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Non-HodgkinB-cell lymphomas (B-NHL)mainly developwithin lymphnodes as aggregates of

tumor cells densely packedwith their surroundingmicroenvironment, creating a tumorniche

specific to each lymphoma subtypes. In vitro preclinicalmodelsmimickingbiomechanical

forces, cellularmicroenvironment, and 3Dorganizationof B-cell lymphomas remain scarce,

while all these parameters are key determinants of lymphomagenesis anddrug resistance.

Using amicrofluidicmethodbased on cell encapsulation inside permeable, elastic, andhollow

alginatemicrospheres,wedeveloped anew tunable 3Dmodel incorporating lymphomaB cells,

extracellularmatrix (ECM), and/or tonsil stromal cells (TSC). Under 3D confinement, lymphoma

B cellswere able to formcohesive spheroids resulting fromoverexpression of ECMcomponents.

Moreover, lymphomaB cells andTSCdynamically formed self-organized 3D spheroids favoring

tumor cell growth. 3D culture induced resistance to the classical chemotherapeutic agent doxo-

rubicin, but not to theBCL2 inhibitorABT-199, identifying this approach as a relevant in vitro

model to assess the activity of therapeutic agents in B-NHL. RNA-sequence analysis highlighted

the synergy of 3D, ECM, andTSC inupregulating similar pathways inmalignant B cells in vitro

than those overexpressed inprimary lymphomaB cells in situ. Finally, our 3Dmodel including

ECMandTSC allowed long-term in vitro survival of primary follicular lymphomaB cells. In con-

clusion,wepropose anewhigh-throughput 3Dmodelmimicking lymphoma tumorniche and

making it possible to study thedynamic relationshipbetween lymphomaBcells and theirmicro-

environment and to screennewanti-cancer drugs.

Introduction

Non-Hodgkin lymphomas (NHL) are a group of common hematological malignancies, with the majority of
them originating from B cells. Follicular lymphoma (FL) and diffuse large B-cell lymphomas (DLBCL), the
2 most frequent B-cell NHL (B-NHL),1,2 result from the malignant transformation of germinal center (GC)
or post-GC B cells. FL are indolent lymphomas characterized by the occurrence of the
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Key Points

� 3D alginate spheroid
model supports self-
organization of
lymphoma B cells and
stromal cells
mimicking lymphoma
cell niche.

� This high-throughput
3D model is suitable
for testing new
therapeutic agents in
B-NHL.
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t(14;18)(q32;q21) translocation combined with additional recurrent
somatic alterations.3 Two major subtypes of aggressive DLBCL,
GC B-cell (GCB) and activated B-cell (ABC)–DLBCL, have been
identified using gene expression profiling, reflecting their putative
cell of origin and molecular alterations.4 Despite a better under-
standing of the pathophysiology of these tumors, frontline therapy
remains based on a combination of conventional chemotherapies
such as CHOP (cyclophosphamide, doxorubicin, vincristine, and
prednisone) and a monoclonal antibody against CD20. Nonetheless,
relapse/refractory DLBCL, corresponding to �30% of patients,
remains a major unmet medical need with poor outcome, whereas
FL is still an incurable disease.3,5 It is now widely accepted that
tumors constitute a complex ecosystem composed of many cell

types regulated by biological, structural, chemical, and mechanical
cues that altogether participate in the effectiveness of treatment.6

The tumor microenvironment (TME) of B-NHL contains highly vari-
able numbers of heterogeneous immune cells, stromal cells, blood
vessels, and extracellular matrix (ECM), and the interplay between
these elements produces a tumor niche specific to each lymphoma
subtype.7,8 Dave et al9 initially revealed that the survival of patients
with FL correlates with the immune signature of the tumor at diagno-
sis. Indeed, FL exhibits a high dependence on a GC-like microenvi-
ronment where immune and stromal cells support survival,
proliferation, and migration of malignant B cells. In turn, FL cells
modulate the phenotype and function of their surrounding microenvi-
ronment. In particular, FL-infiltrating stromal cells are engaged in a
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Figure 1. B-NHL spheroids obtained by using the cellular capsule technology. (A) Representative images of cell growth in alginate capsule shells over time for the various

cell lines. Scale bar, 100 mm. (B) Percentage of SUDHL4 and HLY1 cell death measured after shell dissolution and spheroid dissociation at 6, 8, and 12 days after encapsulation. To

evaluate cell death, propidium iodide (PI) (10 mg/mL) was added to the cell suspension and PI fluorescence was analyzed by flow cytometry (n 5 3). (C) Immunostaining showing the

repartition of proliferating and apoptotic cells in SUDHL4 and HLY1-derived spheroids at 8 or 12 days post-encapsulation. Five micrometers thick sections were stained with anti-Ki67

(Ki67, in green) and anti-cleaved caspase 3 (CC3, in red) to identify proliferating and dead cells, respectively. Nuclei are depicted in blue (Dapi staining). Scale bar, 100 mm.
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bidirectional crosstalk with malignant B cells within infiltrated lymph
nodes (LN) and bone marrow.10-12 Conversely, DLBCL are less
dependent on LN microenvironment, but specific stromal signatures
impact DLBCL prognosis.7,13,14 Importantly, studies exploring func-
tional interactions between lymphoma B cells and stromal cells gen-
erally used 2D in vitro culture models, whereas biomechanical
forces and 3D organization emerge as key determinants of lym-
phoma pathogenesis and drug resistance. Multicellular spheroids or
tumor organoids represent promising models, allowing high-
throughput screening of anticancer drugs in versatile systems mixing
several cell types and ECM components. While 3D culture models
are increasingly developed for solid cancer,15 their transfer to

lymphoma modeling is still limited and includes: (1) multicellular
aggregates of lymphoma cells, which are obtained using the hang-
ing drop and ultra-low attachment method, and are useful for testing
drug efficacy but do not account for the effect of cell-cell and cell-
ECM interactions,16-18 (2) 3D lymphoma organoid models integrat-
ing lymphoid-like stromal cells or integrin-specific binding peptides
recapitulating more accurately lymphoma microenvironment, but diffi-
cult to handle and low-throughput,19 and (3) a DLBCL-on-chip
model utilizing lymphoma and TME murine cells, enabling the in vitro
modeling of DLBCL niche and associated vasculature.20 However,
modeling the interactions of the TME with primary lymphoma B cells
in 3D cocultures remains a challenge. In particular, 3D cocultures
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Figure 2. B-NHL spheroids are cohesive and express extracellular matrix. (A) Pictures showing the maintenance of SUDHL4 and HLY1 spheroids after capsule

dissolution by incubation in Phosphate Buffered Saline (PBS) containing 1 mM EGTA. Scale bar, 100 mm. (B) Immunostaining showing the expression of extracellular matrix

in cells cultured in suspension (2D) or in spheroids (3D). Extracellular matrix components were visualized by staining with anti-pan Laminin and anti-Collagen I antibodies on

5mm thick sections of spheroids embedded in paraffin. Nuclei are depicted in blue. Scale bar, 50 mm. (C) RT-qPCR revealing the upregulation of LAMC1 and COL1A

expression in SUDHL4 and HLY1 cultured in 3D compared with 2D (n 5 3).
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Figure 3. The establishment of a stromal network is necessary to reproduce stromal-dependent B-NHL cell growth. (A) Effect of Matrigel (Mg) and TSC on

spheroid growth. Left panel, representative images of spheroids obtained from B cells encapsulated alone (3D) or with Mg (3D1Mg) or with Mg1TSC (3D1Mg1TSC) at
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have been successful only with primary DLBCL cells21 but not with
primary FL cells.

In the present study, using a microfluidic method based on the
encapsulation of cells inside permeable, elastic, and hollow alginate
microspheres,22 we developed a new tunable 3D model incorporat-
ing lymphoma B cells, together with ECM and/or stromal cells. We
observed that lymphoma B cells and stromal cells formed 3D sphe-
roids, whose internal architecture was driven by self-organization,
and recapitulated some of the molecular features of FL tumors.
Moreover, this approach made it possible to assess drug efficacy in
a relevant in vitro B-NHL model. Finally, this 3D model allowed the
survival of primary FL B cells in vitro, removing a technological bot-
tleneck to study TME and tumor cell relationships in this still fatal
malignancy.

Methods

Details regarding reagents and additional experimental methods are
provided in the supplemental Methods.

Encapsulation procedure

Cell encapsulation was performed essentially as previously
described.23,24 First, the microfluidic device was 3D printed
and a glass capillary (�150 mm diameter) was glued to the exit
of the device. Then, three solutions loaded in syringes mounted
to pumps were injected into the coaxial cones of the device.
The outermost cone contained the alginate solution, the inter-
mediate cone contained a 300 mM sorbitol solution, and the
innermost cone contained the cells in sorbitol or Matrigel/sorbi-
tol solution. Composite droplets exiting the nozzle fell in a 100
mM CaCl2 bath for gelling on. Once formed, capsules were
washed with cell culture medium. Cellular capsules were cul-
tured in Dulbecco’s modified Eagle medium supplemented with
10% FBS.

Cell lines and primary stromal and FL cells

Tonsil stromal cells (TSC) were isolated as previously described10,25

from routine tonsillectomy. SUDHL4 DLBCL and DOHH2 FL cell
lines were obtained from the DSMZ cell collection. HLY1 DLBCL
cell line was kindly provided by F. Meggetto (Centre de Recherches
en Canc�erologie de Toulouse). FL biopsies came from subjects
recruited under written informed consent recovery according to the
Principles of the Declaration of Helsinki and the French National
Cancer Institute (INCa) ethics committee recommendations and
were used to purify primary lymphoma B cells.

Immunofluorescence staining of spheroids

After fixation, immunofluorescence was performed either in capsulo
or on Formalin-Fixed Paraffin-Embedded spheroid sections, as

described in supplemental Methods. Images were acquired using a
Zeiss LSM 510 meta confocal microscope (Zeiss) with a 25x objec-
tive (N.A 0.7) and were then processed using Fiji software.

Cell coculture and cell sorting

2D and 3D cocultures were performed over 3 and 10 days, respec-
tively, before staining with mouse anti-human CD20 APC-H7 and
mouse anti-human CD73 PE (e-Bioscience) and sorting of
CD20posCD73neg B cells on a FACSAria II (BD Biosciences).

RNA-sequence analysis

RNA was extracted using the Nucleospin RNA XS Micro kit from
Macherey Nagel. Libraries were prepared using the SMARTer Low
Input RNA kit (Takara). All libraries were sequenced on an Illumina
Hiseq2500 platform. Data normalization and differential gene
expression were performed with the DESeq2 v1.26.0 R package.
Significant genes were defined as P , .05 after adjustment for mul-
tiple testing by False Discovery Rate (FDR) correction and used in
downstream analysis. Principal Component Analysis was visualized
using the Factoextra v1.0.7 R package. Gene Set Enrichment Analy-
sis (GSEA version 4.1.0) was used for the analysis of DOHH2 and
HLY1 gene expression profile (GEP) to identify the gene sets that
were enriched between 2 conditions. Results were then compared
with those obtained by comparing the GEP of purified FL B cells
and purified centrocyte (Affymetrix microarrays, purified centrocytes,
GSE136248, n 5 5; purified FL B cells, GSE85233, n 5 10)26

after Limma analysis with an FDR of 5% and an absolute fold
change .1.5.12

Statistical analyses

All data were expressed as means 6 standard error of the mean. The
significance of differenceswas calculated using the parametric analysis
of variance or the nonparametricMann-WhitneyU orWilcoxon tests, as
appropriate. (*P, .05, **P, .01, ***P, .001, ****P, .0001).

Results

B-NHL cell lines form cohesive spheroids in

scaffold-free alginate capsules

To produce spheroids from lymphoma B-cell lines, we used the cel-
lular capsule technology, initially developed to generate spheroids
from solid cancer tumor cells.22,23 Three B-NHL cell lines have
been selected for encapsulation as representative models for
GCB-DLBCL (SUDHL4), ABC-DLBCL (HLY1), and FL (DOHH2).
From image-based analysis (N 5 656), the average capsule diame-
ter was 215.9 6 1.3 mm, and the capsules contained an average of
18.2 6 0.8 cells per capsule (N 5 48) (supplemental Figure 1).
During the first 11 days, SUDHL4 and HLY1 proliferated and aggre-
gated to form spheroids. Contrastingly, DOHH2 cells were not able

Figure 3. (continued) D7 (HLY1), D6 (SUDHL4), or D10 (DOHH2) of culture. Scale bar, 200 mm. Right panel, the B cell number was evaluated over time in the different

conditions (n 5 3). (B) TSC network needs Mg to be established. Left, example of GFP-TSC encapsulated without Mg and B-cells. Right, example of TSC encapsulated

with Mg but without B-cells. TSC were visualized in green by stable expression of GFP, and nuclei were stained in blue with Hoechst 33252. Capsules were imaged 3 days

after encapsulation. Images were maximum intensity projection from z-stacks. Scale bar, 100 mm. (C) TSC network is necessary to induce DOHH2 spheroid growth.

DOHH2 cells were coencapsulated with TSC-GFP with or without Mg for 10 days. TSC were visualized in green by stable expression of GFP. (D) TSC/Mg interaction.

GFP-TSC were encapsulated alone in the presence of Mg. After 3 days in culture, capsules were fixed and immunofluorescence was performed. Mg and TSC were

visualized by staining with anti-human pan laminin (in red) and anti-GFP (in green), respectively. Nuclei were counterstained in blue with Hoechst 33258. Images were

maximum intensity projection from z-stacks. Scale bar, 50 mm. Yellow square is a crop showing the anchoring of TSC on Mg coating. Scale bar, 10 mm.
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to grow and form spheroids even after 17 days (Figure 1A), sug-
gesting their requirement of a supportive microenvironment in the
context of the low number of cells seeded in each individual cap-
sule. Culture of the 3 B-NHL cell lines in limiting dilution conditions

in 2D confirmed the low clonality potential of DOHH2 compared
with SUDHL4 (supplemental Figure 2). However, HLY1 similarly
exhibited a limited clonal activity whereas they efficiently proliferated
in 3D spheroids. Cell survival in SUDHL4 and HLY1 spheroids was
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evaluated at various culture timepoints using propidium iodide label-
ing. We defined as 3D confluence the stage when cells filled up the
capsule and reached the internal wall of the alginate shell, and as
3D post-confluence the stage when cell growth triggered an
increase of the capsule size and a decrease of alginate wall thick-
ness (supplemental Figure 3). The percentage of dead cells
remained as low as 20% to 30% during the first week in culture
and then increased to �60% after 8 to 12 days, as evaluated upon
spheroid dissociation and flow cytometry quantification (Figure 1B).
EdU staining revealed that the early stages of spheroid growth were
characterized by a high proliferation rate, while the post-confluent
stage exhibited a significant decrease in cell proliferation concomi-
tant with cell death increase (supplemental Figure 4). To determine
whether this survival decrease was associated with the formation
and growth of a dead cellular core, as observed in solid tumor sphe-
roids,27,28 we performed immunostaining for cell proliferation (Ki67)
and cell death (cleaved-caspase 3). Neither Ki67 nor cleaved-cas-
pase 3 regionalization was detected prior or after 3D confluence
(Figure 1C). In the same way, no hypoxic core was observed, even
if HLY1 spheroids exhibited more hypoxic cells at post-confluence
than SUDHL4 spheroids (supplemental Figure 5).

Interestingly, the integrity of the cell aggregates observed after con-
fluence was maintained upon capsule dissolution (Figure 2A; sup-
plemental Video 1 and 2), demonstrating that the capsule content
was not only a confined cell suspension but rather formed truly
cohesive spheroids, potentially related to confinement-induced ECM
secretion. We thus compared by immunofluorescence the expres-
sion of Laminin and Collagen I, 2 ECM components expressed in
secondary lymphoid organs,29,30 by cells maintained in suspension
(2D) or in capsules (3D). SUDHL4 already expressed Collagen I in
2D culture and upregulated Laminin in 3D spheroids. Conversely,
HLY1 displayed Laminin expression in 2D and 3D cultures but
increased Collagen I in 3D spheroids (Figure 2B). These observa-
tions were confirmed by RT-qPCR, revealing the increase of both
COL1A and LAMC1 expression in the 2 cell lines in 3D compared
with 2D cultures (Figure 2C). Altogether, the cellular capsule tech-
nology emerges as a valuable approach to produce cohesive lym-
phoma spheroids from B-NHL.

Tumor B-cell and stromal cell co-encapsulation and

self-organization promote spheroid growth

Since B-NHL are organized as mixed aggregates of tumor cells and
lymphoma-supportive non-malignant components,8 we decided to
aim for a more physiopathological model by introducing lymphoid
stromal cells isolated from human tonsils (TSC)25 and ECM compo-
nents (Matrigel). Lymphoma cell growth, evaluated by cell counting,
was differentially regulated by the presence of ECM and stromal
cells. The addition of ECM in capsules had no impact on spheroid
formation whatever the cell line studied. However, the presence of
ECM and stromal cells significantly increased the growth kinetic of

SUDHL4 spheroids, and they even promoted DOHH2-derived
spheroid formation and growth, whereas they had no impact on
HLY1 spheroid growth (Figure 3A). These results suggest that our
3D model recapitulates the variability of TSC-dependence among
B-cell NHL.31

We next sought to decipher how stromal cells play a support-
ive role on DOHH2 spheroid formation. DOHH2 cells were
coencapsulated with TSC in the presence or absence of a
layer of Matrigel anchored to the inner wall of the capsules.23

In the absence of Matrigel, the capsule wall remained cell-
repellent, and stromal cells formed clusters inside the capsules
but were unable to induce DOHH2 spheroid growth (Figure
3B-C). By contrast, in the presence of Matrigel, TSC anchored
and spread onto ECM, leading to the formation of a ramified
3D network that subsequently supported B-cell proliferation
(Figure 3 B-D; supplemental Video 3-4). We then monitored
the stromal cell network dynamic by imaging capsules after 2, 24, 48,
72, and 96 hours of culture using confocal microscopy (Figure 4A).
By solely focusing on stromal cells, we performed 3D 1 time image
analysis and measured sphericity and branchness that both character-
ized the evolution of the stromal cell network complexity. High spheric-
ity index indicated a compact morphology of the stromal network,
thus offering a limited surface of interaction with B cells. Conversely,
high branchness index was associated with a ramified network that
increased the probability of B-cell stromal cell physical contacts. Stro-
mal cell morphology was significantly modified as early as 24 hours
after encapsulation, as revealed by the opposite variation of the sphe-
ricity and branchness indexes (Figure 4B-C). In addition, after a rapid
initial change, both parameters underwent a slower but continuous
evolution in the same correlated manner, indicating that the increased
branching architecture of the stromal network was not a disorganized
and random feature but was sustained by a self-organization process
(Figure 4D).

B-NHL sensitivity to chemotherapy in 3D vs 2D

cell culture

To determine whether the 3D architecture could alter the drug
response of lymphoma B cells, we evaluated the effect of doxorubi-
cin, one of the components of the CHOP multidrug therapy, on cell
death of B-NHL cell lines cultured in 2D or 3D at confluence. We
revealed that the IC50 for doxorubicin increased in SUDHL4 and
HLY1 cells cultured in 3D without ECM and TSC compared with
2D after 24 hours or 48 hours of treatment (supplemental Figure 6).
However, no additional effect was observed in the presence of TSC
(Figure 5A-C). Similar increase of resistance to doxorubicin was
obtained after treatment of DOHH2 with doxorubicin in 3D with
TSC compared with 2D with TSC. This tumor-supporting activity of
3D coculture was not observed when the BCL2 inhibitor ABT-199
was used, suggesting that malignant B cells retained their depen-
dence on BCL2 for survival in 3D1TSC conditions (Figure 5D).

Figure 5. (continued) presence of TSC. For 3D culture, 100 confluent capsules, containing B cells alone or B cells with TSC in the presence of Matrigel, were seeded.

2D and 3D cultures were exposed to doxorubicin at a concentration corresponding to its IC50, and GFPneg B-cell death was evaluated after 24 hours by flow cytometry. (D)

Comparison of cell death induced by ABT-199 (1 mM) in DOHH2 cells cultured in 2D alone (upper panel) or in 2D1TSC or 3D1TSC1Matrigel (lower panel) at confluency,

for 24 hours. The data represent mean 6 standard error of, at least, 3 independent experiments (Wilcoxon test, *P , .05, ****P , .0001). (E) Doxorubicin diffusion in

spheroids. Flow cytometry analyses of doxorubicin fluorescence in cells cultured in suspension (2D) or in 3D alone (3D) or in 3D with Matrigel and TSC (3D1 Mg1TSC)

before confluence (D4) or at confluence (D9-D10) and treated with 1mg/ml doxorubicin for 4 hours. Numbers represent the median fluorescence intensity of cells.
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Impaired diffusion of doxorubicin within the spheroids and result-
ing decrease in the local concentration of the drug could be the
cause of its reduced anti-tumor activity in 3D. We took advan-
tage of the fluorescent properties of doxorubicin to compare its
drug penetration in cells cultured in 2D and 3D in the presence
or absence of ECM and TSC. Before confluence, we observed
no difference in doxorubicin staining between cells cultured in
2D vs 3D or 3D1ECM1TSC, indicating that the alginate shell
did not impede drug diffusion. However, at confluence, cells cul-
tured in 3D or 3D1ECM1TSC exhibited a decrease in doxorubi-
cin staining compared with cells in 2D (Figure 5E). Altogether,
these results suggest that in these conditions of high cell density
doxorubicin resistance largely relies on altered drug diffusion
inside spheroids.

Microencapsulated 3D cocultures recapitulate

features of primary FL B cells

In order to better define how 3D and TSC impacted B-NHL growth
in vitro, we compared by RNAseq the GEP of HLY1 and DOHH2
maintained in 2D vs 3D culture with or without TSC. Unsupervised
principal component analysis nicely segregated HLY1 maintained in
2D without TSC (H2D), from HLY1 maintained in 2D with TSC
(HT2D), and HLY1 encapsulated in 3D spheroids (supplemental
Figure 7). However, HLY1 displayed a very similar GEP in 3D cul-
ture system, whatever the presence of TSC and ECM, in agreement
with the complete lack of impact of TSC on HLY1 cell growth within
spheroids (Figure 3A). DOHH2 maintained in 2D without (D2D) or
with (DT2D) TSC, and DOHH2 seeded in alginate spheroids with
TSC and ECM (DT3D) exhibited a distinct GEP. We used GSEA
to identify the molecular pathways underlying the specific gene sig-
natures identified by DESeq2 analysis of these RNA-sequence data
(supplemental Table 1). Concerning HLY1, the same pathways
were induced by 3D culture, whatever the presence of TSC and
ECM, including numerous cell signatures related to cell proliferation,
together with TNF/NF-kB pathway (Figure 6A). These data were
confirmed by analyzing the enrichment for transcription factor (TF)
targets, identifying several TF involved in cell proliferation as more
active in H3D and HT3D than in their 2D counterparts (Figure 6B).
Conversely, for DOHH2, whereas DT3D upregulated cell prolifera-
tion pathways compared with DT2D, this was not associated with
an additional activation of NF-kB pathway that was dependent on
the contact with TSC (Figure 6C). Moreover, TSC upregulated
genes associated with TGF-b signaling pathway and hypoxia as
shown by the direct comparison of DT2D and D2D conditions.
These data were confirmed by analyzing TF target enrichment, iden-
tifying NF-kB and SMAD members as activated by the contact of
DOHH2 with TSC in both 2D and 3D conditions (Figure 6D). Of
note, genes downregulated by TSC in DOHH2 reflected a
decreased cell proliferation (supplemental Figure 8), confirming that
the combination of TSC and 3D organized the best supportive
niche for this FL B-cell line by triggering both proliferation and TNF/
TGFb pathways. Conversely, TSC did not trigger GEP

modifications reflecting cell proliferation inhibition in HLY1 in 2D nor
3D (data not shown). To further increase the relevance of our data,
we analyzed the molecular pathways activated in purified FL B cells
compared with purified normal centrocytes using already published
Affymetrix microarray data12,26 (Figure 6E). Interestingly, TNF/NF-
kB, hypoxia, and TGFb belonged to the top pathways significantly
enriched in FL GEP, as reported for DOHH2 maintained in 3D
spheroids with TSC, suggesting that our spheroid culture model
mimicked, at least partly, the context of FL LN.

Microencapsulated 3D cocultures enable primary FL

B-cell survival

A major challenge in studying primary FL B cells is to maintain them in
culture long enough to perform functional experiments. Based on the
data obtained with the DOHH2 cell line, we encapsulated FL B cells
purified from 2 patients (FL1 and FL2) with Matrigel and TSC and com-
pared the evolution of the B-cell number in 3D with that obtained in 2D
with or without TSC. FL B cells were found admixed with stromal cells
within 3D spheroids at both Day 3 and Day 14 and showed a good
cell viability with less than 10 dead cells/capsule at each time point for
both FL samples (Figure 7A; supplemental Video 5-6). The number of
FL B cells decreased over time but after 2 weeks 3D spheroids still
contained�50% of the number of FL B cells quantified at Day 3 (FL1:
D3: 127 6 13 9. cells per capsule vs D14: 53 6 11.4 cells per cap-
sule; FL2: D3: 102.76 19.1 cells per capsule vs D14: 476 8.7 cells
per capsule), while the number of TSC remained stable. Importantly,
the number of FL B cells at Day 11 in 3D coculture with TSC was
higher than in 2D without TSC and seemed to be even slightly higher
than in 2D with TSC (Figure 7B). These observations constitute a
proof-of-concept that cellular capsule technology might be a promising
approach to study FL cell physiopathology in a 3D context.

Discussion

Lymphomas develop as complex cell structures including tumor
cells and their microenvironment within mechanically constrained
LN. Previous lymphoma spheroid models incorporating only malig-
nant B cells17,18,32 suggest that the 3D cell architecture is a key
feature for the regulation of lymphoma growth and therapeutic
response. LN are highly dynamic structures expanding and becom-
ing mechanically stiff under immune cell recruitment and prolifera-
tion, whereas immune response resolution is associated with LN
contraction and return to a baseline of mechanical softness.33 LN
mechanical properties rely on several determinants, including the
external constraint of the capsule and the internal tension created
by the TSC network able to produce and contract ECM. Mechano-
sensing has been recently demonstrated to control T-cell activation
and metabolism,34 and mechanical forces are involved in both T-cell
receptor35 and B-cell receptor36 signaling. Mouse models of FL
and DLBCL cannot entirely recapitulate the biology of these
tumors37 and, due to their inherent complexity and cost, they are
not suitable to study specific cell interactions contributing to the

Figure 6. (continued) factor (TF) targets in HLY1 signatures as determined using TRRUST database with EnrichR website. The 10 more significant predicted TF are

represented. (C) The DT2D (DOHH2 in 2D with TSC) vs D2D (DOHH2 in 2D with TSC), DT3D (DOHH2 in 3D with TSC) vs D2D (DOHH2 in 2D), and DT3D vs DT2D

gene signatures were analyzed by GSEA using HallMark MSigDB. (D) Enrichment of TF targets in DOHH2 signatures as determined using TRRUST database with EnrichR

website. The 10 more significant predicted TF are represented. (E) Upregulated gene pathways identified by GSEA using in HallMark MSigDB in FL B cells vs centrocytes

based on Affymetrix microarray data. The 10 more significant predicted pathways are represented.
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organization of lymphoma cell niche or to perform drug screen-
ing. The development of 3D lymphoma models including mechan-
ical constraints is therefore of particular relevance to advance the
understanding and treatment of these neoplasia. In the present
work, we adapted a microfluidic approach to recapitulate the lym-
phoma microenvironment in hollow, permeable alginate shells,
forming high-throughput (�5000/s), size-controlled, and easy to
handle spheroids.22 Such a strategy is ideally suited for drug

testing, and the versatility of the technique allows generating 3D
monocultures (ie, from tumor B cells only) or cocultures and to
evaluate the impact of ECM.

First, the proliferation of malignant B cells alone within spheroids
results in cohesive multicellular aggregates promoted by the over-
secretion of ECM in 3D compared with 2D cultures. Although
expression and secretion of ECM have been mainly described in
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stromal cells, we demonstrated here that lymphoma B cells display
a similar ability, as already proposed for normal plasmablasts38 and
plasma cells,39 or leukemic B cells.40 How ECM expression is regu-
lated remains unclear. We could, however, hypothesize that it may
originate from the activation of a mechanotransduction pathway as
already described in other cell types.41,42 Remarkably, alginate cap-
sules are elastic, meaning that cell growth past confluence dilates
the capsule, which conversely applies a compressive force onto the
spheroid.22 Although not investigated in depth, we observed that
the cohesion of spheroids was stronger for post-confluent capsules,
which would support this mechanotransduction hypothesis.

Second, as previously reported using other 3D models, some B-cell
lines were unable to grow and form spheroids when maintained
alone in capsules, reproducing the strong dependency of FL on
their niche for survival and growth. Guided by our previous studies
showing that lymphoid-like stromal cells have a supportive effect on
FL B cells,10,25,43 we added TSC to generate hybrid stroma-tumor
3D lymphoma models. Interestingly, our 3D model reproduced the
different levels of NHL microenvironment dependency, mimicking
the biology of aggressive versus indolent lymphomas.7 By contrast
with other 3D culture approaches that consist of embedding cells in
an ECM scaffold,17,19,44,45 our alginate spheroid model allows cell
motions and interactions, leading to an early self-organization of a
stroma-tumor B-cell network that could organize localized 3D
niches, promoting cell interactions within the spheroids.

The 3D-induced drug resistance has been already reported in solid
cancers and hematological malignancies.17,19,46 We confirmed here
that the sensitivity to doxorubicin dramatically dropped when cells
were cultured in 3D compared with 2D in all investigated B-NHL
cell lines. The lack of doxorubicin effect in 3D was at least partly
due to a diffusion impairment of the drug caused by the high cell
density and ECM secretion in late spheroids and acting as a barrier
to drug diffusion. This mimics what is known in tumors where not all
the cancer cells are exposed to the same concentration of drugs
because of poor drug diffusion through the ECM,47 causing the
tumor to relapse or develop drug resistance. By contrast, the proa-
poptotic activity of ABT-199, mediating the dissociation of BCL2
with the proapoptotic BH3 only proteins, was maintained in 3D
cocultures. This could be attributed to the ability of ABT-199 to
induce apoptosis, thus creating channels for drug diffusion inside
spheroids, suggesting that ABT-199 could be efficient in patients.
Although, the results of the phase 2 CONTRALTO study48 did not
demonstrate a clear benefit of venetoclax addition to bendamustine
and Rituximab, and clinical studies have to be pursued by optimizing
the dosage of venetoclax and better selecting patients according to
their molecular profiles as it was recently done in the phase 2 CAV-
ALLI clinical trial in DLBCL.49 Finally, recent preliminary data con-
cerning the combination of venetoclax with ibrutinib in relapsed or
refractory FL seem promising.50 More generally, the cellular capsule
technology adapted for lymphoma 3D culture seems a useful high-
throughput platform to screen new therapeutic approaches in
B-NHL, taking into account the dynamic crosstalk between tumor
cells and their supportive microenvironment.

Interestingly, a thorough analysis of malignant B-cell GEP revealed a
complementary effect of TSC and 3D culture on the growth of
DOHH2 cell line. Whereas we cannot examine the direct impact of
3D constraint alone on DOHH2, it was shown to trigger a massive
activation of cell proliferation pathways in HLY1. Conversely, TSC

reduced expression of TF and gene pathways associated with cell
cycle progression in DOHH2, a suppressive activity already
reported in coculture of B-cell NHL with bone marrow mesenchymal
stromal cells (BM-MSC).51 However, TSC activated the NF-kB
pathway, a process previously involved with the anti-apoptotic activ-
ity of BM-MSC on primary lymphoma B cells52,53 and that could be
required in 3D conditions, when very few cells were encapsulated
in each spheroid. As a whole, the combination of 3D and TSC trig-
gered a GEP close to that of primary FL B cells in the DOHH2 cell
line, including in particular a deregulation of TNF/NF-kB, hypoxia,
and TGF-b/SMAD. Whereas cell-intrinsic or TME-dependent NF-kB
activation is a well-described hallmark of B-NHL, FL tumor niche
GEP was only recently found enriched for gene networks related to
TGFb signaling.54 Moreover, TGFb could contribute to the priming
by FL B cells of BM-MSC and LN stromal cells into tumor-
supportive stromal niches.12,55 Finally, one study describes an
upregulation and an activation of SMAD1 in malignant FL B cells,56

suggesting that TGF-b signaling could play a major role in the inter-
play between B cells and stromal cells in FL. How TSC are pheno-
typically and functionally remodeled by malignant B cells during 3D
coculture remains to be explored. This proximity between DOHH2
cocultured with TSC in 3D and FL B cells prompted us to evaluate
whether our spheroid model could allow the survival of primary lym-
phoma cells. Interestingly, we demonstrated for the first time that
purified FL B cells could be maintained in vitro in 3D conditions in a
model allowing high-throughput drug testing and follow-up of cell
behavior and phenotypic evolution.
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