to an underlying hierarchical Bayesian

inference model with distinct hypothesis spaces for statistics

and rules corresponding to a set of deterministic temporal

templates. The authors conclude that the hierarchical Bayesian

inference mechanism underlies human ability to process

sequence, similar to hierarchical semi-Markov framework

proposed here.

Furthermore, in recent years, various neuroimaging studies

have linked different neuro-cognitive domains, such as attention

and working memory, to specific spatio-temporal expectations

about underlying dynamics of the environment (Nobre and

Van Ede, 2018). Interestingly, the human ability to estimate

and reproduce elapsed time was also previously linked to

reward discounting and intertemporal choice behavior (Ray

and Bossaerts, 2011; Retz Lucci, 2013; Bermudez and Schultz,

2014). For example, McGuire and Kable (2015) demonstrated

that “impulsivity” (reluctance to wait for a better reward),

depends on the hidden statistics of delays—between an

initial bad offer and a later but more valuable offer—which

human participants experienced. Using a similar “limited offer”

game (with a constant latent temporal statistics) and active

inference representation of behavior (Schwartenbeck et al.,

2015) have linked the dopaminergic midbrain activity with

expected certainty about desired outcomes. In Mikhael and

Gershman (2019), the authors have linked time perception and

dopaminergic neuronal activity, demonstrating the role of value-

based prediction errors in time representation. Furthermore,

time perception and timed behavior have been linked to

all major neuromodulatory systems (Meck, 1996) either

directly using neuropharmacological manipulations (Crockett

and Fehr, 2014) or indirectly using neurological disorders

(Story et al., 2016) and aging research (Read and Read,

2004).

Together these findings provide important evidence for

the role of temporal expectations in goal-directed decision
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making and let one speculate whether a range of aberrant

behaviors might be related to an erroneous representation of the

temporal structure of the task. Importantly, the computational

behavioral model that we introduced here can emulate the

learning of temporal structure, hence can become a potent

tool linking aberrant behavior found in cognitive disorders

to erroneous prior beliefs about the rules that govern the

dynamics of the environment, as suggested by the active

inference account of human behavior (Friston et al., 2015, 2016,

2017).

To conclude, the results presented here provide novel

insights into computational mechanism underlying the

human ability to learn hidden temporal structure of the

environment and the computational principles they utilize

for making decisions based on temporal representations. The

fact that we find behavioral heterogeneity in a population

of healthy young adults suggests a potential use of the

proposed design and behavioral model for cognitive

phenotyping and for revealing causes of aberrant behavior

in clinical populations.

4. Methods and materials

4.1. Code availability statement

All code for reproducing the figures and running

data analysis and simulation algorithms is available at

https://github.com/dimarkov/pybefit.

4.2. Experiment

4.2.1. Probabilistic reversal learning
In the experimental task subjects were deciding between two

cards shown on a screen, each showing a different stimulus (a

geometric shape, e.g., rectangle, triangle, or a question mark) as

shown in Figure 1. The reward probabilities associated with the

two choice options were anti-correlated on all trials: whenever

reward probability of choice A was high (pH = 0.8) the reward

probability of choice B was low (pL = 0.2), and vice versa. Note

that pH = 1 − pL on all trials. The location of each stimulus on

the screen (right or left side) was kept fixed over trials. After each

choice the stimulus was highlighted and depicted for 1.5s minus

the reaction time. The feedback in the form of a gain or a loss

was shown for 0.5s. Similarly, the feedback after an exploratory

choice was also shown for 0.5s. If no response occurred during

the decision window of 3s, themessage “too slow” was presented,

and no outcome was delivered.

All subjects underwent a training session during which

they had the opportunity to learn the statistics of the rewards

associated with high pH and low pL reward probability choices.

The set of stimuli used in the training phase differed from the

one used during the testing phase. Subjects were instructed

that they could either win or lose 10 cents on each trial,

and that they will be paid the total amount of money they

gained during the testing phase at the end of the experiment.

Each subject performed 40 training trials with a single reversal

after the 20th trial. Before the start of the testing phase

subjects were told that the reward probabilities might change

at regular intervals (in both conditions) over the course of

the experiment. No other information about reversals or the

correlation of choices and outcomes was provided. Thus, the

subjects had no explicitly instructed knowledge about the anti-

correlated reward probabilities or between-reversal-intervals

before the experiment.

Note that, out of n = 74 participants np = 24 were exposed

to the variant of the reversal learning task without epistemic

option. This group of subjects belongs to an initial pilot study

that used the standard two-choice task design. In the pilot study

14 subjects were assigned to the regular condition and 10 to the

irregular condition. We decided to include the subjects from the

pilot into the analysis, as we noticed that almost 30% of subjects,

in the post pilot group, choose not to interact at all with the

exploratory option, even when that was a possibility. We will

not explore this finding here in more detail, but we can exclude

their misunderstanding of the task as a potential confound, as

we provided a detailed instructions and training before they

performed the task (see Section 4.3 for more details).

4.3. Behavioral measures

To quantify behavior we have used two summary measures:

(i) performance, defined as odds of making a correct choice, and

(ii) probing, defined as odds of making an exploratory choice.

The process of computing performance is illustrated in

Figure 11. We first label subjects’ responses as either correct

or incorrect, depending on whether a card with higher reward

probability was selected or not (see Figure 11A). Then we

compute a probability of making a correct choice within a

201 trial window, centered at the current trial number t (see

Figure 11B). Finally, for each trial we compute performance as

odds of being correct (see Figure 11C).

The probing is computed in similar manner to performance,

with the only difference that we label choices as either

exploratory or exploitative depending on whether subjects have

chosen the exploratory option (middle card in Figure 1), or not.

Probing is defined as the odds of selecting the exploratory option

within a 200 trials time window.

4.4. Behavioral model

To introduce the generative model of task dynamics, and

subsequently derive the behavioral model via model inversion
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FIGURE 11

Computing behavioral performance. The process of computing performance. (A) We label subjects’ responses as either correct or incorrect,
depending on whether a card with higher reward probability was selected or not. (B) We compute a probability of making a correct choice
within a 200 trial window, centered at the current trial number t. (C) For each trial we compute performance as odds of being correct.

methods, we will consider the following features of the task.

At any trial the task environment is in one of the two possible

states, defined as the configuration of reward contingencies. For

example, state one corresponds to stimulus A being associated

with a high reward probability pH , and state two to stimulus

B being associated with a low reward probability pL. Subjects

do not know in advance how likely rewards and losses are

when making a correct choice compared to making an incorrect

choice, and this is something they have to learn during the

course of experiment. In other words, we also treat reward

probabilities (pH and pL) as latent variables. Between trials the

state can change, i.e., when a reversal occurs but only after a

certain minimum number of trials has elapsed since the last state

change. Depending on the experimental condition the between

reversal duration will either be semi-regular (occurring every

20 trials with small variability) or irregular (occurring every 20

trials, but with maximal variability)

The explicit representation of state duration d enables us

to associate changes in state transition probabilities with the

current trial and the moment of the last change. The dependence

of state transition probability on the number of trials since

the last change corresponds to the formalism of hidden semi-

Markovmodels (HSMM;Murphy, 2002; Yu, 2010), which allows

mapping complex dynamics of non-stationary time series to

a hierarchical, time aware, hidden Markov model. However,

using an explicit representation of context duration is inefficient,

as it requires an enormous state space representation. Here,

we will instead adopt a phase-type representation of duration

distribution (Varmazyar et al., 2019) which substitutes duration

variable d ∈ {1, . . . ,∞} with a phase variable f ∈
{

1, . . . , fmax
}

,

allowing for a finite state representation of an infinite duration

state space.

In what follows we will define the components of the

generative model (observation likelihood, the dynamics of latent

variables, and the parameterization of the dynamics) and derive

the corresponding update rules for latent variables and state,

hence enabling the learning of different temporal contexts

during the experiment. The graphical representation of the

generative model is shown in Figure 4.

Practically we introduce four latent states, to describe the

task on any trial:

• First, the configuration of reward contingencies can be

in one of the two possible states. Hence, s1t ∈ {1, 2}

which describes which card is associated with high reward

probability and which with low reward probability.

• Second, choosing one of the options on a given trial

corresponds to setting the task in one of the three possible
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choice states s2t ∈ {1, 2, 3} (chosen left card, chosen

middle card—exploratory option, and chosen right card)

corresponding to the chosen option. The choice of the

option is deterministic and this state is always known with

certainty after the choice is made.

• Third, current phase ft ∈ {1, . . . , ν + 1} of the task

dynamics. The phase latent variable controls transitions of

latent state s1t , where the change of state is only possible if

the end phase (ft = ν + 1) is active on the current trial.

Note that the larger the number of phases is (parameter

ν ∈ 1, . . .) the more regular is the occurrence of reversals.

We have limited here the number of phases by setting ν =

10, as this is sufficiently large for accurate representation of

reversal dynamics in regular condition.

• Fourth, temporal template m. Latent temporal template

defines the frequency of reversals, µ (mean between-

reversal duration) and the number of latent phases ν, that

is the regularity of reversals.

4.4.1. Observation likelihood
The observation likelihood links latent states (s1t , and s2t )

with probabilities of observing different possible outcomes in

those states.

In the temporal reversal learning task there are four possible

outcomes: (1) loss of 10 Eurocents, (2) gain of 10 Eurocents,

(3) the correct card is left card, or (4) the correct card is the

right card. Therefore, we define the observation likelihood as a

categorical distribution

p
(

ot|ρρρ, s
1
t , s

2
t

)

=

4
∏

i=1

ρ
δot ,i

s1t ,s
2
t ,i

(3)

where i denotes the outcome type, ot ∈ {1, . . . , 4}. The

probabilities of different outcomes are parameterized via

ρs1t ,s
2
t ,i
, where each state tuple (s1t , s

2
t ) corresponds to a unique

probability of observing any of four possible outcomes. We

define prior beliefs about outcome probabilities in the form of

a product of Dirichlet distributions

p
(

ρρρ
)

=

4
∏

s1=1

3
∏

s2=1

Dir
(

ρρρs1,s2 |ααα
0
s1,s2

)

. (4)

We set the parameters of Dirichlet priors to the following values:

ααα0
s1=1,s2

≡

ot\s
2 1 2 3

1 6 1 32

2 32 1 6

3 1 1000 1

4 1 1 1

, ααα0
s1=2,s2

≡

ot\s
2 1 2 3

1 32 1 6

2 6 1 32

3 1 1 1

4 1 1000 1

(5)

The above configuration for the parameterization of

prior Dirichlet probabilities reflects an assumption that the

FIGURE 12

Negative binomial distribution. We illustrate here the changes in
the negative binomial distribution as a function of shape
parameter ν which is inversely proportional to the variance of
between reversal durations. Note that for higher values of ν the
distribution peaks around its expected value (dashed line). As the
variance increases (green) the mode shifts toward zero. The
limiting case of the negative binomial distribution in the form of
geometric distribution (red) corresponds to ν = 1. For all three
cases we fixed the mean duration to the same value.

participants have formed during training an initial—vague

beliefs—about reward probabilities associated with different

actions in different states.We assume that participants are highly

certain that selecting the epistemic option does not return gain

or loss (high value of αααs1,s2=2 for the corresponding outcome

in both states). Furthermore, we assume that participants have

formed good expectations gain/loss probabilities (〈pH〉 =
32
40 =

0.8, and 〈pL〉 = 6
40 = 0.15), but that they are still uncertain

about the exact values. Weak priors about outcome probabilities

allow for ongoing adaptation of beliefs during the course

of experiment.

4.4.2. Hidden state dynamics
To formalize the presence of sequential reversals, we define

the phase dependent state transition probability as follows

p
(

s1t |s
1
t−1, ft−1

)

=







I2, if ft−1 = ν + 1,

J2 − I2, if ft−1 ≤ ν,
(6)

where I2 denotes the 2 × 2 identity matrix and J2 denotes the

2 × 2 all-ones matrix. The above relations describe a simple

deterministic process for which the current state s1t remains

unchanged as long as the phase variable ft−1 remains below

the end phase, ν + 1. The transition between states occurs with

certainty (e.g., if s1t−1 = 1 then s1t = 2) once the end phase is

reached, that is, when ft−1 = ν + 1.

Although it is possible to condition state changes on a

duration variable d, as demonstrated in Marković et al. (2019),
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Marković et al. 10.3389/fnbeh.2022.962494

such an explicit representation is inefficient as it requires large

state spaces (Vaseghi, 1995; Yu and Kobayashi, 2003). Here we

adopt the discrete phase-type (DPH) representation of duration

distribution (Varmazyar et al., 2019). The DPH representation

defines transitions between phase variables ft and the following

parameterization of phase transition probabilities corresponds

to the DPH representation of the negative binomial distribution

p(ft|ft−1,m) =



















δm, if ft−1 ≤ ν, and ft = ft−1 + 1

1− δm, if ft−1 ≤ ν, and ft = ft−1

πm
ft
, if ft−1 = ν + 1,

0, otherwise

(7)

where πmi =
( ν
i−1

)

(1− δm)
ν−i−1 δi−1

m for i < ν + 1, and

πmν+1 = 1−
∑ν

i=1 π
m
i .

The corresponding negative binomial distribution of

between-reversal duration can be expressed as follows

pm(d) =

(
d + ν − 2

d − 1

)

(1− δm)
d−1 δνm; d ∈ {1, 2, . . .} (8)

where the expected duration corresponds to

Epm
[

d
]

=
ν (1− δm)

δm
+ 1 = µ+ 1; δm =

ν

µ+ ν
, (9)

and variance, hence uncertainty about duration regularity, to

Varpm
[

d
]

= µ+
µ2

ν
. (10)

Note that the parameter ν of the negative binomial distribution,

acts as a precision parameter. We illustrate this in Figure 12.

The choice of prior beliefs about the between-reversal

interval d in the form of a negative binomial distribution

has interesting consequences on the dynamics of the marginal

probability that a reversal will occur at some future point τ

δm [τ ] = p(s1t+τ = 2|s1t−1 = 2, ft−1 = ν + 1,m)

=
∑

ft ,...,ft+τ

∑

s1t ,...,s
1
t+τ−1

p
(

s1t , ft|s
1
t−1 = 2, ft−1 = ν + 1,m

)

t+τ
∏

k=t+1

p
(

s1k, fk|s
1
k−1, fk−1,m

)

(11)

In Figure 13, we show the dependence of the future reversal

probability δm [τ ] on the precision parameter ν, given a fixed

mean duration Epm
[

d
]

= 20. Note that for ν = 1

we get a constant transition probability, which corresponds

to the expectations of change probabilities found in hidden

Markov models. In contrast, for larger values of ν one obtains

a trial-dependent, effective transition probability with values

alternating between low and high probabilities in a periodic

FIGURE 13

Expected transition probability at future trial τ . Estimate of the
transition probability δm[τ ] (Equation 11), at a future trial τ
conditioned upon a reversal at t and known initial state s1t . Each
curve corresponds to estimates of the transition probability
obtained from prior beliefs pm(d) shown in Figure 12.

manner. This temporal dependence of the transition probability

will affect the inference process. The agent will become

insensitive to subsequent reversals occurring a few trials after

the previous reversal, and highly sensitive to reversals occurring

twenty to thirty trials after the previous reversal.

Finally, the choice states s2t are fully dependent on the

current choice at ∈ {1, 2, 3}, and we express the state transition

probability as

p
(

s2t |s
2
t−1, at

)

= p
(

s2t |at

)

= δs2t ,at
. (12)

In practice this means that the agent is always certain about

the choice it made and how that choice impacted the state of

the task. Therefore, the posterior estimate over s2t can be trivially

expressed as

q(s2t |at) = δs2t ,at
.

4.4.3. Active inference
In active inference, agents form posterior beliefs both about

latent states of the environment and about their own actions.

In other words, both perception and action selection are cast

as inference problems (Attias, 2003; Botvinick and Toussaint,

2012). Practically, we will use variational inference for defining

update rules for beliefs (Blei et al., 2017; Friston et al., 2017). In

what follows we will first introduce perception as minimization

of the variational free energy (upper bound on log-marginal

likelihood) with respect to posterior beliefs over latent states,

and after that introduce action selection as minimization of

the expected free energy (Smith et al., 2022), that is, expected

surprisal about future outcomes.
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We write the generative model of outcomes ot on trial t as

p̃
(

ot , s
1
t , s

2
t , ft ,m,ρρρ

)

= p
(

ot|s
1
t , s

2
t ,ρρρ

)

p̃t

(

s1t |ft

)

p
(

s2t |at

)

p̃t
(

ft|m
)

p̃t (m) p̃t
(

ρρρ
)

, (13)

where we use p̃t(·) to denote prior beliefs conditioned on a

sequence of past outcomes, o1 : t−1 =
(

o1, . . . , ot−1
)

and choices

a1 : t−1 =
(

a1, . . . , at−1
)

. Given a choice a∗t and an observed

outcome ot at trial t, the approximate posterior belief qt(x) over

latent states x = (s1t , s
2
t , ft ,ρρρ,m) is obtained in two steps:

• We first compute the marginal likelihood with respect to

p̃t
(

ρρρ
)

, and obtain the exactmarginal posterior over discrete

states using the Bayes rule

qt

(

s1t , s
2
t , ft ,m

)

=
p̃t

(

ot , s
1
t , s

2
t , ft ,m

)

p̃t (ot)
. (14)

• Given the marginal posterior qt

(

s1t , s
2
t

)

=

∑

ft ,m
qt

(

s1t , s
2
t , ft ,m

)

we compute the posterior over

outcome probabilities using the variational message

passing update

qt
(

ρρρ
)

∝ p̃t
(

ρρρ
)

e

∑

s1t ,s
2
t
q
(

s1t ,s
2
t

)

ln p
(

ot |s
1
t ,s

2
t ,ρρρ
)

. (15)

As we initially defined the prior over outcome probabilities in

the form of a Dirichlet distribution with parameters α0α0α0, we

can express the posterior estimate on every trial in the same

functional form. Hence,

qt
(

ρρρ
)

=
∏

s1

∏

s2

Dir
(

ρρρs1,s2 |ααα
t
s1,s2

)

(16)

where

αt
s1,s2=a∗t ,i

= δot ,i · q
(

s1t = s1
)

+ αt−1
s1,s2=a∗t ,i

αt
s1,s2 6=a∗t ,i

= αt−1
s1,s2 6=a∗t ,i

, (17)

and p̃t
(

ρρρ
)

= qt−1
(

ρρρ
)

. The above belief updating scheme

corresponds to the variational surprise minimization learning

algorithm (Liakoni et al., 2021; Markovic et al., 2021) adapted

to the categorical likelihood and the Dirichlet prior.

4.4.4. Action selection
In active inference, decision strategies (behavioral policies)

are chosen based on a single optimization principle: minimizing

expected surprisal about observed and future outcomes, that is,

the expected free energy (Schwartenbeck et al., 2019; Smith et al.,

2022). Here, we will express the expected free energy of a choice

a on trial t as

Ga = DKL

(

p̃t(ot |a)||P(ot)
)

︸ ︷︷ ︸

Risk

+E
p̃t

(

s1t

)

p̃t(ρρρ)

[

H
[

ot |ρρρ, s
1
t , s

2
t = a

]
]

︸ ︷︷ ︸

Ambiguity

≈ −Ep̃t (ot |a)
[

ln P(ot)
]

︸ ︷︷ ︸

Extrinsic value

− Ep̃t (ot |a)

[

DKL

(

qt

(

s1t , s
2
t , ft |ot , a

)

||p̃t

(

s1t , s
2
t , ft |a

)
)
]

︸ ︷︷ ︸

Epistemic value

− Ep̃t (ot |a)

[

DKL

(

qt
(

ρρρ|ot , a
)

||p̃t
(

ρρρ
)
)

+ DKL

(

qt
(

m|ot , a
)

||p̃t (m)
)
]

︸ ︷︷ ︸

Novelty

(18)

where P(ot) denotes prior preferences over outcomes,

H
[

ot|ρρρ, s
1
t , s

2
t

]

the entropy of outcome likelihood

p
(

ot|ρρρ, s
1
t , s

2
t

)

, and DKL(p||q), stands for the Kullback-

Leibler divergence between two probability densities : p and q.

Note that action selection based on minimization of expected

free energy would have an implicit dual imperative (see the

different factorizations in Equation 18): On one hand, the

expected free energy combines ambiguity and risk. On the other

hand, it consists of information gain (epistemic value + novelty)

and extrinsic value. Therefore, selecting actions that minimize

the expected free energy dissolves the exploration-exploitation

trade-off, as every action contains both expected value and

information gain. This is a critical feature of action selection

which allows us to account for epistemic choices as used in our

experimental paradigm (see Figure 1).

At any trial t choice at is sampled from choice beliefs p(at)

(cf. planning as inference Attias, 2003; Botvinick and Toussaint,

2012) defined as

at ∼ p
(

at|γ ,PPPo, νmax
)

∝ e−γGa[PPPo,νmax ,t], (19)

where parameter γ corresponds to choice precision, which

we will attribute to empirical choice behavior of participants.

Therefore, for describing participants’ behavior we assume that

the action selection process is corrupted by external sources of

noise; e.g., mental processes irrelevant for the task at hand. In

our simulations we will fix γ to a reasonably large value, to

achieve approximate free energy minimization as the following

relation will be satisfied

at ≈ argminaGa, when γ ≫ 1. (20)

Notably, here we consider the simplest form of active

inference in which expected free energy is computed from a

one-step-ahead prediction. This is a standard simplification for

environments in which actions cannot interfere with the state

transitions, as is the case in typical dynamic multi-armed bandit

problems (Markovic et al., 2021).

To express the expected free energy,G(at), in terms of beliefs

about arm-specific reward probabilities, we will first constrain
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the prior preference to the following categorical distribution

P(ot) =
∏

ot

[Po]
δo,ot , Po =

(

p−, p+,
1

2
pc,

1

2
pc

)

(21)

In active inference, prior preferences determine whether a

particular outcome is attractive, that is, rewarding. Here we

assume that all agents prefer gains (ot = 2) over losses

(ot = 1). Hence, we constrain parameter values such that

p+ > p− holds always. The ratio
p+
pc

= λ determines the

balance between epistemic and pragmatic imperatives. When

prior preferences for gains are very precise, corresponding to

large λ, the agent becomes risk sensitive and will tend to forgo

exploration if the risk is high (see Equation 18). Conversely, a

low lambda corresponds to an agent which is less sensitive to

risk and will engage in exploratory, epistemic behavior, until it

has familiarized itself with the environment.

Given the following expressions for the marginal predictive

likelihood,

p̃t
(

ot|a
)

=
∑

s1t ,s
2
t

∫

p
(

ot|ρρρ, s
1
t , s

2
t

)

p̃t

(

s1t

)

p
(

s2t |a
)

p̃t
(

ρρρ
)

dρρρ

p̃t
(

ot|a
)

=

2
∑

s=1

p̃t

(

s1t = s
) 4
∏

o=1

[

µt−1
s,a,o

]δot ,o

µt−1
s1,s2,o

=
αt−1
s1,s2,o

∑

i α
t−1
s1,s2,i

, µ̄t−1
s2,o

=
∑

s1

p̃t

(

s1t = s1
)

µt−1
s1,s2,o

(22)

we get the following expressions for the expected free energy

Gt(a) =
∑

o

µ̄t−1
a,o ln

µ̄t−1
a,o

Po
−
∑

s1

p̃
(

s1t = s1
)

∑

o

µt−1
s1,a,o






ψ

(

αt−1
s1,a,o

+ 1
)

− ψ




1+

∑

j

αt−1
s1,a,j












(23)

Above we have used the following relation

∫

dxxxDir
(

xxx|ααα
)

xi ln xi =

αi
∑

j αj






ψ
(

αi + 1
)

− ψ




1+

∑

j

αj











, (24)

for computing ambiguity term in Equation (18).

4.5. Model inversion

To estimate subject-specific priors we effectively identified

prior beliefs (i.e., νmax, γ , and PPPo) that rendered the observed

choices the most likely under active inference (i.e., under ideal

Bayesian assumptions and the complete class theorem). In

other words, for any given
(

νmax, γ ,PPPo
)

, we can simulate belief

updating — given subject specific outcomes to evaluate the

expected free energy. The expected free energy then specifies the

probability of choices at each trial. These probabilities can be

used to assess the likelihood of any observed choice sequence

of nth subject, conditioned upon a particular set of priors

[p
(

νmax, γ ,PPPo
)

]. One can then explore the space of priors (i.e.,

model parameters) to evaluate the marginal likelihood or model

evidence for different combinations of priors.

In more detail, given a sequence of subjects’ responsesAAAn =
(

an1 , . . . , a
n
T

)

, where n denotes subject index and T = 1, 000

denotes the total number of trials, the response likelihood is

defined as

P
(

AAAn|γ ,PPPo, νmax
)

=

T
∏

t=400

p
(

at = ant |γ
n,PPPno , ν

n
max

)

. (25)

Note that for estimating the posterior overmodel parameters

(γ ,PPPo, νmax) we ignore the first 400 responses from the

likelihood. We expect that during these first trials, subjects are

still getting used to the task, and potentially use additional

strategies for representing the task andmaking choices. As we do

not model all possible task representations, exclusion of initial

trails reduces the noise in model comparison. Importantly,

we do use the entire set of responses for computing belief

trajectories of the active inference agents, that is, we expose the

agent to the complete sequence of individual responses and the

corresponding outcomes.

We define the prior over model parameters
(

νnmax, γ
n,PPPno

)

for the nth subject as follows:

p
(

γ n,PPPno , ν
n
max

)

= p
(

γ n
)

p (PPPo) p(ν
n
max), (26)

where for a prior over choice precision parameter γ we use an

inverse gamma distribution, thus

p
(

γ n
)

∼ Ŵ−1 (2, 2) , (27)

and for the prior over prior preferences PPPo we use a Dirichlet

distribution, such that

pni ∼ Dir
(

ppp|βββ
)

, βi = 1, i ∈ {1, 2, 3} ,

PPPno =

(

pn1
2
,
pn1
2

+ pn2 ,
pn3
2
,
pn3
2

)

.
(28)

With the above parameterization of prior preferences PPPo we

constrain the prior to reflect our expectations that all subjects

will have higher preferences for gains than for losses, and that

they will have equivalent preference associated with informative

cues, that is, epistemic choices. Finally, we define a prior over the

temporal precision parameter νmax as a categorical distribution

νnmax ∼ Cat
(

rrrn
)

(29)
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Marković et al. 10.3389/fnbeh.2022.962494

where rrrn = (rn1 , . . . , r
n
10) denotes prior probability over possible

νmax values. Here we adopt the approach known as random

effect Bayesian model selection (Stephan et al., 2009; Rigoux

et al., 2014) which treats models (i.e., different νmax values) as

random effects that could differ between subjects and conditions,

with an unknown population distribution. Hence, we introduce

a condition specific hyper-priors over model probabilities in the

form of a Dirichlet distribution

τ ∼ C+(0, 1)

rrr1 ∼ Dir
(

rrr1|ααα0/τ
)

rrr2 ∼ Dir
(

rrr2|ααα0/τ
)

(30)

where rrr1 corresponds to the condition with regular reversals and

rrr2 to the condition with the irregular reversals. Finally, τ plays

a role of a shrinkage parameter, that sets a non-zero probability

to a configuration where all models have equal frequency in the

population (in the limit τ → 0 we get rrr1 = rrr2 = 1
10 ). The

subject specific prior probability rrrn corresponds to one of the

two priors, based on the condition the subject was exposed to;

hence, rrrn ∈ {rrr1, rrr2}.

To implement the above hierarchical generative model

of subjects responses we used the probabilistic programming

library Numpyro (Phan et al., 2019). Numpyro library provides

an interface to multiple state-of-the-art inference schemes. For

drawing samples from the posterior we have used Numpyro’s

implementation of the No-U-Turn sampler (NUTS) (Hoffman

et al., 2014). NUTS is an self-tuning version of the Hamiltonian

Monte Carlo, a popular Markov Chain Monte Carlo algorithm

for avoiding randomwalks and sensitivity to between-parameter

correlations. The limitation of NUTS is that it can only

draw samples from continues random variables. Therefore, for

implementation purposes we have to marginalize the generative

model with respect to νmax.

The marginalization results in the following marginal

generative model:

τ ∼ C+(0, 1)

rrr1 ∼ Dir
(

rrr1|ααα0/τ
)

, α0,ν = 1, ν ∈ {1, . . . , 10} ,

rrr2 ∼ Dir
(

rrr2|ααα0/τ
)

, α0,ν = 1, ν ∈ {1, . . . , 10} ,

rrrn = f (rrr1, rrr2, n)

PPPno ∼ p
(

PPPno |βββ
)

, βi = 1, i ∈ {1, 2, 3} ,

γ n ∼ Ŵ−1 (2, 2) ,

AAAn ∼
∑

ν

rnν

1000
∏

t=400

p
(

at|γ
n,PPPno , νmax = ν

)

.

(31)

With the mixture model above we can unify the parameter

estimation with the model comparison (selection). Given a

sample from the posterior

rrrs1, rrr
s
2,PPP

n,s
o , γ n,s ∼ p

(

rrr1, rrr2,PPP
1 :N
o , γ 1 :N |AAA1 :N

)

(32)

we can obtain a sample from the marginal posterior

probability over νmax for the nth subject as

ps
(

νnmax = ν|AAA1 :N
)

=
p
(

AAAn|γ n,s,PPPn,so , νnmax = ν

)

rn,sν
∑

i p
(

AAAn|γ n,s,PPPn,so , νnmax = i
)

rn,si

.

(33)

To classify subjects’ behavior in terms of adaptability of

temporal representations we use the exceedance probability

(Rigoux et al., 2014) of the marginal posterior defined as

in,s = argmaxνp
s
(

νnmax = ν|AAA1 :N
)

,

Xn
i =

1

S

S
∑

s=1

δi,in,s ,
(34)

thus, obtaining the probability that the ith model has the highest

marginal posterior probability for the nth subject. The value

Xn
i is plotted in Figure 8. Finally, the most likely precision

parameter νnmax of the nth subject corresponds to νnmax =

argmaxiX
n
i which we than used for classification as illustrated

in Figures 9, 10.
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