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Acquired whole chromosome/segmental uniparental diso-
mies (wUPDs/sUPDs) are common in myeloid malig-
nancies [1, 2]. Already in the first publication on acquired
UPDs in AML [1], it was reported that a case with
UPD19q12-qter harbored a homozygous mutation in the
CEBPA gene in 19q13.11 and, soon afterward, AML cases
with sUPDs of 11p, 13q, and 21q were shown to carry
homozygous mutations of the WT1, FLT3, and RUNX1
genes [3]. There are now several examples of other UPD-
associated homozygously mutated genes in myeloid
malignancies, where heterozygous somatic mutations pre-
cede the mitotic recombination events [2].

UPDs occur with a similar frequency in BCP ALL as in
AML (~20%) [4, 5]. However, next to nothing is known
about the molecular consequences of UPDs in BCP ALL.
UPD9p is the only UPD investigated in any detail in BCP
ALL, where it is often associated with homozygous
CDKN2A deletions [4], and, to the best of our knowledge,
UPD16p is the only UPD in BCP ALL that has been

recurrently shown to result in homozygosity of a mutated
gene (CREBBP at 16p13.3) [6]. To ascertain whether UPDs
in BCP ALL are associated with the presence of homo-
zygous gene variants within the affected regions, we per-
formed whole-exome sequencing (WES) analyses of 25
UPD-positive BCP ALL cases.

The acquired wUPDs and sUPDs were identified by
single-nucleotide polymorphism array analyses of paired
diagnostic/remission samples at the Department of Clinical
Genetics and Pathology, Lund, Sweden, as previously
reported [4]. The 25 cases comprised 10 with high hyper-
diploidy (HeH; 51–67 chromosomes), 3 ETV6-RUNX1, 2
BCR-ABL1, 2 TCF3-PBX1, 1 with KMT2A rearrangement,
and 7 with non-characteristic abnormalities/normal kar-
yotypes (B-other), with a total of 16 wUPDs and 21 sUPDs.
The wUPDs involved chromosomes X, 1, 3, 5, 7, 8, 9, 11,
13, 16, and 19 and all but one were found in the HeH
subgroup. None of the wUPDs was associated with a
homozygous deletion. The sUPDs occurred in all genetic
subgroups and affected chromosome arms 6p, 7p, 9p, 9q,
10q, 11q, 12p, 12q, 14q, 16p, 17p, 17q, 18q, and 19p. Four
cases with UPD9p had homozygous CDKN2A deletions
(Supplementary Table 1).

WES was performed, as described in Supplementary
Materials and Methods, on DNA extracted from bone
marrow/peripheral blood cells obtained at diagnosis and
during remission. The bioinformatic analyses focused on
homozygous variants in the leukemic samples that were
homozygously wild type in the paired remission samples,
revealing a total of 373 putative somatic homozygous var-
iants in 24/37 (65%) UPDs (10 wUPDs and 14 sUPDs) in
15/25 (60%) cases (#1, 4–6, 8–14, 17, and 21–23; Sup-
plementary Table 1). Although UPD16p has been shown to
result in homozygosity of CREBBP in BCP ALL [6], case 1
with sUPD16p did not harbor any variants in this gene.

Among the 373 variants, the 173 (46%) intragenic splice-
site or exonic stop lost, deletions/insertions (delins), or non-
synonymous missense variants were selected for further
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analysis (Fig. 1). Forty-one variants in different HLA genes
were excluded due to the highly polymorphic nature of
these genes and the technical and bioinformatic challenges
they present. This resulted in 132 candidate variants in eight
cases, of which 128 (97%) were associated with sUPDs
involving 6p, 9p, 11q, 12q, and 19p and four (3%) with
wUPDs of chromosomes 3 and 11 (cases 4, 5, 8, 11–13, 21,
and 22; Supplementary Table 1). Sixty-five of the variants
in 55 genes in six cases were confirmed, by Sanger
sequencing (Supplementary Materials and Methods; Sup-
plementary Tables 2 and 3), to be acquired (cases 4, 5, 12,
13, 21, and 22) (Fig. 1). The remaining variants could not
be verified because of: (i) lack of DNA (59 variants; Sup-
plementary Table 4); (ii) failed sequencing reactions (2
variants); (iii) six variants were not homozygous at diag-
nosis and wild type at remission.

The PolyPhen (http://genetics.bwh.harvard.edu/pph2/),
PROVEAN (http://provean.jcvi.org/index.php), and SIFT
(http://sift.jcvi.org/) software tools were used to predict
whether the 65 Sanger-confirmed variants affected protein
function. The 12 splice-site, stop lost, and delins were
considered pathogenetic by default. Of the 53 non-
synonymous missense variants, 22 were predicted to be
“possibly damaging”, “probably damaging”, “damaging”,
or “deleterious” by at least one of the three programs. In
total, 34 UPD-associated acquired homozygous splice-site,
stop lost, delins, and non-synonymous missense variants in
32 genes were predicted to have damaging/deleterious
effects on their corresponding proteins (Fig. 1, Table 1).
The variants occurred in 6 (24%) of the 25 cases (4/7 (57%)
B-other cases, 1/2 (50%) BCR-ABL1-positive cases, and 1/
10 (10%) HeH cases), and were found in 7 (19%) of the 37
UPDs (1/16 (6%) wUPDs and 6/21 (29%) sUPDs; cases 4,
5, 12, 13, 21, and 22; Table 1). Six variants (in the ATG7,
DNAJC13, JAK2, SH2B3, UBAP2, and ZSCAN23 genes)
were not listed in dbSNP Build 141 (https://www.ncbi.nlm.
nih.gov/projects/SNP/snp_summary.cgi?build_id=141),
whereas the remaining 28 damaging/deleterious gene var-
iants have all been reported as germline variants in dbSNP
Build 141. However, they were clearly somatic in our cases,
not seen in matched remission samples.

The present study is the first to focus specifically on the
possible association between UPDs and homozygous gene
mutations in BCP ALL. WES analysis of UPD-positive
BCP ALL cases identified a large number of candidate
variants—most of which are probably “passengers”. It is,
however, noteworthy that 97% of the 132 candidate variants
were associated with sUPDs and only 3% with wUPDs.
This strongly indicates that the pathogenetic consequences
of sUPDs and wUPDs differ. We have previously shown
that wUPIDs in pediatric BCP ALL are restricted to the
HeH subgroup, where they may reflect the underlying
mechanism of the high hyperdiploid pattern in some cases,
namely an initial tetraploidization followed by chromosome
losses. This would result in a third of the disomies being
wUPDs by chance alone [4]. Because the numerical
abnormalities in HeH ALL are early, likely primary, events
in the genesis of this subtype [7], the present finding of a
general lack of homozygous variants in wUPDs may simply
reflect that variants most often arise after wUPD formation
and hence are heterozygous. It is, however, noteworthy that
two homozygous variants associated with wUPD3 were
identified in case 22; thus, they occurred prior to the wUPD
event. The sUPDs, on the other hand, are probably later
events in the leukemogenic process and hence more likely
to duplicate somatically acquired variants.

The final set of 34 variants were observed in only 24% of
the 25 BCP ALL cases and 19% of the 37 UPDs, but were
enriched in B-other cases and in sUPDs (Table 1). This

Fig. 1 Flowchart of the number of cases and wUPDs/sUPDs investi-
gated in the various analysis steps
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Table 1 The 34 UPD-associated somatic homozygous variants in 32 genes predicted to have damaging/deleterious effects

Case no. UPD Gene symbola Genetic
subgroup

Type of
variant

Exon no. Protein
position

Amino-acid
change

Software tool

PROVEAN SIFT PolyPhen

4 11q CBL B-other Delins 9 460–461 Deletion of
Asp

— — —

5 12q GRIP1 B-other Missense 3 84 Arg→Gln Deleterious Damaging Probably
damaging

5 12q SH2B3 “ Delins 6 396 Premature stop — — —

12 9p JAK2 B-other (DS) Missense 16 683 Arg→Gly Deleterious Damaging Probably
damaging

13 9p CER1 B-other Missense 1 19 Arg→ Trp Neutral Damaging Benign

13 9p FREM1 “ Missense 10 465 Gly→Ala Deleterious Damaging Probably
damaging

13 9p CNTLN “ Missense 11 562 Arg→ Cys Deleterious Damaging Benign

13 9p “ “ Splice-site — — — — — —

13 9p IFT74 “ Missense 20 597 Thr→ Ile Neutral Damaging Benign

13 9p IFNK “ Delins 1 13 Premature stop — — —

13 9p DDX58 “ Missense 1 7 Arg→ Cys Deleterious Damaging Probably
damaging

13 9p UBAP2 “ Missense 14 509 Arg→ Trp Deleterious Damaging Probably
damaging

21 6p HUS1B BCR-ABL1 Missense 1 201 Gln→Arg Neutral Damaging Benign

21 6p BMP6 “ Missense 1 96 Leu→ Pro Neutral Tolerated Possibly
damaging

21 6p ATXN1 “ Missense 8 753 Pro→ Ser Neutral Damaging Benign

21 6p ZSCAN23 “ Splice-site — — — — — —

21 6p OR2W1 “ Missense 1 81 Met→Val Neutral Damaging Benign

21 6p UBD “ Missense 2 68 Ile→ Thr Deleterious Damaging Probably
damaging

21 6p GTF2H4 “ Splice-site — — — — — —

21 6p CDSN “ Missense 2 410 Leu→ Ser Neutral Tolerated Possibly
damaging

21 6p STK19 “ Splice-site — — — — — —

21 6p NOTCH4 “ Delins 1 15 Deletion of Ser — — —

21 6p TAP2 “ Stop lost 12 687 Stop→Gln — — —

21 6p RPL10A “ Splice-site — — — — — —

21 6p PNPLA1 “ Missense 6 193 Glu→Gly Deleterious Damaging Possibly
damaging

21 6p PEX6 “ Missense 13 809 Ala→Val Deleterious Damaging Probably
damaging

21 19p TMIGD2 “ Missense 3 138 Pro→ Leu Deleterious Tolerated Benign

21 19p SAFB2 “ Missense 10 457 Thr→Ala Deleterious Damaging Benign

21 19p FCER2 “ Splice-site — — — — — —

21 19p “ “ Splice-site — — — — — —

21 19p RGL3 “ Missense 5 162 Pro→His Deleterious Damaging Probably
damaging

21 19p PALM3 “ Missense 6 412 Thr→Arg Neutral Damaging Possibly
damaging

22 3 ATG7 HeH Missense 3 62 Arg→His Deleterious Damaging Probably
damaging

22 3 DNAJC13 “ Missense 52 2039 Pro→ Ser Deleterious Damaging Benign

DS Down syndrome, HeH high hyperdiploidy (51–67 chromosomes), UPD uniparental disomy
aGenes previously reported to be involved in B-cell precursor acute lymphoblastic leukemia are indicated in bold type
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genetically and clinically heterogeneous group has received
much attention in recent years, with the aim to subdivide it
into homogeneous subtypes, on the basis of gene expression
profiles and patterns of fusion genes, deletions, and muta-
tions. As the present study shows, WES analyses of sUPDs
in B-other cases may provide pertinent data in this regard by
identifying genes of potential pathogenetic importance in
this subtype.

None of the 32 genes targeted by the 34 variants was
recurrently involved among the cases analyzed. Further-
more, only five of the targeted genes have previously been
implicated in BCP ALL. BMP6 and FREM1 mutations have
so far been reported in single BCP ALL cases only (https://
cancer.sanger.ac.uk/cosmic), whereas CBL, JAK2, and
SH2B3 mutations are recurrent in BCP ALL. CBL is rarely
mutated in BCP ALL, but identifying cases with CBL
mutations may be clinically relevant because they have been
shown to be associated with constitutive activation of the
RAS pathway and to be sensitive to MEK inhibitors [8].
JAK2 mutations, resulting in constitutive activation of the
JAK-STAT signaling pathway, are present in ~4% of BCP
ALL in general but are particularly common (~20%) in BCP
ALL in children with Down syndrome (DS) [9]. The single
case with UPD9p and a homozygous JAK2 mutation in our
cohort was also a DS-ALL (Table 1). In addition, this case
had a homozygous CDKN2A deletion associated with the
UPD9p. This shows that a sUPD can result in homozygosity
of two distinct gene changes; thus, one should not assume
that UPD9p-associated homozygous CDKN2A deletions are
the only pathogenetically important consequences of this
sUPD. SH2B3 plays an important role in the homeostasis of
hematopoietic stem cells and lymphoid progenitors, and
homozygous somatic SH2B3 mutations have previously
been identified in ALL, suggesting a tumor suppressor role
[10]. The underlying mechanism for the homozygosity of
SH2B3 mutations has not been previously addressed, but, as
seen herein, UPD12q is clearly one mechanism.

Among the 27 novel BCP ALL-associated genes iden-
tified, five have previously been implicated in other hema-
tologic malignancies: DDX58 regulates proliferation of
AML cells [11], ATXN1 and TAP2 polymorphisms are
associated with increased risks of chronic lymphocytic
leukemia and follicular lymphoma, respectively [12, 13],
and deletion of Atg7 in a murine model results in a mye-
loproliferation resembling human AML [14]. Furthermore,
NOTCH4 activation has been shown to lead to reduced
differentiation and altered lymphoid development [15].
Thus, these genes may be of particular interest in BCP ALL.
However, this remains to be elucidated, as does the poten-
tial impact of the other gene variants (Table 1).

In summary, we conclude that sUPDs in BCP ALL may
highlight chromosomal regions carrying genes of importance
in the leukemic process, particularly in the B-other group.
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Saracatinib impairs maintenance of human T-ALL by targeting the
LCK tyrosine kinase in cells displaying high level of lipid rafts
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T-cell acute lymphoblastic leukemia (T-ALL) is a hematolo-
gical malignancy characterized by an excessive proliferation
of immature T-cells. To achieve remission, patients typically
undergo two years of chemotherapy inducing acute and
chronic side effects. To reduce chemotherapy intensity in
newly diagnosed patients and to efficiently treat relapsed
patients, developing new therapies is essential [1]. Lipid rafts
(LR) are cholesterol-enriched patches located in the plasma
membrane and behave as platforms surrounding many pro-
teins, which have a critical role in cell signaling driving cell
fate. They represent a key component of the signal trans-
duction pathway that contributes to signal intensity modula-
tion in normal hematopoiesis [2] and in normal lymphoid T-
cell functions [3–5]. Affecting LR has been suggested to be a
promising therapeutic approach for the treatment of several
hematological cancers [6–8], as well as for T-cell leukemia
[9–11].

We analyzed the LR composition of T-ALL cells samples
from PDX- (patient-derived xenograft-) mice. Cells displayed
different levels of LR (low: LRlo, high: LRhi) upon staining with
cholera toxin subunit B (CTB), which is known to bind to
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