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Abstract

Laboratory automation and mathematical optimization are key to improving the efficiency of synthetic biology research. While there
are algorithms optimizing the construct designs and synthesis strategies for DNA assembly, the optimization of how DNA assembly
reaction mixes are prepared remains largely unexplored. Here, we focus on reducing the pipette tip consumption of a liquid-handling
robot as it delivers DNA parts across a multi-well plate where several constructs are being assembled in parallel. We propose a linear
programming formulation of this problem based on the capacitated vehicle routing problem, as well as an algorithm which applies a
linear programming solver to our formulation, hence providing a strategy to prepare a given set of DNA assembly mixes using fewer
pipette tips. The algorithm performed well in randomly generated and real-life scenarios concerning several modular DNA assembly
standards, proving to be capable of reducing the pipette tip consumption by up to 59% in large-scale cases. Combining automatic
process optimization and robotic liquid handling, our strategy promises to greatly improve the efficiency of DNA assembly, either used
alone or combined with other algorithmic DNA assembly optimization methods.
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1. Introduction

Among the key factors driving synthetic biology research, which is
concerned with efficiently engineering organisms with useful new
properties, is the automation of laboratory processes. Allowing to
produce much larger and higher-quality experimental datasets,
it not only accelerates the rate of research, but also enables the
use of computational analysis tools that require large amounts of
experimental data, which are difficult to produce in a reasonable
time by low-throughput human manual labor [1].

Implementing a genetic circuit in living organisms typically
involves DNA assembly—the joining of DNA fragments (‘parts’),
where each part is usually a functional genetic element, into a
longer nucleic acid chain (‘construct’), which can then be intro-
duced into a host organism to induce the desired phenotype. Like-
wise to other aspects of synthetic biology research, DNA assembly
has been greatly impacted by the adoption of laboratory automa-
tion practices—namely, the use of liquid-handling robots [2]. A
particular advantage of using such robots is the parallel prepa-
ration of multiple different constructs in distinct wells of a single
multi-well array plate, which greatly improves the throughput and
time efficiency of DNA assembly.

Metrics quantifying the cost and time benefits of executing a
given DNA assembly scenario by a liquid-handling robot instead
of a human worker have been proposed [3]. Furthermore, recent
years have seen the rise of algorithms aiming to improve the effi-
ciency of automated DNA assembly. Primarily, they deal with the
design stage of the research cycle: for example, the number of
reactions required to obtain the desired construct in a multistep
assembly can be minimized by representing possible sequences of
assembly steps as graphs and selecting the optimal one [4]. Alter-
natively, optimization algorithms may determine the set of DNA
fragments from which the desired construct can be assembled
most efficiently. These fragments can also be codon optimized to
increase gene expression and facilitate DNA assembly by tuning
the nucleotide sequence’s GC content. Thus, a trade-off between
the assembly’s design requirements and the ease of DNA manu-
facturing can be found algorithmically [S]. Meanwhile, lower-level
optimization of a liquid-handling robot’s exact actions as it sets
up DNA assembly mixes (e.g. when several constructs are made in
parallel) has largely remained neglected. This contrasts with the
general practice of process automation, where compilers optimize
the commands and execution order of human-written programs
on several levels at once [6].

Many of the widely adopted DNA assembly standards
(e.g. BASIC [2], MoClo [7] or Start-Stop assembly [8]) are ‘one-pot’,
which means that a DNA construct is produced by mixing all of
its parts together, so that they autonomously assemble into the
desired construct. Therefore, setting up parallel DNA assembly
reactions on a well plate involves preparing different mixtures
of several DNA parts in different wells. Although in the case of
parallel one-pot assemblies a single part is most often required
in multiple distinct constructs, reusing the same pipette tip to
deliver a part to several wells introduces a high risk of contam-
inating a master mix by the DNA parts present in the previously
visited wells. Therefore, usually either a new tip is used for deliv-
ery to each well, which results in an excessively large uptake of
pipette tips and thus increased operating costs, or the pipette is
washed after every delivery, which can be time-consuming.

However, the need for washing or changing the tip after each
DNA part addition can be avoided. Suppose that at some point
in the robot’s program a single tip has already distributed a cer-
tain DNA part to several wells and now proceeds to the next well.

If none of the previously visited wells contain any DNA parts that
have not been added to the next well earlier in the robot’s program,
there is no risk of contaminating the next well by any DNA part
that would not already be present there. Figure 1 showcases the
minimization of pipette tip consumption for a simple example of
parallel DNA assembly of a pair of two-part constructs following
this principle.

Therefore, for every DNA part, the order in which it is deliv-
ered to the construct well where it is required can be optimized
so as to minimize the number of pipette tips needed to perform
all of its additions without risking contamination. This calls for an
algorithm that receives an input describing which DNA parts have
to be added to which construct wells and produces a sequence
of pipette commands such that for each DNA part involved the
order of actions is optimized, thereby minimizing the pipette tip
consumption of the liquid-handling robot.

In this paper, we propose such an algorithm based on the
capacitated vehicle routing problem (CVRP) [9]. This pipette tip-
saving strategy was implemented in a Python package, which can
be integrated into existing DNA assembly automation pipelines.
We also present the results of testing our algorithm’s performance
with randomly generated and real-life DNA assembly scenarios.

2. Materials and methods

The results in this paper were produced on a server with 2x Intel®
Xeon® CPU E5-2670 2.60GHz processors with 128 GB RAM, run-
ning on Ubuntu 18.04 LTS. The algorithm was implemented in
Python 3.8. The Python packages numpy 1.17, scipy 1.6, pandas
0.25, tspy 0.1.1, matplotlib 3.3 and ortools 9.1 were used. When
integrating the algorithms into the DNA-BOT [2] and MoClo [11]
assembly pipelines, the packages opentrons 3.21 and pyyaml 5.4
were additionally used.

3. Results
3.1 The capacitated vehicle routing problem

Let us define the CVRP in order to then show how its linear pro-
gramming (LP) formulation can be modified to describe the pipette
tip-saving problem. Essentially, the vehicle routing problem can
be described as follows. There is a ‘depot’, where ‘goods’ are
stored, and ‘customers’, to whom the goods must be delivered.
The customers are connected among themselves and to the depot
by ‘roads’, each of which has a ‘cost’ assigned to it. The objective
is to use a fleet of ‘vehicles’, which can travel the roads, to deliver
the goods to all customers while minimizing the sum of the costs
of all roads that are traveled by the vehicles, which is the prob-
lem’s objective function. The constraints are that the number of
vehicles in the fleet is fixed and that every vehicle must start and
end its journey at the depot. In the CVRP, it is additionally speci-
fied that each vehicle can only carry an amount of goods that does
not exceed the ‘vehicle capacity’.

The road network can be represented as a graph G = (V,E),
where customers are nodes Ui, Vp,...,Un €V with the depot
indexed as the node vg € V. The roads between them are edges
{e; | 0 <1,j < n} constituting the set E, where e; is the edge from
node v; to node v; (note that e; and e;; are two distinct edges) and
the cost of the edge e; is given by the number cost(e;) = ¢;;. There-
fore, going from the customer v; to the customer v; corresponds to
traveling the edge e; and is associated with the cost ¢;. The fleet
size can be expressed as K and the vehicle capacity as «. Finally,
let us have variables {x; | 0 <1,j <n}, where x; = 1 if the edge e;
is traveled by any vehicle in the fleet and x; = 0 otherwise. Then,
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Figure 1. An instance of pipette tip consumption minimization. (A) One construct comprises the Green Fluorescent Protein (GFP) gene inserted into the
DVK vector backbone, while the other has the same backbone hosting the Yellow Fluorescent Protein (YFP) gene instead. (B) Unoptimized sequence of
DNA part additions. Source wells display which DNA part solution they contain; construct wells display which DNA parts must be added to them. The
parts already present in the wells at the time of a given part’s addition are displayed in bold. The route of each pipette tip is outlined by arrows: starting
at the tip rack and then collecting the relevant DNA part solution from a source well, dispensing it to the construct wells and finally being discarded
into the waste. (C) If the series of DVK additions is optimized, three pipette tips can be used instead of four without the risk of contamination.

the objective of the CVRP is to determine the values of {x;} that
minimize C = }_ x;c; subject to linear constraints defined on x;, K
and « [9]. The exact LP formulation of the CVRP is provided and
explained in Section 1.1 of the Supplementary Text.

3.2 Casting the pipette tip-saving problem as a
modified CVRP

The problem of pipette tip-efficient delivery of DNA parts to
the wells that need them can be cast as a slightly modified
CVRP.

Let us consider a numbered list outlining the order in which
the parts are delivered. For the part number h in this list, let
us construct a graph Gy, = (V,E) analogous to that for the CVRP.
An aliquot of the liquid solution containing the DNA part being
distributed corresponds to a ‘good’ that needs to be delivered to
a ‘customer’ node v;, where each ‘customer’ is a well where a
DNA assembly mix that includes the part in question is prepared.

Meanwhile, every pipette tip used corresponds to a ‘vehicle’,
delivering the DNA part solution (‘goods’) to the construct wells
(‘customers’). As any pipette tip must start its journey at the DNA
part solution source and end it at the waste bin, let us denote both
these destinations as a single ‘depot’ node vy, from which each
‘vehicle’ trajectory must originate and where it must also end. As
a single pipette tip’s volume is finite, there is a maximum number
of wells it can serve, which defines its capacity .

Finally, the edges correspond to pipette transitions between
wells, while their costs describe potential contamination events.
Contamination may arise when the same pipette tip first visits
a well containing a certain DNA part (one of the h—1 DNA parts
already added to the mixes requiring them) and then goes to a new
well which does not have it, hence the latter well is contaminated
by this part. More formally, for every well v, we can write down a
set P! listing all DNA parts present by the time the robot proceeds
to distribute DNA part number h. If well v; has been visited by the
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same tip before well v; is visited, then v; would be contaminated
ifPr g P}R Conversely, there would be no contamination if P C PJ?',
as this implies that all parts present in v; are already found in v;.
Thus, even if some traces of DNA stay on the tip after contact with
the solution in v;, this cannot introduce any new DNA parts to v;.

To keep track of all such contaminations, let there be an edge
ej € E between any two nodes v;,u; € V, such that cost(e;) =1 if
Phg P)h and cost(e;) = 0 otherwise (the ‘depot’ is also connected
to every well, and any edge from or to it—ey; or ej, respectively—
has cost 0 by definition, since collecting the part solution from
the source or trashing the tip is irrelevant to cross-contamination
between the wells). As long as a single tip’s route includes only
zero-cost edges, for any well v,, we know that none of the previ-
ously visited wells Ua,, Va,, - - -, U,_, cOntain DNA parts not present
in v, already: indeed, since cost(ea,_,) =0, we have Pf, C P ;
then, since cost(eq,_,a,_,) =0, P,  CPL  CPI . We can proceed
by induction until we obtain P CP1 C ... C P,,, which excludes
the contamination condition.

The objective of the pipette tip-saving problem is to find the
variables {x;} (where, as previously, x; indicates whether the edge
ej is traveled by any of the ‘vehicles’) such that the number of
tips (‘vehicles’) used is minimized while cross-contamination is
avoided and no tip serves more wells than its capacity « allows.
This means that our problem’s formulation is identical to the
CVRP, except for two changes. First, the total cost of all the trav-
eled edges C is fixed at zero to avoid contamination; second, the
‘fleet size’ (number of pipette tips used) K is not a fixed value, but
the objective function to be minimized (see Supplementary Text,
Section 1.2 for the exact formulation).

3.3 Solving the pipette tip-saving problem as a
linear program

The advantage of expressing our pipette tip-saving problem as a
linear program (LP) is that LP constitutes a well-studied class of
problems, for which numerous powerful numerical solvers have
been developed. Therefore, the LP formulation of the problem of
distributing a single DNA part to the construct wells can be lever-
aged to propose an algorithm that makes use of an LP solver to
minimize pipette tip consumption over the whole procedure of
preparing DNA assembly master mixes. We implemented such
an algorithm in Python, solving the arising LP problems with the
CP-SAT solver from the optimization package OR-Tools [10].
Briefly, the algorithm is provided with the composition of the
DNA constructs to be assembled, as well as the location of the
wells where the corresponding mixes should be prepared, and of
the sources of DNA part solutions. From this input, it determines
a list describing which DNA part will be distributed first across
all the wells that require it, which part will be delivered second,
and so on. Now, for every part in this list, an LP problem is solved,
which allows to determine the best way of delivering it. Reaching
the end of the part list means that we have obtained a sequence of
liquid-handler commands which enables the contamination-free
distribution of all parts using a reduced number of pipette tips.
Notably, our LP problem is only concerned with optimizing the
pipette’s actions as it distributes a given DNA part. Meanwhile,
the order in which DNA parts themselves are distributed (which
part is the first to be dispensed to all wells that need it, which part
is dispensed to all wells that require it second, which part is the
third, etc.) must be pre-determined. Currently, we either deter-
mine the DNA part sequence randomly or distribute the parts in
the order they are encountered in the list of constructs to be pre-
pared, which the algorithm receives as input. In the latter case, we

start by distributing the DNA part that is found first in the part list
of the first construct we read. We then proceed down the input list
of constructs and their compositions, adding any newly encoun-
tered DNA part to the end of the sequence that defines the DNA
part order (see Supplementary Text, Section 2).

The algorithm is described in more detail in Figure 2, while
Figure 3 demonstrates our algorithm in action for the example
considered in the introduction.

3.4 Testing the pipette tip-saving algorithm’s
performance

To evaluate the performance of our algorithm, we implemented
it in Python and tested it on randomly generated inputs for the
Start-Stop DNA assembly protocol [8]. Each assembled gene we
considered in our tests consists of four parts: a promoter, a
ribosome-binding site (RBS), a coding sequence (CDS) and a ter-
minator. In this example, a construct is generated by picking
one of six possible promoters, one of four RBSs, one of three
CDSs and one of three terminators, reflecting the sizes of DNA
part libraries used in a past experiment in our labs. For every
number of constructs from 2 to 96, we generated 50 random
assembly scenarios with this many random constructs assem-
bled in parallel (see Start-Stop_Assembly_Random_Inputs.csv and
Section 3 of the Supplementary Text). For each of these sets
of 50 optimizations, the mean percentage of pipette tips saved
relative to the case where each part addition is performed
with a fresh tip was calculated and plotted in Figure 4 (see
Random_Input_Testing Results.xlsx and Supplementary Text,
Section 4).

To demonstrate that the algorithm can save tips in real cases
as well as for randomly generated ones, we turned to the packages
DNA-BOT [2] and ‘OT2 Modular Cloning (MoClo) and Transforma-
tion in E. coli Workflow’ [11], which automate DNA assembly of the
BASIC and MoClo standards, respectively, for the Opentron OT-2
liquid-handling platform. They contain test examples of known
parallel DNA assembly scenarios, which can be used to assess the
automation pipelines’ accuracy and efficiency—the complete sets
of inputs can be found in these packages’ code repositories [2; 11].
The results of optimizing the pipette movements for the situations
described by them are displayed in Table 1 and 2.

Table 1. Results of performance testing with BASIC assembly test
inputs

% tips saved

Part order BASIC, 5 parts (max. 440 tips®)
As read 49.55
Random 49.77

@Pipette tips consumption when a fresh tip is used for each part addition.

Table 2. Results of performance testing with MoClo assembly test
inputs. The example constructs were split by the numbers of parts
they comprise

% tips saved

MoClo MoClo MoClo

2 parts 5 parts 8 parts
Part order (max. 48 tips?) (max. 120 tips?) (max. 192 tips?)
As read 31.25 50.00 54.69
Random 25.0 26.67 35.94

2pipette tips consumption when a fresh tip is used for each part addition.
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Figure 2. Flowchart describing the proposed pipette tip consumption minimization algorithm.

To assess the effect of the order of DNA parts, for every input
the optimization was performed both with a randomly permuted
DNA part order and with the parts added in the order of their
appearance in the input list of DNA constructs to be made (from
the part first encountered in the list of constructs to the last
one—see Supplementary Text, Section 2). Hence, Figure 4, Table 1
and Table 2 each display two different sets of results, labeled ‘part
order randomly permuted’ or ‘part order as read’, respectively.

With more than half of pipette tips saved for the randomly
generated inputs describing high numbers of parallelly prepared
Start-Stop assembly constructs, the results demonstrate the algo-
rithm's potential to significantly improve resource efficiency for
parallel DNA assembly under various standards. As the num-
ber of constructs assembled in parallel grows, the tip savings
rise. A likely explanation for this is that with greater input sizes,
a single part is found in more constructs being prepared, and

solving the CVRP-like problem on a larger subgraph can poten-
tially yield longer chains of wells which the same pipette tip can
visit. Therefore, the benefits of algorithmic pipette tip uptake opti-
mization could be expected to improve even more as synthetic
biology research shifts toward larger-scale experiments and high-
throughput screening [12; 13]. To confirm our findings, we also ran
our algorithm for the same inputs using the GUROBI® optimizer
(Python package gurobipy 9.1) [14], which our package can employ
instead of OR-Tools CP-SAT as an alternative LP solver. Indeed,
very similar results were obtained.

While even with DNA parts listed in random order considerable
optimization was achieved, using the part order as read from the
input (Supplementary Text, Section 2) resulted in greater pipette
tip savings in all scenarios considered except for BASIC assem-
bly. Therefore, there may exist patterns in how the part order is
defined that on average increase pipette tip savings. In the future,
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identifying and exploiting such input patterns alongside our pro-  assembly reactions are being performed in parallel. In addition to
posed LP-based optimization of actions to distribute an individual ~ this, we provide performance test results for both randomly gener-
part could yield an even more powerful pipette tip-saving method. ated and real-life examples, demonstrating that algorithms lever-
aging this formulation in conjunction with a linear programming
solver can be used to significantly reduce pipette tip consumption.

The resultant decrease in pipette tip uptake brings about sev-
We propose an LP formulation of the problem of saving pipette  eral benefits. First, fewer used plastic tips are thrown away in a
tips while delivering a single part to the wells where one-pot DNA  single DNA assembly run, which makes laboratory research more

4, Discussion
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environmentally sustainable. Second, if a robotic liquid-handler’s
pipette changes tips less often, it has to make fewer visits to the
pipette tip rack, where it picks up new tips, and to the waste
bin, where the old ones are discarded. These pieces of labware
occupy separate slots on the robot’s platform, so traveling to them
takes more time than simply moving between several wells of the
same plate. Consequently, delivering the DNA part solution to sev-
eral construct wells with a single tip also makes automated DNA
assembly faster. For the DNA-BOT package’s test case of prepar-
ing 88 5-part BASIC assembly constructs [2], we estimate that
the adoption of our algorithm can reduce the protocol’s execution
time by as much as 73 minutes or 48% of the total time required
to distribute all DNA parts to the construct wells. Finally, the
economical benefit of improving the DNA assembly protocol can
be calculated by considering the decreased spending on consum-
ables (i.e. pipette tips). For the same BASIC assembly test case, we
evaluate the cost savings provided by our algorithms to amount
to $6.54 or 5.27% of the cost of all consumables per one run of
this large-scale parallel DNA assembly (see Supplementary Text,
Section 3).

Underlying this potentially powerful DNA assembly optimiza-
tion strategy is the combination of a robotic liquid-handling
platform and automatic process optimization. Apart from being
slower than a laboratory robot, a human worker with a conven-
tional pipette can only collect a specified volume of solution and
then dispense it all into the desired well, while distributing exact
volume fractions across several destinations is typically not done
manually. On the contrary, a robotic liquid handler’s regulated
pumps allow to perform this routinely. Consequently, having a
robotic liquid handler follow simple pipetting protocols tailored
for a human worker does not result in optimal procedure exe-
cution, leaving open the avenues to realize the full potential of
laboratory automation. Meanwhile, manually optimizing the lab-
oratory protocol instead of using automated algorithmic solutions
would be a repetitive procedure required for every new assembly
setup, becoming especially tedious and challenging for large-
scale assemblies with dozens of potential contaminants to keep
track of.

Our algorithm currently focuses on the lowest level of protocol
optimization, as it manages individual pipette actions for the dis-
tribution of a single part at a time. It is also not restricted to any
single one-pot DNA assembly method. This allows to achieve opti-
mization of pipette tip consumption for a variety of DNA assembly
automation pipelines following different standards, as well as to
combine our algorithms with higher-level optimization strategies
(that can determine which DNA parts should be used and what is
the best sequence of steps to combine them all [4; 5]) to achieve a
truly multimodal optimization of automated DNA assembly.

The proposed algorithm’s implementation in Python code is
available via our open-access GitHub repository pipette_opt [15].
Our package offers Application Programming Interface solutions
which allow users to incorporate our algorithm for pipette tip con-
sumption minimization into existing DNA assembly pipelines for
the Opentrons OT-2 liquid handler, namely DNA-BOT [2] and ‘OT2
Modular Cloning (MoClo) and Transformation in E. coli Workflow’
[11]. Upon downloading pipette_opt, minor changes to the origi-
nal code of a DNA assembly automation pipeline should be made
according to the instructions provided. Following this one-off code
modification, the user can leverage our algorithm to determine
the optimized sequence of pipette actions during the DNA part
distribution step and translate it into Opentrons OT-2 commands,
which are inserted into the overall program generated by the
main Opentrons automation pipeline. When the protocols gen-
erated by the modified pipelines were tested in silico using the
Opentrons OT-2 simulation feature, we could confirm that the
liquid-handling robot’s optimized actions are accompanied by a
significant reduction in pipette tip consumption.

Supplementary data
Supplementary data are available at SYNBIO online.

Material availability

The Python package is available at: https://github.com/KSechkar/
pipette_opt.
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Data availability

The MoClo and BASIC assembly test inputs are available at
https://github.com/DAMPLAB/OT2-MoClo-Transformation-Ecoli
and https://doi.org/10.1093/synbio/ysaa010, respectively. The
random Start-Stop assembly testing inputs and the results of test-
ing the algorithm for all assemblies are available in the article and
its online supplementary material.
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