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Abstract: Inhibitor of DNA binding (ID) proteins bind to and inhibit the function of basic helix-loop-helix transcription 
factors, including those that regulate proliferation and differentiation during development. However, little is known about 
the role of ID proteins in glial activation under neuropathological conditions. In this study, we evaluated the expression 
of ID4 following induction of excitotoxic lesions in mouse brain by kainic acid injection. The number of ID4-expressing 
astrocytes increased in the CA1 layer of the injured hippocampus until 3 days post-lesion. To analyze the eff ects of ID4 on cell 
proliferation, primary astrocytes were transduced with recombinant adenovirus expressing GFP-ID4. Overexpression of ID4 
led to increased proliferation of astrocytes. Th ese results suggest that ID4 plays a proliferative role in astrocyte activation aft er 
excitotoxin-induced hippocampal neuronal death. 
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domain. It is well documented that the expression of each 
ID gene occurs in many regions of the developing nervous 
system in a complex and dynamic manner [4]. 

ID4 is a member of the ID protein family, and its ex-
pression is essentially restricted to the developing nervous 
system, whereas expression of ID1-3 is much more widespread 
during mouse embryogenesis [5, 6]. Early in neurogenesis, 
ID4 expression is prominent in the ventricular zone (VZ) 
of specific regions of the central nervous system (CNS), 
including the developing forebrain. Later, ID4 expression 
is apparent in the cortical plate of the telencephalon and 
the subventricular zone (SVZ) of the basal ganglia [5]. ID4 
expression is also observed in the postnatal and adult brains 
[7, 8]. Earlier data indicated that ID4 is involved in glial cell 
development. ID4 expression is down-regulated in cAMP-
induced astrocyte diff erentiation, and overexpression of ID4 
was previously shown to induce apoptosis in an astrocyte-
derived cell line [7]. In the developing rat optic nerve, the 
level of ID4 expression is strong in immature oligodendrocyte 

Introduction

Inhibitor of DNA binding (ID) proteins are members of the 
basic helix-loop-helix (HLH) family of transcription factors, 
but they lack a DNA-binding domain [1, 2]. ID proteins act 
as positive and/or negative regulators of gene expression 
through interactions with other HLH transcription factors in 
a context-dependent manner. ID proteins aff ect many cellular 
activities, including cell growth, diff erentiation, and apoptosis 
[3]. ID protein families share a highly conserved HLH 
domain and are similar in size between 13 and 20 kDa, but 
they display extensive sequence variation outside the HLH 
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precursor cells, but then decreases with age and during 
culture [9]. Moreover, ID4 is present in both glioblastoma and 
oligodendroglioma specimens [10]. In human glioma cells, 
forced ID4 expression can drive malignant transformation 
by stimulating expression of cyclin E, resulting in a 
hyperproliferative profi le, as well as jagged1, which activates 
Notch1 activation to drive astrocytes into a neural stem-like 
state [11]. 

Although previous studies have focused on the mecha-
nism of glial cell proliferation during development and 
tumorigenesis, few studies have examined changes in ID4 
expression in glial cells and its specific function under 
neuropathological conditions. In this sense, kainic acid 
(KA)-induced brain damage may be a suitable model for 
evaluating the function of ID4 during reactive gliosis, as 
administration of KA induces excitotoxic brain injury via 
oxidative stress. Furthermore, KA produces a highly specifi c 
pattern of neuronal loss in the hippocampus accompanied 
by intense reaction of both astrocytes and microglia [12, 
13]. Accordingly, the aim of this study was to evaluate the 
temporal and cellular expression patterns as well as putative 
function of ID4 following excitotoxic hippocampal lesion 
formation and glial activation in the adult mouse brain. 

Materials and Methods

Experimental animals and lesions 
Male ICR mice (Samtako, Seoul, Korea) weighing 23-25 g 

each were used in this study. Animals were housed in a room 
under a controlled light/dark cycle (12 hour light/12 hour 
dark) at a temperature at 23oC. Food and water were available 
ad libitum. All animal-related procedures were conducted in 
accordance with the guidelines of the Institutional Animal 
Care and Use Committee of Chungnam National University 
(2009-3-17). KA (Sigma, St. Louis, MO, USA) was prepared 
as a stock solution at 5 mg/ml in sterile 0.1 M phosphate-
buff ered saline (PBS, pH 7.4); aliquots were stored at −20oC 
until required. Intracerebroventricular (ICV) injection of KA 
(0.1 μg/5 μl in PBS) was performed according to a previously 
established procedure [14]. Briefly, KA was injected at the 
bregma using a 50 μl Hamilton microsyringe fitted with a 
26-gauge needle inserted to a depth of 2.4 mm. Control mice 
received an equal volume of saline. KA-injected animals 
(n=8 in each group) and saline-injected control animals (n=6 
in each group) were allocated to three groups, which were 

sacrifi ced at predetermined times aft er KA administration. 

Tissue preparation
One day, 3 days, and 7 days after KA or saline injection, 

mice were anesthetized with sodium pentobarbital (50 
mg/kg i.p.) and perfused transcardially with heparinized 
PBS, followed by 4% paraformaldehyde in PBS. Brains 
were removed, immersed in the same fixative for 4 hours, 
cryoprotected in 30% sucrose solution, embedded in tissue 
freezing medium, and then frozen rapidly in 2-methyl butane 
pre-cooled to its freezing point with liquid nitrogen. Frozen 
coronal sections (35 μm) were obtained using a Leica cryostat. 
Alternating sections were mounted on gelatin-coated slides or 
stored free fl oating in anti-freeze buff er. Sections mounted on 
gelatin-coated slides were stained with cresyl violet for routine 
histological examination. The stored free-floating sections 
were processed using immunohistochemical techniques, as 
detailed below.

Immunohistochemistry
Parallel free-fl oating sections were subjected to endogenous 

peroxidase blocking with 1% H2O2 in PBS, followed by 
treatment with blocking buff er (1% fetal bovine serum [FBS] 
in PBS and 0.3% Triton X-100 for 30 minutes) and incubation 
with ID4 (1 : 100, sc-491, Santa Cruz Biotechnology, Santa 
Cruz, CA, USA). After washing with PBS, tissues were 
exposed to biotinylated anti-rabbit IgG and streptoavidin 
peroxidase complex (Vector, Burlingame, CA, USA). 
Immunostaining was visualized with diaminobenzidine 
(DAB) and tissues mounted using Polymount (Polysciences, 
Warrington, PA, USA). Double immunofluorescence 
experiments were performed using CyTM3-conjugated anti-
rabbit IgG (1 : 400, Amersham, Buckinghamshire, UK) 
for ID4 and CyTM2-conjugated anti-mouse IgG (1 : 600, 
Amersham) for glial fi brillar acidic protein (GFAP), a marker 
of astrocytes. All immunoreactions were observed under an 
Axiophot microscope (Carl Zeiss, Jena, Germany).

Western blot analysis
Hippocampi from the KA-treated (4 hours, 12 hours, 

1 day, 3 days, and 7 days) and control mice were dissected 
and homogenized in lysis buffer (50 mM TrisCl, 150 mM 
NaCl, 0.02% sodium azide, 100 μg/ml phenylmethylsulfonyl 
fluoride, 1 μg/ml aprotinin, 1% Triton X-100). After 
centrifugation, protein concentrations were determined in 
supernatants using Micro BCA protein assay kits; bovine 
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serum albumin was used as a standard (Pierce Chemical, 
Rockford, IL, USA). Aliquots containing 20 μg of protein 
were resolved by 12% sodium dodecyl sulfate polyacrylamide 
gel electrophoresis and transferred onto nitrocellulose 
membranes. For immunostaining, membranes were 
incubated in 5% skim milk in PBST (0.3% Triton X-100 in 
PBS) for 1 hour to block non-specific binding, followed by 
probing with ID4 and β-actin (1 : 5,000, Sigma, St. Louis, 
MO, USA) antibodies. Membranes were washed three times 
for 10 minutes each in PBST, followed by incubation for 1 
hour with peroxidase-labeled secondary antibody (Vector) 
diluted 1 : 2,000 in PBST. Aft er three more washes, immuno-
labeled proteins were detected by chemiluminescence using 
a Supersignal ECL kit (Pierce Chemical) and Biomax Light-1 
fi lm (Kodak, New Haven, CT, USA). Th ree individual samples 
from the experimental hippocampi at each time point were 
used for Western blotting. 

Primary astrocytes culture
Rat primary cerebral astrocytes were purified from 

neonatal rats according to standard procedure [15]. Briefly, 
a P1 Sprague-Dawley rat pup (Samtako, Osan, Korea) was 
decapitated in an ice-chilled dish and the brain removed. 
After removing the meninges, the cerebral cortex was 
dissected and dissociated in Hanks’ balanced salt solution 
(Invitrogen, Carlsbad, CA, USA) with 55.5 mM glucose, 
20.4 mM sucrose, and 4.2 mM sodium bicarbonate. After 
centrifugation, the cells were plated on poly-L-lysine-coated 
T75 flasks and maintained in modified Eagle’s medium 
(MEM) containing 20% FBS, 100 μm non-essential amino 
acid solution, 2 mM L-glutamine, and antibiotics. After 7 
days, the fl asks were agitated on an orbital shaker for 12 hours 
at 200 rpm at 37oC, and the non-adherent oligodendrocytes 
and microglial cells were removed. The flasks were then 
trypzinized and expanded in Dulbecco’s MEM growth media 
containing 10% FBS, 2 mM L-glutamine, and 1 mM sodium 
pyruvate. Under these conditions, the purity of the astrocytes 
population was 95%, as determined by immunofl uorescence 
analysis using anti-OX-42 to detect microglial cells, anti-
CNPase to detect oligodendrocyte contamination, and GFAP 
to identify astrocytes.

Creation of adenovirus expressing ID4 
The replication-incompetent adenovirus was created 

using the Virapower adenovirus expression system (In-
vitro gen) as previously reported [16, 17]. Briefly, full-

length cDNA was obtained using the primer pair 
5'-ATGAAGGCGGTGAGCCCG and 5'-GCGGCACAG 
AATGCTGTC, which was subcloned into the pENT/CMV-
GFP entry vector. Th en, site-specifi c recombination between 
the entry vector and adenoviral destination vector pAd/PL-
DEST was carried out using LR clonase II (Invitrogen). Th e 
resulting adenoviral expression vector was transfected into 
293A cells using Lipofectamine 2000 (Invitrogen). Cells 
were grown until the cytopathic eff ect reached 80% and then 
harvested for preparation of stock recombinant adenovirus. 
Th e adenovirus was amplifi ed in 293A cells and purifi ed with 
an Adeno-XTM virus purification kit (Clontech, Palo Alto, 
CA, USA).

Results

Histology of KA-induced hippocampus 
Introduction of KA by ICV is a well-established 

excitotoxicity model that induces behavioral manifestations 
of seizures in mice as well as selective hippocampal cell death 
[18]. Hippocampal neuronal cell death was measured by 
cresyl violet staining. Aft er KA administration, characteristic 
loss of pyramidal neurons in the CA1 and CA3 subfields 
of the ipsilateral hippocampus was observed from 1 day 
post-injection in mice (Fig. 1A2, 1A3), whereas no obvious 
neuronal loss was observed in the ipsilateral hippocampus of 
PBS-injected mice (Fig. 1A1). Pyramidal cell degeneration 
was more apparent in the CA3 region than the CA1 region, 
although cell death was also observed to a lesser extent in the 
CA1 region. Glial reactivity with small nuclei was increased 
in the hippocampus from day 1 to day 3 (Fig. 1A4-6).

ID4 expression in astrocytes following excitotoxicity
Although ID4 immunoreactivity (IR) was not observed 

in the control, it did occur in small glial cells in the vicinity 
of the hippocampus 1 day after KA treatment. Incidence 
of ID4 IR in cells increased significantly and was scattered 
throughout the CA1 region 3 days after KA treatment (Fig. 
1B1-3). At higher magnification, ID4 IR evidently induced 
star-shaped morphology in activated glial cells in association 
with brain injury (Fig. 1B4-6). We performed double labeling 
experiments with GFAP, an astrocyte marker, to confirm 
which cell types were ID4 IR cells. ID4 IR cells co-localized 
with GFAP IR cells (Fig. 2). These results demonstrate that 
ID4-positive cells were predominantly activated astrocytes 
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in the hippocampi of KA-treated mice. Western blot analysis 
showing the relative level of ID4 expression in KA-treated 
mice further confirmed the temporal pattern of ID4 IR 
observed in the immunohistochemical studies. Anti-ID4 

antibody detected a single band of 18 kDa. Th e level of ID4 in 
the hippocampus began to increase on day 1 post-lesion and 
reached a maximum on day 3. Subsequently, the amount of 
ID4 decreased until 7 days post-lesion (Fig. 3).

Fig. 1. Cresyl violet staining (A) and inhibitor of DNA binding 4 (ID4) immunoreactivity (IR) (B) in control (A1, A4, B1, B4) and kainic acid 
(KA)-treated mice on days 1 (A2, A5, B2, B5) and 3 (A3, A6, B3, B6). (A) In contrast to normal mice tissue, pyramidal degeneration was apparent 
in the CA3 region on days 1 and 3 post-lesion (arrows in A2, A3). In addition to pyramidal cell loss, small glial cell reactivities were evident 
(arrowheads in A5, A6). (B) In the control, ID4 IR was not found in the hippocampus (B1). In the KA-injured hippocampus, strong ID4 IR was 
observed on day 1 post-lesion (B2) and became maximal on day 3 (B3). Higher magnifi cation of rectangular areas (B1-3) in the hippocampus 
shows sequential changes in ID4 IR cells. Note that ID4 IR cells exhibited the characteristic star-shaped morphology of astrocytes (B6). Cont, 
control; SO, stratum oriens; P, pyramidal cell; SR, stratum radiatum. Scale bars=200 μm (A1-3, B1-3), 20 μm (A4-6, B4-6). 
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Proliferative role of ID4 in astrocytes
Previous studies demonstrated that ID4 induces prolife-

ration and diff erentiation in the CNS [19-22]. To confi rm the 
eff ect of ID4 on proliferation, we constructed a recombinant 
adenovirus expressing ID4 (Ad/ID4). In Ad/ID4-transduced 
primary astrocytes, expression of ectopic ID4 was detected by 
Western blotting (Fig. 4A). Overexpression of ID4 resulted 
in a remarkable increase in cell number compared with 
the control group (Ad/GFP) (data not shown). To measure 
the degree of proliferation, we subjected the AD/ID4-
transduced primary astrocytes to immunoblotting with a cell 
proliferation marker, Ki-67, which is a cell cycle-associated 
protein expressed in G1 phase through the end of M phase. 

Fig. 2. Double immunofl uorscence staining for identifi cation of inhibitor of DNA binding 4 (ID4)-positive cells in kainic acid (KA)-treated mice. 
ID4 (A, D) and GFAP (B, E) co-localized well in the CA1 region of the KA-injected hippocampus on day 3 (arrowheads in D, E). GFAP, glial 
fi brillar acidic protein; SO, stratum oriens; P, pyramidal cell; SR, stratum radiatum. Scale bars=100 μm (A-C), 20 μm (D-F).

Fig. 3. Western blot analysis showing the temporal pattern of 
inhibitor of DNA binding 4 (ID4) expression in the hippocampus 
following kainic acid treatment. Th e amount of ID4 began to increase 
significantly on day 1 post-lesion and reached a maximum on day 3. 
Subsequently, the amount of ID4 decreased on day 7. Cont, control; d, 
day.

Fig. 4. Expression of inhibitor of DNA binding 4 (ID4) by adenoviral 
transduction in astrocytes (A), and the eff ect of ID4 on proliferation 
of astrocytes (B). (A) Cells were transduced with adenovirus expressing 
GFP-ID4 (Ad/ID4) at a multiplicity of infection of 10 for 6 h. Aft er 
washing twice with phosphate-buff ered saline, cells were incubated in 
growth medium for 24 h. Expression of ID4 was verifi ed by Western 
blotting using anti-ID4 antibody. Adenovirus expressing GFP (Ad/
GFP) was used as a negative control. (B) Cellular proteins were 
separated on ployacrylamide gels, transferred onto a nitrocellulose 
membrane, and then reacted with anti-Ki-67 antibody. Anti-actin 
antibody was used as a loading control. 

This result confirms that ID4 mediated cell proliferation in 
astrocytes (Fig. 4B). 

Discussion

This study examined the expression of ID4 in the 
excitotoxically damaged mouse hippocampus. We observed 
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that ID4 was expressed in astrocytes following excitotoxically 
hippocampal neuronal death. The majority of these cells 
corresponded to reactive astrocytes based on their antigenic 
properties and morphological appearance. To our knowledge, 
this is the fi rst report of ID4 induction in activated astrocytes 
during KA-induced excitotoxic brain injury. Previous works 
have shown that ID genes are highly expressed with distinct 
and overlapping patterns in the nervous system during 
development and then decreased in expression in later stages 
[5, 22]. In this study, we also found no ID4 IR in the normal 
adult mouse brain. However, expression of ID4 increased in 
the astrocytes aft er KA-treated brain injury. 

It has been well reported that ID4 plays an important role 
in cell proliferation, diff erentiation, and tumorigenesis. ID4 is 
a transcriptional target of p53, and depletion of mutant p53 
protein severely impairs ID4 expression in proliferating tumor 
cells. The protein complex mutant p53-E2F1 assembles on 
specifi c regions of the ID4 promoter whereupon it positively 
controls ID4 expression. ID4 protein binds, stabilizes and 
enhances the translation of mRNAs encoding the pro-
angiogenic cytokines, such as interleukin 8 and growth-
regulated oncogene (GRO)-alpha. Th erefore, ID4 increases the 
angiogenic potential of cancer cells [23]. In addition, ID4 is 
highly expressed in the glioblastoma multiforme, which is the 
most common and aggressive type of primary astrocytoma, 
and plays an integral role in the transformation of astrocytes 
[11]. Tumor-derived cell cultures expressing elevated levels of 
ID4 produce enlarged xenograft s in immunosuppressed mice 
that vascularize better than corresponding control tumors. 
This suggests a novel pro-angiogenic function for ID4 in 
the growth of glioblastoma xenograft s [24]. In this sense, we 
tried to identify a putative role for ID4 in astrocytes as gain of 
function using an adenoviral vector. Overexpression of ID4 
induced the proliferation of astrocytes. Based on these results, 
we speculate that ID4 plays a role in the proliferation of 
astrocytes following excitotoxic hippocampal neuronal death.

Previously, glial activation was observed in scattered glial 
cells in whole hippocampus [12, 13]. However, we observed 
that ID4 was expressed in astrocytes, especially the CA1 layer, 
following excitotoxic hippocampal neuronal death. Except for 
olfactory bulb neurogenesis, little is known about the role of 
neural precursor cells residing in the SVZ of ventricle walls 
[25]. Under certain pathological conditions, a small number 
of these cells have been shown to contribute to regenerative 
neurogenesis outside the classical neurogenic regions of 
the brain [26], namely, the olfactory bulb and hippocampal 

dentate gyrus. In another study, when pyramidal neurons 
in the hippocampal CA1 area were eliminated by focal 
ischemia, restorative neurogenesis was achieved by high-dose 
administration of fibroblast growth factor 2 and epidermal 
growth factor [27]. This regeneration originated from cells 
migrating into the CA1 region from the ventricle wall, in 
particular from the caudal SVZ. In addition, prolonged status 
epilepticus has been reported to recruit SVZ glial progenitors 
to the CA1 and CA3 regions [28].

ICV KA administration results in the degeneration of a 
vast majority of CA3 pyramidal neurons and a significant 
fraction of dentate hilar neurons. However, both CA1 
pyramidal neurons and dentate granular cells are unaff ected 
by ICV KA administration. Degeneration of CA3 pyramidal 
neurons leads to signifi cant deaff erentiation of the dendrites 
of CA1 pyramidal neurons. Thus, diffuse and pervasive 
synaptic reorganization and hyperexcitability occur in the 
CA1 subfield after ICV KA-induced CA3 lesion formation 
[29]. It is important to stress that these changes in astrocytes 
have been observed in the absence of overt neuronal 
degeneration. Th erefore, our fi nding that ID4 was expressed 
following excitotoxic hippocampal neuronal death in 
astrocytes of the CA1 layer, which were previously SVZ 
glial progenitors that migrated to the CA1 from the caudal 
SVZ, implies that proliferation occurred. In summary, we 
demonstrated that KA-induced excitotoxic neuronal death 
and glial activation induces ID4 expression in astrocytes, 
and ID4 plays an important role in astrocytic proliferation in 
response to excitotoxin in vivo. 
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