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Periodontitis is a dysbiotic disease caused by the interplay between

the microbial ecosystem present in the disease with the dysregulated

host immune response. The disease-associated microbial community is

formed by the presence of established oral pathogens like Aggregatibacter

actinomycetemcomitans as well as by newly dominant species like Filifactor

alocis. These two oral pathogens prevail and grow within the periodontal

pocket which highlights their ability to evade the host immune response.

This review focuses on the virulence factors and potential pathogenicity of

both oral pathogens in periodontitis, accentuating the recent description of F.

alocis virulence factors, including the presence of an exotoxin, and comparing

them with the defined factors associated with A. actinomycetemcomitans. In

the disease setting, possible synergistic and/or mutualistic interactions among

both oral pathogens might contribute to disease progression.

KEYWORDS

periodontitis, Filifactor alocis, Aggregatibacter actinomycetemcomitans, virulence
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Introduction

Periodontitis is a multifactorial irreversible chronic inflammatory disease that
affects the supporting structure of the teeth. Recent reports by the Centers for
Disease Control and Prevention (CDC) show that 42.2% of adults 30 years and older
develop some form of periodontitis [1]. Poor oral hygiene is the most common cause
associated with periodontitis, but other factors such as age, gender, socioeconomic,
and education status increase the risk to develop the disease [2]. Other risk factors
such as smoking, diabetes, medications that cause dry mouth, stress, and genetics
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[1] can affect the oral cavity homeostasis and have a direct
or indirect impact on the oral microbiome composition. This
in turn promotes changes in the abundance and homeostatic
relationships within the polymicrobial communities resulting
in a dysbiotic ecosystem in disease. The disruption of
tissue homeostasis is accompanied by microbial shifts or
dysbiosis from indigenous symbionts (commensal bacteria)
to predominantly pathogenic bacteria. The new state of
polymicrobial dysbiosis promotes a dysregulated inflammatory
state in the host that drives disease progression. Long
studied microorganisms such as Porphyromonas gingivalis,
Tannerella forsythia, Treponema denticola, and Aggregatibacter

actinomycetemcomitans are now well-established “periodontal
pathogens”, with evidenced involvement in disease initiation
and progression. In the last decade, the advance in high
throughput technology allowed us to obtain an in-depth
characterization of the complexity of the oral microbiome
both in health and in disease [3, 4]. As a result, several
microorganisms were identified with high prevalence in disease
sites compared to healthy sites, including Filifactor alocis, a
newly appreciated microbial species.

A. actinomycetemcomitans is a non-motile gram-negative
facultative anaerobe of the Pasteurellaceae family [5–8], and
is known to contribute to gingival tissue inflammation,
destruction, and bone resorption by expressing several virulence
factors (Supplementary Table S1) such as cytolethal distending
toxin (Cdt), leukotoxin A (LtxA) of the Repeats-In-Toxins
(RTX) family of bacterial toxins, and collagenase [9–15]. On
the other hand, F. alocis is a gram-positive anaerobic rod,
and characterization of the organism’s pathogenic credentials
is still in its infancy. Some initial descriptions of the
potential virulence factors of F. alocis include the presence
of a moonlight surface protein that binds to and inhibits
the complement component 3 (C3), a key step of the
complement activation cascade; two enzymes that might
provide oxidative stress resistance; and an exotoxin of the
RTX family with an unknown biological function (Figure 1).
Some recent reports describe that the presence of F. alocis

increases A. actinomycetemcomitans total biomass when in
co-infections with Veillonella sp [16, 17]. In this mini-
review, we describe the virulence factors associated with
A. actinomycetemcomitans and F. alocis, which are uniquely
found in those species among all members of the oral
microbial community.

Periodontitis: Lessons learned from
established and emerging
periodontal pathogens

Subgingival plaque samples collected from periodontitis
patients and periodontitis-free individuals differ from each
other [18]. P. gingivalis, T. forsythia, and T. denticola, the

so-called red complex, have shown the strongest association
with periodontal disease [19]. Deepened periodontal pockets
with an anaerobic environment, inflammatory conditions, and
large access to substrates originating from tissue destruction
all favor the growth of these pathogens and pathobionts.
These gram-negative anaerobe pathobionts express virulence
factors with the capacity to cause an imbalance in the
host inflammatory response [20]. If these bacteria contribute
to the degenerative process in periodontitis or if they are
a result of the unique ecological niche in a periodontal
pocket, it has not been fully investigated [21]. The study of
the microbial composition shift from periodontally healthy
toward disease onset can contribute to answer this challenging
question. Longitudinal studies examined periodontally healthy
adolescents that at baseline show that the presence of A.

actinomycetemcomitans in the subgingival plaque is significantly
associated with disease onset [22–25]. The prevalence of this
bacterium varies on age, geographic origin, and periodontal
status of the examined population [26]. A high intra-species
genetic diversity exists, which resulted in the generation
of highly virulent as well as harmless variants of this
bacterium [27]. The most well-known virulent variant of A.
actinomycetemcomitans is the JP2 genotype. This genotype
expresses a high amount of LtxA and is often detected in
young individuals with periodontitis [28, 29]. Interestingly,
it has been shown that young individuals that carry A.

actinomycetemcomitans in their subgingival plaque have an
increased risk to develop attachment loss if F. alocis is
detected in the same sample [17]. Based on these reports we
propose a model in which A. actinomycetemcomitans initiates
the degenerative process in the periodontium that creates an
anaerobic environment attractive for translocation of F. alocis
(Figure 2). In addition, it could be speculated that F. alocis

manipulation of innate immune cells, like neutrophils, interferes
withA. actinomycetemcomitans LtxA-induced inflammatory cell
death [13, 30].

More recently the anaerobic gram-positive bacterium F.

alocis has attracted interest in the etiology and pathogenesis
of periodontitis [31]. This bacterium is often detected in
periodontal pockets of different individuals [32, 33]. The role
of F. alocis in the pathogenicity of periodontitis is still not
known, however, recent studies indicate a capacity to dysregulate
the innate immune response [34]. To begin to characterize
F. alocis’ potential virulence factors, we screened the whole
genome of the F. alocis reference strain ATCC 35896 (also
known as CCUG 47790), for novel identification and deeper
characterization of virulence elements. We discovered that the
reference strain encodes a hitherto unrecognized RTX toxin
member, which we designated as “FtxA” for consistency with
the nomenclature of other RTX toxin-gene encoding operons
[35]. We have used ATCC 35896, and our clinical collection
of nine additional F. alocis strains, isolated from different oral
infections, to further characterize the FtxA protein, and whether
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FIGURE 1

F. alocis virulence factors. Oxidative resistance is achieved by the conversion of superoxide generated by innate immune cells to H2O2 by FA769.

The proteins FA769 and FA519 are associated with H2O2-induced stress resistance. F. alocis complement inhibitor (FACIN) binds complement

component 3 (C3) which is essential to all three complement pathways. Extracellular vesicles (EVs) contain lipoproteins that stimulate

osteoclastogenesis in committed osteoclast precursors via TLR2 which contributes to bone resorption. The novel RTX exotoxin, FtxA, is found in

60% of clinical isolates, but its biological e�ects are unknown. Lipoteichoic acid (LTA) induces the expression of pro-inflammatory cytokines by

human gingival fibroblasts.

the gene encoding it may be conserved in the phylogenetic
lineage(s) of F. alocis, and hence might represent a candidate
diagnostic marker for more virulent strains. According to PCR,
ftxA was encoded by five of the ten tested strains [35]. To
corroborate the PCR results, and for subsequent multi-locus
sequence typing (MLST), all nine strains that had been isolated
at the clinical laboratory were then subject to whole-genome
sequencing. Extraction of the genome sequence data essentially
confirmed the PCR findings, with highly conserved FtxA protein
sequences, encoded in apparent ftxABD operons. However, one
of the ftxA-negative strains according to PCR, 854G-16U, was
found to encode an FtxA homolog. Relative to the ATCC 35896
FtxA protein, it was only ∼46% identical at the amino acid
sequence level, consistent with sequence variability among the
FtxA proteins in F. alocis [35]. Taken together, ftxA was carried
by six of the ten tested strains and is therefore not a universal
property of this bacterium. The expression of this gene and
its role in F. alocis virulence is still not known, yet proteomic
characterization of available strains has identified intra-species
differences, as well as clustering of FtxA with another six
intracellular proteins [36].

A. actinomycetemcomitans and F.
alocis virulence factors:
Contributions to microbial
pathogenicity and host immune
evasion

Exotoxins

The different virulence factors expressed by

A. actinomycetemcomitans are well studied [37]

(Supplementary Table S1). Like other gram-negative bacteria,

A. actinomycetemcomitans releases endotoxins and exotoxins
that activate inflammatory response through interaction
with the Toll-like receptors 4 (TLR4) [38]. Unique for this
bacterium among the inhabitants in the oral microbiota is
the expression of two exotoxins. One is LtxA, that is closely
associated to disease onset and progression, as shown by
a strong correlation to disease onset in carriers of highly
leukotoxic variants of A. actinomycetemcomitans [24, 25]. LtxA
is secreted from the bacterium by a Type I secretion system
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FIGURE 2

Proposed model of A. actinomycetemcomitans and F. alocis interactions with the host within the gingival pocket. In the early stages of

periodontitis, A. actinomycetemcomitans makes use of lactic acid produced by Streptococcus sp. as a nutrient to increase its numbers. A.

actinomycetemcomitans releases OMVs that are packed with outer membrane proteins (Omp) OmpA1, Omp 100, and the virulence factors

CdtB, and LtxA. Omp100 mediates initial adhesion of the bacterium, and OmpA1 binds to its putative ligand on gingival epithelial cells and

induces F-actin rearrangements resulting in A. actinomycetemcomitans cells being internalized. Production of H2O2 by Streptococcus sp.

causes A. actinomycetemcomitans to migrate deeper in the gingival pocket, where the bacterial cells are exposed to the host immune response.

The release of CtdB in this environment inhibits phagocytosis and LtxA release by A. actinomycetemcomitans will promote neutrophil

degranulation or cell death when present at high concentrations. The release of OMVs by A. actinomycetemcomitans or EVs by F. alocis might

contribute to the pathogenicity of these organisms by evasion of the host immune response and promoting bone resorption.

[39]. This exotoxin induces cell death of human defense cells in
an active pro-inflammatory process named pyroptosis [13, 40].
It is well-established that the dysbiotic immune response in
pyroptosis is linked to the pathogenesis of periodontitis [41].
These cellular mechanisms also function as a tool for accessing
host-derived nutrients for the invading bacteria [42] (Figure 2).
The second exotoxin is the cytolethal distending toxin (Cdt),
particularly the active unit CdtB, that enters the nucleus of target
cells and induces double-strand breaks in chromosomal DNA
of proliferating cells [15] (Figure 2). This toxin induces cellular
mechanisms involved in the pathogenesis of periodontitis, but
its role in disease initiation and progression is unclear [43, 44].
F. alocis virulence factors are beginning to be characterized
(Figure 1). Most recently, FtxA, has been identified as a putative
∼250 kDa exotoxin of F. alocis [35], and similar to LtxA,
belongs to the large family of RTX proteins, found in both

gram-negative and gram-positive bacteria [45]. The activity of
FtxA is not yet known; interestingly it appeared to be encoded
and expressed only by six of the 10 assessed F. alocis strains
[35, 36], suggesting potentially different capabilities to modulate
host functions by FtxA-expressing strains, as compared to those
that do not encode this protein.

Membrane vesicles

A. actinomycetemcomitans outer membrane vesicles
(OMVs) can deliver several biologically active virulence
factors to host cells, which can modulate the host response
(Figure 2). These include Cdt [46], LtxA [47, 48], peptidoglycan-
associated lipoprotein (Pal) [49], and the chaperonin GroEL
[50]. A. actinomycetemcomitans OMVs carry NOD1- and
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NOD2-active peptidoglycan, which can be internalized into
non-phagocytic human cells including gingival fibroblasts
[51]. This supports the role of OMVs as triggers of innate
immunity. A. actinomycetemcomitans OMVs can bind to the
classical and mannose-binding lectin (MBL) complement
inhibitor, C4-binding protein, by means of the outer membrane
protein A1 (OmpA1) [52], which is consistent with an ability
of the vesicles to mediate serum protection in vitro [53]. The
mechanism(s) of how A. actinomycetemcomitans OMVs enter
and/or delivers cargo into host cells is not entirely clear. The
OMVs appear to enter human cells via clathrin-mediated
endocytosis [51, 54], but can also fuse with host cell membranes
in a cholesterol-dependent fashion [46]. Toxins delivered via

OMVs can act as adhesins in receptor-mediated endocytosis
[55], albeit neither LtxA nor Cdt were required for the OMV
uptake by host cells [46, 48]. Hence, despite that LtxA has an
apparent surface localization on the A. actinomycetemcomitans

OMVs, the LtxA receptor LFA-1 is not required for delivering
the toxin into the human host cells [39].

Highly purified extracellular vesicles (EVs) released by the F.
alocis reference strain ATCC 35896 were recently characterized
regarding their proteomic content, using in-gel digestion
and liquid chromatography-tandem mass spectrometry (LC-
MS/MS) [56]. F. alocis EVs proteomics revealed 28 proteins,
including lipoproteins, autolysins, F. alocis complement
inhibitor (FACIN), transporter- and metabolism-related
proteins, and ribosomal proteins (Figure 1). Interestingly, FtxA,
the recently discovered RTX protein family member, [35]
according to its GenBank database definition, was identified
in the F. alocis EVs proteome [56]. Whether FtxA or any
of the other EVs proteins might play a role in the observed
immunostimulatory effects of the vesicles on human monocytic
and oral keratinocyte cell lines [56], and/or in the EV-mediated
inhibition of osteogenesis through TLR2 signaling [57] is not
presently clear. However, interestingly, as the osteoclastogenic
potency of F. alocis EVs (Figure 1) was reduced upon treatment
with lipoprotein lipase, lipoproteins may contribute to the
systemic bone loss via TLR2 [58].

Complement

The complement cascade is a process known for its
antimicrobial role in bacterial opsonization, which targets the
clearance and destruction of the organisms by phagocytes and
direct cell lysis by forming the C5b-9 membrane attack complex.
However, periodontal pathogens developed effective evasion
strategies to counteract complement activation. OMVs appear to
play a significant role in the ability of A. actinomycetemcomitans

to evade complement attack. These vesicles serve as a decoy
that triggers complement activation through lipopolysaccharide
(LPS) and takes in complement components [53]. In turn, LPS of
some A. actinomycetemcomitans strains (i.e., strain Y4) can bind

strongly to C3b, blocking the interaction between complement-
derived opsonins with LPS decreasing neutrophils complement-
dependent response [59]. Moreover, some of the Omp such as
OmpA1 (also known as Omp29 and Omp34), and OmpA2 are
important for serum resistance of A. actinomycetemcomitans via
binding of C4-binding protein, thereby inhibiting the activation
of the classical andMBL complement pathways [52]. In response
to H2O2, A. actinomycetemcomitans produces Omp100 [60].
Omp100 captures the alternative complement pathway negative
regulator, Factor H, and deposits it at the cell surface, modifying
and inactivating C3b [61].

The knowledge of F. alocis’ methods to evade the
complement cascade are on the rise. Jusko et al. [62] identified
the novel complement inhibitory protein FACIN, which is
secreted or expressed on the cell surface and binds to C3,
blocking all complement pathways. FACIN has dual importance
for F. alocis in evading the complement cascade and serving as
a cytoplasmic enzyme acetylornithine transaminase involved in
arginine catabolism. The authors proposed a mechanism where
FACIN binds C3/C3b, yet allows Factor B to bind, then FACIN
locks the complex in an inactive state, limiting the C3 convertase
as a result (Figure 1).

Oxidative stress

The dysregulated inflammation and high abundance
of hyperactivated neutrophils contribute to the generation
of an oxidative-stress enriched environment in the
periodontal pocket [34, 63]. Periodontal pathogens develop
different survival strategies to detoxify and resist this toxic
environment. Depending on the environmental cues, A.

actinomycetemcomitans activates the oxygen resistance
transcription regulator (oxyR), which regulates the expression
of Omp100 and catalase (KatA) [60] (Figure 2). Catalase aids
in the degradation of H2O2 produced by neutrophils and
streptococci [64], protecting A. actinomycetemcomitans from
oxidative damage. This in turn increases oxygen availability
allowing A. actinomycetemcomitans to shift from fermentative
to respiratory metabolism.

F. alocis has been reported to possess virulence factors
that contribute to the organism’s resistance to oxidative stress.
Furthermore, in vitro, the growth of F. alocis is stimulated
under oxidative stress conditions. F. alocis reference strain
ATCC 35896 encodes an antioxidant enzyme, superoxide
reductase FA796 (Figure 1), that reduces superoxide radicals
into H2O2 [65]. In vitro, FA796 and the hypothetical protein
FA519 are involved in resistance to H2O2-induced oxidative
stress, protection against superoxide radicals, and air exposure,
however, the exact mechanisms are unknown. The FA519
protein might confer F. alocis the ability to resist both H2O2

and nitric oxide-induced oxidative stress [66]. Interestingly,
the expression of the FA519 genes was significantly enhanced
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when F. alocis was co-cultured with P. gingivalis. Gene encoding
glutathione peroxidase as well as an alkyl hydroperoxide
reductase subunit AhpC are found in the genome of F. alocis
and may function in clearing H2O2, however, the partner to the
latter mentioned protein (AhpF) is missing in the genome.

Conclusion and future perspective

The observation that the combined presence of A.

actinomycetemcomitans and F. alocis in the subgingival plaque
increases the risk for progression of attachment loss might
be explained by the differences in growth requirements
and regional nutrient and atmospheric conditions. While A.

actinomycetemcomitans is facultatively anaerobic and able to
colonize the gingiva early in the disease process, F. alocis is
an obligate anaerobic that will preferentially grow in deeper
periodontal pockets. Both species express virulence factors that
induce cellular and molecular mechanisms in concordance with
the pathogenesis of periodontitis. While the virulence of A.

actinomycetemcomitans is strongly linked to the expression of
its two exotoxins (LtxA and Cdt, Figure 2), we only recently
started to unravel the virulence patterns of F. alocis (Figure 1).
The recent report by Miralda et al. [67] with a detailed
characterization of F. alocis extending neutrophil lifespan is
at odds with the capacity of A. actinomycetemcomitans to kill
leukocytes. In this study, F. alocis reference strain ATCC 35896,
which expresses the exotoxin, was responsible for extending
neutrophil lifespan. These two contradictory properties may be
attributed to different toxins (i.e., FtxA and LtxA) of the same
toxin superfamily, different expression levels, and differential
microbial evasion strategies to overcome neutrophil responses.
Here, we reviewed and discussed the virulence factors of A.
actinomycetemcomitans and F. alocis and their pathogenic role
in periodontitis (Figure 2). Several open questions arise, like the
possible role of FtxA in the pathogenesis of periodontitis, which
remains to be evaluated, as well as the possible synergies between
FtxA and LtxA. Increased knowledge about the virulence of
these two bacteria one by one or togethermight be of importance
for improved risk prediction in the future.
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