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A null model of the mouse whole-neocortex micro-
connectome
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In connectomics, the study of the network structure of connected neurons, great advances are
being made on two different scales: that of macro- and meso-scale connectomics, studying
the connectivity between populations of neurons, and that of micro-scale connectomics,
studying connectivity between individual neurons. We combine these two complementary
views of connectomics to build a first draft statistical model of the micro-connectome of a
whole mouse neocortex based on available data on region-to-region connectivity and indivi-
dual whole-brain axon reconstructions. This process reveals a targeting principle that allows
us to predict the innervation logic of individual axons from meso-scale data. The resulting
connectome recreates biological trends of targeting on all scales and predicts that an
established principle of scale invariant topological organization of connectivity can be
extended down to the level of individual neurons. It can serve as a powerful null model and as
a substrate for whole-brain simulations.
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he study of connectomics has to date largely taken place on

two separate levels with disjunct methods and results:

macro-connectomics, studying the structure and strength
of long-range projections between brain regions, and micro-
connectomics, studying the topology of individual neuron-to-
neuron connectivity within a region. In macro-connectomics, the
absence or presence and strength of projections between brain
regions are measured using for example, histological pathway
tracing, retrogradel>? or anterograde® tracers, or MR diffusion
tractography*”. While recent advances made it possible to turn
such data into connectome models with a resolution of 100 um®,
this is still far away from single-neuron resolution.

In micro-connectomics, two complementary approaches pre-
vail: stochastic models and direct measures of synaptic con-
nectivity using, for example, electron microscopy. The first uses
biological findings to formulate principles that rule out certain
classes of wiring diagrams and prescribe probabilities to the
remaining ones, while with electron microscopy, snapshots of
individual biological wiring diagrams are taken’-13. However,
published reconstructed volumes at this point only contain
incomplete dendritic trees, and therefore incomplete connectivity.

To gain a full understanding of, for example the role of an
individual neuron or small groups of neurons in a given behavior,
we will have to integrate the advantages of both scales: single-
neuron resolution on a whole-brain or at least whole-neocortex
level. This has been recognized beforel4, but steps toward this
goal have until now remained limited. At this point, electron-
microscopic reconstructions at that scale are not viable, leaving
only statistical approaches to dense micro-connectivity, based on
identifying biological principles in the data. Scaling it up to a
whole-neocortex level will amplify the uncertainty about the
biological accuracy of the results, as many of the resulting con-
nections will be between rarely studied brain regions with little
available biological data. Nevertheless, it can serve as a first draft
micro-connectome defining a null model to compare and evaluate
future findings against. It will also allow us to perform full-
neocortex simulations at cellular resolution to gain insights, as to
which brain function can or cannot be explained with a given
connectome.

We have completed such a first-draft connectome of mouse
neocortex by using an improved version of our previously pub-
lished circuit and connectivity modeling pipeline!®. It has been
improved to place neurons in brain-atlas defined 3d spaces
instead of hexagonal prisms, taking into account the geometry
and cellular composition of individual brain regions. However,
this did not include long-range connections between brain
regions, especially the ones formed via projections along the white
matter. We therefore set out to identify possible principles,
hypotheses of rules constraining the long-range connectivity, and
develop stochastic methods to instantiate micro-connectomes
fulfilling them.

A first constraint was given by the data on macro- or mesoscale
connectivity, which is often reported as a region-to-region con-
nection matrix, yielding a measure proportional to the total
number of synapses forming a projection between pairs of brain
regions! 141017 “'We used for this purpose, the recently published
mesoscale mouse brain connectome of Harris et al.3. This data set
splits the mouse neocortex into 86 separate regions (43 per
hemisphere) and further splits each region when considered as a
source of a projection into five individual projection classes, by
layer or pathway (Layer 23IT, Layer 4IT, Layer 5IT, Layer 5PT,
and Layer 6CT). IT refers to intratelencephalic projections, tar-
geting the ipsilateral and contralateral cortex and striatum; PT
refers to pyramidal tract projections, predominantly targeting
subcortical structures, but also ipsilateral cortex; CT refers to
corticothalamic projections. From here on, we will leave out this

additional distinction for projections from layers 2/3, 4, and 6,
where only one class is specified in the data of ref. 3. While the
data set does not include GABAergic projection neurons!$, it
provides the most comprehensive information on connection
strengths of individual projection classes to date.

We further constrained the spatial structure of each projection
within the target region. Along the vertical axis (orthogonal to
layer boundaries), this was achieved by assigning a layer profile to
each projection, as provided by Harris et al.>. Along the hor-
izontal axes, we assumed a generalized topographical mapping
between regions, parameterized using a voxelized (resolution
100 um) version of the data provided by Knox et al.c.

As a final constraint, we applied rules on the number and
identity of brain regions innervated by individual neurons in a
given source region. To this end, we analyzed the brain regions
innervated by individual in vivo reconstructions of whole-brain
axons in a published data set (MouseLight project at Janelia,
mouselight.janelia.org!®). Based on the analysis, we con-
ceptualized and parameterized a decision tree of long-range axon
targeting that reproduced the targeting rules found in the in vivo
data. This approach was generalized to other brain regions for
which few or no axonal reconstructions are available.

Finally, we implemented a stochastic algorithm that connected
morphologically detailed neurons in a 3d-volume representing
the entire mouse neocortex. Synapses were placed onto the
dendrites of target neurons according to all the derived con-
straints by a modified version of a previously used algorithm!®.
Analyzing the results, we found that the constraints we added on
top of the region-to-region projection matrices led to a surpris-
ingly complex and non-random micro-structure of neuron-to-
neuron connectivity. We characterized this structure to be an
extension of an established principle of hierarchical organization
of modular connectivity?” to the level of individual neurons.

Results

Neuronal composition and local connectivity. We placed
around 10 million morphological neuron reconstructions in a 3d
space representing the entirety of a mouse neocortex. Neuron
densities and excitatory to inhibitory ratios at each location were
taken from a voxelized brain atlas?!, which is consistent with
version 3 of the brain parcellation of the Allen Brain Atlas?2-23,
The composition in terms of morphological neuron types was as
in Markram et al.!>. Reconstructed morphologies were placed in
the volume according to densities for individual, morphologically
defined subtypes, and correctly oriented with respect to layer
boundaries.

For simplicity, we made a strict distinction between local and
long-range connectivity, defining local connectivity to comprise
any connection where source and target neuron were in the same
brain region according to the parcellation in Harris et al.3, and
derived it using previously published methods?4 All other
connections were considered long-range and were derived using
the methods described below.

Constraining the anatomical strengths of projections. For long-
range connectivity, we handled each combination of a projection
class (Layer 23, Layer 4, Layer 5IT, Layer 5PT, and Layer 6), a
source region, and a target region as a conceptually separate
projection. As a first constraint, we determined the average
volumetric density of synapses in each projection using published
data325, using a programmatic interface provided by the authors.
Two further steps were required to apply their data: scaling from
projection strength to synapse density, and splitting into densities
for individual projection classes.
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The biological data provided a measure proportional to the
mean volumetric density of projection axons in the target region.
Assuming a uniform mean density of synapses on axons across
projections, the volumetric synapse density is simply a scaled
version of this. We calculated a scaling factor such that the
resulting total synapse density in ipsilateral and contralateral
projections matches previously published results2®. From their
measured average synapse density (0.72 um™3), we subtracted the
synapses we predicted in local connectivity within a region. While
a part of the remaining synapses is formed by projections from
the hippocampus and extracortical structures, their total number
is unclear, but likely comparatively small. For example, the
density of synapses in the prominent pathway from VPM into the
barrel field?’, when averaged over the whole-cortical depth, is
only ~1.5% of the average total density. For now we left no
explicit space for synapses from such projections due to the
difficulties in parameterizing it for all potential sources.

We then generated matrices of synapse densities for different
projection classes by considering projection strengths derived
only from tracer experiments in cre-lines associated with a given
projection class. Unfortunately, there were no experiments
available for some combinations of cre-line and source region.
Instead we generated individual matrices by first averaging the
reported projection strengths of a line associated with a
projection class over modules of several contiguous brain regions
(see Supplementary Table 1), and then using that information to
generate scaled versions of the wild-type matrix (see the Methods
section). Each combination of source and target module were
scaled individually, and we enforced the sum of matrices over
projection types to be equal to the wild-type. The result is a
prediction of the mean volumetric synapse densities from the
bottom of layer 6 to the top of layer 1 for all projections (Fig. 1).

Constraining layer profiles. So far, we have constrained density
and consequently the total number of synapses formed by each
individual projection. This reproduces the spatial structure of
projections on the macroscale. However, it is likely that there is
also spatial structure within a projection, on the mesoscale or
microscale. One such structure, acting along the vertical axis is a
distinct targeting of specific layers?S. To constrain the layer
profiles of projections, we once more tended to the data published
in Harris et al3. The authors provide extensive data on layer
profiles, measured hundreds of them, and then clustered them
into six prototype profiles using unsupervised hierarchical clus-
tering using spearman correlation and average linkages. As they
demonstrate that these prototypes occur in significantly different
numbers in feedforward against feedback projections and for the
various projection classes and modules, we concluded that they
capture sufficient biological detail. We therefore decided to follow
this classification and assign one of the prototype profiles to each
projection.

Harris et al.? already measured the relative frequencies of their
prototypical layer profiles for individual projection classes (their
Fig. 50) and for individual source modules, within and across
modules (their Fig. 8c, d). They also classified profiles as
belonging to feedforward or feedback projections. We combined
the constraints by first calculating which layer profiles are
overexpressed or underexpressed between pairs of modules,
relative to the base profile frequencies for projection classes (see
the Methods section). We then classified each projection as
feedforward or feedback, based on the hierarchical position of the
participating regions, and cut the assumed frequencies of profiles
belonging to the other type in half. Finally, we picked for each
combination of projection class, source, and target region the
layer profile with the highest derived frequency.

We chose to pick the single most likely profile for each
projection and ignore the others, as mixing several profiles would
have diminished their sharp, distinguishable peaks and troughs.
The approach resulted in a prediction, where each profile is used
for between 10 and 20% of the projections (Fig. 2a). Based on the
prediction, we calculated the resulting relative frequencies of layer
profiles per module and per projection class and compared them
against the data (Supplementary Fig. 1). We found that in spite of
the simplifying step of picking only the most likely profile, the
trends in the data were well preserved, although the peaks and
troughs were more exaggerated in the model.

We have demonstrated that our simplified predictions recreate
the tendencies demonstrated in Harris et al.3, but the question
remains, how do they compare against the raw biological data? As
we moved through two consecutive simplifications—from the raw
data to six prototypical profiles and from six profiles to a single
profile per projection—how much biological detail was lost?

To address this question, we generated raw layer profiles from
the voxelized experimental data on projection strength of
individual cre-lines’ using a programmatic interface provided
by the authors®, and compared them to our single prediction. We
obtained the connection strength measured with individual tracer
experiments in voxels with a resolution of 100 um3 and grouped
them by cre-lines associated with the projection classes
(see Methods). For each experiment, we calculated a profile of
the connection strengths in each layer of a region, relative to the
mean across all layers. As a representative example, Supplemen-
tary Fig. 2 depicts the model for projections from MOs (blue line)
and the data from individual experiments (gray lines). We see an
overall fair match between simplified prediction and data, albeit
with some errors. For example, the data for 5PT projections show
very shallow profiles in four regions that were not predicted. For
5IT projections to visual regions, the data flattens out in layer 1
instead of peaking, although this may be partly artificial, because
the data resolution of 100 um? is close to the width of layer 1,
leading to unreliable sampling.

Overall, we find a substantial degree of variability in the
biological data, especially for projections from layer 2/3. For
example, the density in layer 4 of VISpor due to projections from
layer 2/3 of MOs varies between 0.2 and 2.5 times mean. As such,
we evaluated the overall match of our predictions relative to the
biological variability by calculating the deviation from the
biological mean in multiples of the biological standard deviation
(z-score, Fig. 2b-f). As a certain number of samples is required to
estimate the biological variability, we limited this validation to
projections where data from at least five experiments were
available. Under the assumption of a Gaussian profile, the data
randomly sampled from the biological distribution would follow a
standard normal distribution of z-scores (Fig. 2b-f, black dashed
lines). We found that the bulk of our predictions fall within that
distribution, although a significant number have a z-score
exceeding four standard deviations, especially for projections
from layer 4 (Fig. 2c). Yet, 75% of z-scores fall within two
standard deviations (Fig. 2g).

We conclude that the predicted layer profiles fall within the
range of biological variability for most projections, but do result
in imperfect densities in individual cases. We judge this to be
sufficient for a first draft null model of a white matter micro-
connectome, but refinement should be attempted in the future, as
more data, such as whole-brain axonal reconstructions become
available.

Constraining the mapping of projections. The previous section
constrained projection by imposing a spatial structure along the
vertical axis, a layer profile. Yet, it is likely that there is also a
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Fig. 1 Predicted synapse densities in target regions. Modules are labeled: PF: prefrontal, AL: anterolateral, SoM: somatomotor, Vis: visual, Med: medial,
Temp: temporal. Exact order of brain regions and assignment to modules by Harris et al.3 are also listed in Supplementary Table 1. White regions indicate

no projections placed for that combination of source and target region

structure along the other two spatial dimensions. That is, that
neurons around a given point in the source region project not
equally to all points in the target region, but with certain spatial
preferences, which we assumed can be expressed by a topo-
graphical mapping. To define the mapping, we once more used
the voxelized version of the mouse meso-connectome model®. As
each brain region comprised many voxels in the model, we could
use this data to determine whether any given part of a brain
region projected more strongly to some part of the target region
than to other parts. This would indicate a structured, nonrandom
mapping that we would have to recreate to preserve the biolo-
gically accurate cortical architecture.

We started by projecting 3d representations of the source and
target regions into 2d, preserving distances along the cortical
surface (as in Harris et al.3). This effectively collapsed the vertical
axis, as we had constrained structure along that axis in the
previous step. Next, we defined a local barycentric coordinate
system in the 2d representation of the source region by picking
three points inside the region that maximize the sum of pairwise
distances between them, then moving them 25% toward the
center. We visualized the result by setting each of the red, green,
and blue color channels of an image of the source region to one of
the three barycentric coordinates (Fig. 3a, C,.). By extension, we
also associated each voxel of the macro-connectome model (x, y,
z) with a color (B, ) by first projecting its center into the 2d
plane, then looking up the barycentric coordinate. Next, we
considered the strengths of projections from each source voxel
and visualized the results by coloring each target pixel according

to the product of the 2d-projected projection strength and the
color associated with the source voxel:
o)

v =f. Z Bx,yz
%2€ Ve

where p., . refers to the voxelized projection strength from the
voxel at x, y, z, F(p.),2) to its 2d projection and f to a scaling factor
effectively deciding the overall lightness of the resulting image.
The result is a two-dimensional image with three color channels
(Igw, 12w 1), To more clearly reveal the structure of projec-
tions, we ignored source voxels associated with a color saturation
below 0.5.

The results showed a clear nonrandom structure of targeting in
the other regions (e.g., for projections from VISp: Fig. 3b). To
parameterize this structure, we first normalized the color values of
each pixel, dividing them by the total projection strength reaching
that pixel from src. We set the denominator to a minimum of
25% of the maximum strength from src in the target region to
ensure that weakly innervated parts of tgt would be depicted as
such.

(1)

Iraw[a’ b}
+15"a, b]
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where I[a, b] denotes the pixel of image I at coordinates a, b and

Vla, b] + I [a, b] + I [a, b))  (3)
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Fig. 2 Predicted layer profiles. a Predictions for all projection classes. Exact order of brain regions and assignment to modules by Harris et al.3 are also listed
in Supplementary Table 1. b-f Relative error of the predicted synapse densities in all layers. That is, the difference between prediction and the mean of the
raw biological data, divided by the standard deviation of the biological data. b For projections from L2/3. ¢ From L4. d From L5IT. e From L5PT. f From L6.
Dashed black lines indicate the biological variability of density under the assumption that it is Gaussian distributed. We used only projections where more
than five raw data points to establish the biological variability were available. g Fraction of projections where with the relative error under two standard

deviations for each source layer

This represented a projection as pixels with normalized
lightness, that faded to black in weakly innervated parts of the
target region (Fig. 3c, center, Nstff). Next, we optimized a
barycentric coordinate system in the 2d-projected target region to
most closely recreate the color scheme observed in N;‘fct (Fig. 3c,
periphery, Mﬁ‘fﬁ) We then assume that a neuron at any coordinate
in C,,. is mapped to neurons at the same coordinate in M. Thus,
the two local coordinate systems, each parameterized by three
points, together define the topographical mapping between
regions src and fgt.

We validated our predicted mapping against established data
on the retinotopic mapping in the visual system. This is

functional data on the mapping between a brain region and
locations in the visual field instead of anatomical data on the
projections between brain regions. Yet, we can use it for
validation under the assumption that areas corresponding to
the same location in the visual field are preferably projecting to
each other.

Analyzing the retinotopy, Wang and Burkhalter?® found
certain trends: In adjacent regions, points close to the boundary
between them on both sides are mapped together. A counter-
clockwise cycle in one area is mapped to a clockwise cycle in an
adjacent one. This change in chirality indicates that the mapping
must contain a reflection operation. Juavinett et al.30 utilize this
to identify borders between brain areas from intrinsic signal
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Fig. 3 Projection mapping in the visual system. a The primary visual area (VISp) and its defined source coordinate system. The three points defining the
barycentric system are indicated as colored triangles. Each coordinate is associated with the indicated red, green, or blue color channel to decide the color
of each pixel in the region. b The spatial structure of projections from VISp is indicated by coloring pixels in the surrounding regions according to the color
in a of the area they are innervated from. ¢ Center: as in b, but the color of each pixel is normalized such that the sum of the red, green, and blue channels is
constant. Periphery: target coordinate systems for the surrounding regions were fit to recreate the color scheme of the center, when colored as in a

imaging of retinotopy. When we systematically examined the
reflections and rotations in our predicted mapping (Table 1), we
found identical results.

Finally, we quantified to what degree barycentric coordinate
systems in source and target region can capture the biological trends
present in the projection data. As this type of mapping is always
continuous and cannot capture nonlinear trends, biological accuracy
could be lost. To this end, we calculated the difference between the
image of the target region, colored according to the target coordinate
system, M&, and the normalized image of the target region
according to the projection data, N;g . We defined the relative error
of a target coordinate system as the sum of absolute differences of
the two images, divided by their average and the number of pixels
(Fig. 4). We found that for over half of the projections the error was
below 5% and the maximum error was 17%.

Constraining projection types. Thus far, we have considered
constraints on the spatial structure of projections on a global
scale (the macro-connectome matrix) and a local scale (the
layer profiles and the mapping). The topographical mapping
also limited which individual neurons in a target region can
be reached by a given neuron in a source region, severely

constraining the topology of the potential connectome graphs
on a local scale. Yet, an important aspect of neocortical con-
nectivity not yet considered is which combinations of regions
are innervated by single-source neurons3!. Even if we know
which regions are innervated by a population of neurons in a
given region, each individual neuron is likely to innervate
only a subset of those regions. We call that subset its
projection type or p-type. It is unclear to what degree the
process is pre-determined or stochastic, and if it is stochastic,
what mechanisms further shape and constrain the randomness.
This is a complex problem, as a region such as SSp-tr inner-
vates 27 other regions, yielding 227 = 134217728 potential
p-types.

To tackle this problem, we analyzed that reconstructed axons
made available by the MouseLight project at Janelial®. These are
whole-brain neuron reconstructions of cortical neurons that
include their long-range projections. We first classified their
neuron types, then placed the axons in the context of the Allen
Brain Atlas and finally evaluated the amount of axonal length
projecting into the 43 ipsilateral and 43 contralateral brain
regions.

Figure 5a shows an example of 61 analyzed axons originating
in MOs. The scale of the p-type problem is clear at first glance:
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only a single combination of innervated regions is repeated in this
data set, all others represent unique p-types. Yet, a structure is
also apparent: while only 11 out of the 61 axons innervate the

Table 1 Validation of predicted mapping
Wang and Juavinett Our
Burkhalter2® et al.30 mapping
ViSpl reflection? Yes Yes Yes
rotation? 90° n/a 90°
ViSpor reflection? None None None
rotation? 180 ° n/a 180 °
ViSI reflection? Yes Yes Yes
rotation? None n/a None
ViSli reflection? None None None
rotation? None n/a None
ViSal reflection? None None None
rotation? 180 ° n/a 180 °
Visrl reflection? Yes Yes Yes
rotation None n/a None
VISa reflection? None n/a None
rotation? 90° n/a 90 °
VISam reflection? None None None
rotation? 90° n/a 90 °
VIiSpm reflection? Yes Yes Yes
rotation? None n/a None
Comparing linear transformations from source to target coordinate system in our results to the
ones of Wang and Burkhalter?® and Juavinett et al.30. n/a indicates that a paper provides no
data on a transformation

=
[
O
3 3
I T T N T T T Y Y T T O

visual or medial modules, the ones that do tend to innervate more
than a single of their regions. Moreover, it appears that the
projection strength (Fig. 5a, first row) is a strong predictor of the
probability that any given axon innervates a region (innervation
probability), indicating that a projection is strong because many
neurons participate in it, not because of few participating neurons
with large axonal trees in the target region.

Next, we analyzed these observations systematically. We only
had for the source region MOs a sufficient number of
reconstructed axons to robustly estimate the innervation
probabilities. We found that innervation probability was propor-
tional to the normalized projection strength, i.e., the amount of
axon in the target region, normalized by the volume of the source
region. We determined projection class-specific constants of
proportionality with a linear fit, resulting in a predicted
innervation probability P = 0.5 - /nps for projections from L2/
3 and L6, 0.33 - \/nps from L4 and L5PT and 0.22 - /nps from
L5IT. Figure 5b compares the innervation probability predicted
this way to the one observed in 25 samples for L2/3 of MOs,
61 samples for L5 of MOs, and 35 samples of its L6 (p =3 - 1079,
two-tailed pearsonr, n=3-86, ie., one sample per regionx
hemisphere x projection class). Conversely, the projection

strength was less a predictor of the axon length in a target region
for individual axons innervating the region (Fig. 5c). Projection
strength being a predictor of innervation probability is in line
with the findings of Han et al.3!. Assuming the principle holds for
other brain regions as well, we were able to predict the first-order
innervation probabilities for all combinations of source and target
region.
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Fig. 4 Validation of predicted mapping. Relative error of the mapping defined by the barycentric coordinate systems in the target area, compared with the
data. Values along the main diagonal: for contralateral mapping; all others: ipsilateral mapping. The data shown where the sum of densities from all

projection classes is above 0.025 ym—3
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Next, we analyzed statistical interactions of the innervation
probabilities for axons originating in MOs. For pairs of target
regions, we evaluated the null hypothesis that their innervations
are statistically independent, and if it was rejected (p = 0.05; see
the Methods section) calculated the strength of the statistical
interaction as the conditional increase in innervation probability

(%). We found significant interactions for 283 pairs
1

(Fig. 5d), with some strengths exceeding a 15-fold increase.
However, there were several problems preventing us from simply
using these observed interactions to constrain connectivity. First,
we only had data for axons originating from one of 43 brain
regions and it is likely that interactions differ for source regions.
Second, the data were incomplete, as some targeted regions were
not innervated by a single reconstructed axon (Fig. 5d, white
patches), and others were based on only a single or two axons.
Third, evaluating 86-(86—1)/2 = 3655 potential interactions based
on only 61 data points (i.e., axons) are statistically inherently
unstable and likely to dramatically overfit.

A model to generate projection types. Instead, we tried to use
the available axon data to develop a conceptual model of how the
interactions arise. We first observed that the largest interactions
strengths occurred for target regions in the medial and visual
modules that are otherwise only weakly innervated. Evaluating
this observation systematically, we found that indeed the strength
of an interaction was strongly negatively correlated with the
product of the first-order innervation probabilities of the pair
(Fig. 5e). Second, we observed only conditional increases in
innervation probability (values 1), ie., innervation of pairs of
brain regions is not mutually exclusive.

One model explaining both our observations is the following:
consider a tree with the brain regions in both hemispheres as the
leaves. Let each edge in the tree be associated with a probability
that the edge is successfully crossed by an axon, these
probabilities can be different in both directions of the edge. To
generate the set of innervated regions for a random axon, start at
the leaf representing its source region and then consecutively
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probability as in Fig. 5e

spread to other nodes further into the tree along its edges with the
probabilities associated with the edges (Fig. 6a). Once it has been
decided that an edge is not crossed, it cannot be crossed in future
steps. Every leaf reached this way is then considered to be
innervated by the axon.

If we set the length of an edge in this model to the negative
logarithm of the associated probability, then the first-order
probability that a region T is innervated by an axon originating in
region S is easily calculated:

P(S — T) = 107167, (4)

Where L(S, T) denotes the length of the shortest path between S
and T.
Similarly, the increase in conditional innervation probability of
T, and T, is given as:
P(S— TS —T,) 10 tUallh)T)

I(S,T) := =) = [0 I6T) ,

(5)

Where Ica(T,, T2) is the lowest common ancestor of T} and T.

Due to the underlying tree structure, the lowest common
ancestor is always an inner node that is closer or of equal distance
to T,, therefore the strengths of interactions are always larger
than one indicating an increase of innervation probability, which
is in line with our earlier observations.

Fitting the model consisted of two steps: first, we generated the
topology of the tree using the normalized connection density of
projections, i.e., the amount of signal (axon) in the target region

normalized by the volume of both source and target region.
Specifically, we used the Louvain heuristics*?> with successively
decreasing values for the gamma parameter to detect successively
larger communities in the matrix of normalized connection
densities (see Methods). Next, we replaced each edge with two
directed edges, one in each direction. Then we optimized the
probabilities associated with edges using the first-order innerva-
tion probabilities predicted from the normalized connection
strength of projections as in Fig. 5b. These predictions then
served as constraints on the path lengths between leaves.
Specifically, we locally optimized the edges in small motifs
consisting of two sibling nodes and their parent, based on
differences in the distances of the siblings to all leaves (see
Methods). As the pair of edges between nodes can have different
associated probabilities, the predicted statistical interactions are
not symmetric (see Supplementary Fig. 4) and there can be
region-specific differences in the number of regions innervated or
innervated from.

We used the fitted model to generate 10,000 profiles of brain
region innervation for axons originating from L5 of MOs and
MOp. Figure 6b compares a number of randomly picked profiles
against the data from reconstructed axons for both regions. As
the model was constrained with the predicted first-order
innervation probabilities, it manages to recreate the observed
high-level trends: strong innervation of the ipsilateral and
contralateral prefrontal, anterolateral, and somatomotor modules;
weaker, but highly correlated innervation of the other modules.
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To test the model further, we calculated the pairwise hamming
distances between innervation profiles from reconstructed axons
and from the model (Fig. 6c). We also compared the data against
a naive model using only the observed first-order innervation
probabilities and assuming no interactions. We found that the
naive model resulted in a narrow, symmetrical distribution with a
single peak at around 9 (MOp) or 13 (MOs). In contrast, the axon
data led to a much wider, asymmetrical, and long-tailed
distribution that were much better approximated by the tree-
based model. The difference between the distribution resulting
from the tree-based model and the axon data was, in fact, not
statistically significant (MOp: p =0.44, n=9 axons; MOs: p =
0.12, n = 61 axons; kstest).

Using the tree-model, we could predict the strengths of
interactions as described in Eq. (5) (Supplementary Fig. 4). When
comparing the strength of the interactions against the naive
innervation probabilities without interactions, we found in the
model the strong negative correlation that was present in the
axon data (Figs. 5e, 6d). For the model, we found more data
points toward the lower left corner of the plot that indicates low
naive probability and low increase. The lack of such points in the
data from axon reconstructions can be explained by the fact that
points associated with extremely low probabilities are unlikely to
show up in a relatively small sample of reconstructed axons.

As a final validation, we compared the model against the
results of Han et al.3!, which considered brain region targeting of
single axons originating from VISp. We have not taken into
account axons from this source region when we formulated or
fitted the model, making this a powerful validation of the
generalization power of the model (Fig. 7). Comparing the

a Han et al., 2018

number of visual regions innervated (out of VISli, VIS], VISal,
VISpm, VISam, and VISrl) by individual axons originating in
layer 2/3 of VISp, we find comparable results (Fig. 7a). Although
in the model, the mean number of regions innervated is slightly
higher (1.84 vs 1.7 (fluorescence-based) or 1.56 (MAPseq)) we
find the same roughly binomial distribution where fractions
decrease with increasing number of innervated regions.

We were also able to predict this distribution for axons from
other layers using our model. We predict similar shapes of the
distribution with an even higher mean for layer 5 and a lower
mean for layer 4 and especially layer 6. Next, we also considered
the statistical interactions between the six visual target regions
(Fig. 7b). Again, we found overall comparable conditional
probabilities, with a comparable structure, although strong
common innervations of regions VISI and VISal and VISpm
and VISam were underestimated.

Connectome instantiations and their micro-structure. Finally,
we developed a stochastic algorithm to generate instances of a
neuron-to-neuron connectome that fulfills all constraints in the
long-range projection recipe and used it to connect a model of the
entire mouse neocortex (see the Methods section). We considered
slender tufted and untufted pyramidal cells in layer 5 to partici-
pate in projection class L5IT and half of the thick tufted layer 5
pyramidal cells in L5PT, with the other half participating in
L5CT, which is not covered by the present, purely cortical model.
Pyramidal cells in other layer all participated in the corre-
sponding projection class.

As a result, we obtained connectome instances with 88 billion
modeled synapses, each associated with a presynaptic neuron,

b Han et al., 2018
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Fig. 7 Validation of the tree-model. Validation against the results of Han et al.3'. a Top, results of3' in terms of the number of visual areas innervated by
single axons originating in layer 2/3 of VISp. Bottom, corresponding results of the tree-model for axons originating in layers 2/3, 4, 5, and 6 (top left to
bottom right; n =10,000 innervation profiles each). b Top, results of Han et al.3' in terms of common innervation of pairs of visual brain areas by axons
originating in layer 2/3 of VISp. Bottom, corresponding results of the tree-model, based on n=10,000 innervation profiles
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postsynaptic neuron, and an exact location on the postsynaptic
morphology (Supplementary Fig. 6). This allowed us to analyze
the microstructure emerging from the constraints we added on
top of the matrix of connection strengths. While the additional
constraints on layer profiles and topographical mapping were
arguably on the meso- rather than microscale, and the p-types
governed the targeting of regions rather than individual neurons,
they were together likely to affect measurements of the
microstructure.

For example, an overexpression of reciprocally connected
neuron pairs is traditionally a measure of microstructure3334,
Topographical mapping between regions A and B can lead to
such an overexpression for pairs where one neuron is in A and
the other in B. This occurs when a location in A is mapped to a
location in B that is in turn mapped back to the same location in
A, leading to reciprocal connectivity of neurons in those locations
that is higher than expected from the average unidirectional
probabilities between the regions. In order for this trend to
emerge in an experiment, neurons would have to be sampled over
sufficiently large volumes for the mapping to have a significant
effect.

We evaluated the strength of this effect in an exemplary pair of
connected regions, VISa and VISam (Fig. 8). We calculated
unidirectional and reciprocal connection probabilities between
parts of the regions, where we first defined a subvolume of VISam
with increasing radius, then found the center of its projection to
VISa according to the mapping and defined a subvolume with the
same radius around the center (Fig. 8a, sampling radius). We
found that the connection probabilities decreased with increased
radius, as more and more parts of the regions are considered that
are not mapped to each other (Fig. 8b). However, the expected
reciprocal connection probability obtained from multiplying the
unidirectional probabilities fell off faster than the measured one.
Indeed for all radii over 150 pm, the reciprocal overexpression,
i.e., the measured divided by the expected reciprocal probability,
was in three connectivity instances larger than one, reaching
values as high as 2.5 for radii over 500 pm (Fig. 8c).

In addition, we found that measuring connection probabilities
not at the center of the projection of the subvolume, but offset
from it (Fig. 8a, sampling offset) lead to an overexpression of
reciprocally connected pairs. For a sampling radius of 150 um, we
shifted the center of the subvolume in VISa in a random direction
by various amounts, finding that it decreased all connection
probabilities while simultaneously leading to an increase in the
reciprocal overexpression (Fig. 8d, e).

Motif counts in neuron triplets is another traditional measure
of microstructure3334; its equivalent in long-range connectivity is
motif counts in triplets where each neuron is in a different brain
region. The p-types dictate that certain pairs of regions tend to be
innervated together, which would lead to overexpression of the
corresponding motifs.

Using the same method of sampling from subvolumes as above
(Supplementary Fig. 5a), we performed such an analysis for three
regions that are strongly connected to each other, FRP, MOs, and
MOp, confirming the trend. Based on 100,000 triplets in the
subvolumes, we found that motifs where a neuron in FRP
innervates only a neuron in MOp or a neuron in MOs only
innervates a neuron in FRP where significantly underexpressed in
favor of motifs where they innervate neurons in both other
regions (Supplementary Fig. 5b).

The constraints on topographical mapping and the p-types are
specific implementations of a principle of structured connectivity
on various levels; not only between modules and regions, but also
successively smaller subregions, leading to a scale-invariant
structure, previously identified in human MRI data2. The
topographical mapping generates a structure of subregions, as

outlined above, while the p-types generate larger structures of
groups of regions that tend to be innervated together. As such, the
the micro-connectome instances can be thought of as extending
this principle—so far demonstrated for voxelized connectivity—
further down to the level of individual neurons. Taylor et al.20
quantified this structure for diffusion imaging voxels by detecting
modules in the internal connectivity structure of two contiguous
brain regions, and then considering the connectivity between the
brain regions in terms of connection strengths between pairs of
such within-area modules. They found that the distribution of
strengths was much wider than in a random control, indicating
that the within-area modules also structure the connectivity
between areas. We replicated this experiment on the micro-
structure, ie., the predicted neuron-to-neuron connection
matrices within and between VISa and VISam (Fig. 8f, g). Upon
grouping individual neurons in the two regions into 93 (VISa)
and 179 (VISam) within-area modules and comparing the
connectivity between them to a random control preserving
individual neuron in- and out-degrees, we found comparable
results. Repeating the analysis for all sufficiently strong projec-
tions (Fig. 8h), we found the same, predicting that the principle
extends down to the level of individual neurons.

Taken together, we conclude that the constraints and principles
we identified lead to a highly nonrandom microstructure of
connectivity. While the structure is a prediction that will need to
be validated, this demonstrates the utility of generating statistical
connectome instances, as they reveal and quantify the interac-
tions between mesoscale and micro-scale connectivity.

Discussion

We have developed a way to generate statistical instances of a
whole-neocortex mouse micro-connectome. This approach takes
into account the current state of knowledge on region-to-region
connectivity strengths, the laminar pattern of projection synapses,
the structure of topographical mapping between regions and the
logic of regional targeting of individual projection axons as
derived from over 100 whole-brain axon reconstructions, and a
comprehensive mesoscale model of projections, built from
thousands of experiments3. Combining these data with a mor-
phologically detailed model of neocortex?! has allowed us to
statistically predict connections with sub-cellular resolution, i.e.,
including the the locations of individual synapses on dendritic
trees. Our approach is timely, as it leverages and integrates three
very recent, publicly available data sets. Furthermore, its flexibility
and modularity will allow it to readily use future data sets in place
and in addition to the currently used ones. The resulting wiring
diagram allows fundamental questions to be addressed, such as
the nature and dynamics of clinically relevant brain rhythms as
well as hierarchical interactions in the cortex, which are funda-
mental for understanding cortical coding and whole-brain
regional dynamics.

As the available data on this topic remains sparse, our
approach was as follows: we considered the formation of the
connectivity as a stochastic process selecting one out of a space of
possible wiring diagrams, and then sought out biological princi-
ples and rules that consecutively restrict this space of biologically
viable wiring diagrams.

The principles we identified were not only based on the bio-
logical data but also a number of assumptions. The assumptions
were necessary to break down the scale of the problem, to
interpret the data (data assumptions) and structure it into prin-
ciples (structuring assumptions), to formulate principles mathe-
matically (modeling assumption), and to apply them to infer
missing data (generalizing assumption). In order to interpret the
resulting micro-connectome and predictions, one needs to first
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Data assumption
Data assumption

Data assumption

Data assumption generalizing

Table 2 List of assumptions used in the formulation of the model

Connectivity is symmetrical between hemispheres, both within and across hemispheres.

The amount of fluorescent signal is directly proportional to axon length in a region and the density of synapses per
unit axon length is uniform across all neocortex.

Connection matrices for individual projection classes are version of the wild-type matrix, where submatrices are
scaled by individual values, and that sum up to the wild type matrix. This assumption could be removed with more
complete data on the projection classes.

First-order innervation probabilities for single axons can be predicted from the projection strength of the whole

Structuring assumption
Structuring assumption
Structuring assumption

outlined here.
Structuring assumption

Modeling assumption validated

the amount of detail lost due to this.
Modeling assumption generalizing

Inherited assumptions
Inherited assumptions
Implicit assumption

population in the source region. Validated in motor regions, we generalize the principle to all source regions.
The five projection classes considered are suitable to describe and parameterize long-range connectivity.

Each projection follows one of the six “prototype” layer profiles.

A clear distinction between local connectivity within a region and long-range connectivity across region, where
local connectivity follows the principles outlined in Reimann et al.24 and long-range connectivity the principles

The brain parcellation scheme of the Allen Common Coordinate Framework is suitable to describe and
parameterize the long-range connectivity.

The mapping of connections between regions is generalized topographical, continuous, and any scaling is linear.
However, there is no assumption that it completely cover the source or target region. Note that we have quantified

The targeting of brain regions by individual axons can be explained by a tree-based model, generated from
projection strength matrices. Validated for source regions VISp, MOs and MOp, we generalize to all other regions.
Assumptions that went into the construction of the voxelized connectivity model.

Assumptions that went into the construction of the morphologically detailed microcircuit model of Markram et al.1>.
The constraints on long-range connectivity we considered are complete, that is no other biological principles
restrict the space of viable wiring diagrams. This is almost certainly not true.

understand these assumptions. While we have made them explicit
in this paper, they are also summarized in Table 2 and discussed
in the Supplementary Discussion.

As in any model, there is the implicit assumption of com-
pleteness, that our model captures all pertinent biological prin-
ciples. We make no claim that this is true. This assumption is
formally necessary for us to achieve the following modeling goal:
given the assumptions, find the most general model that com-
pletely describes the data. In this context, we have drastically
improved the strength of the null model of the microstructure of
long-range connectivity. Previously, the most general model of
the data was the null model implicit in long-range connection
matrices—that of unstructured connectivity beyond the region-
to-region level—or with at most some layer targeting rules. We
have not only systematically integrated the data on this level but
also added constraints that lead to a nonrandom microstructure
with testable predictions.

Comparing potential experimental data against our improved
model will lead to a better interpretation of the results. For
example, we have demonstrated that an increased reciprocal
microconnectivity between regions does not only necessarily
imply a mechanism selectively stabilizing such motifs but can to
some degree be explained by the mechanisms leading to topo-
graphical mapping. We have further demonstrated that in the
presence of strong mapping, reciprocity must be evaluated rela-
tive to the trends present in the mapping to be correctly
understood.

Findings violating the naive, unstructured null model but in
line with our improved model can be explained by the principles
of connectivity we implemented. For data points invalidating the
model, for example conflicting triplet motif counts, we can try to
pinpoint which assumption it violates and thus provide it context.
Alternatively, data contradicting the model can be simply a result
of biological variability between individuals. At this stage, we
positioned the model to represent an average adult mouse where
such false positives are least likely. Further, some constraints—
such as the mapping and p-types—remained statistical and
consequently captured a large degree of variability between
individual instances. For the other constraints—such as average

synapse density and layer profiles—we can estimate an upper
bound on variability in the future by running our programmatic
pipeline to parameterize connectome constraints on outlier data
points instead of averaged data. Similarly, other ages or specific
strains can be modeled by using different data in the same
pipeline.

We can already hypothesize about additional principles that
might have to be added in the future. In terms of targeting of
connectivity, we have implemented many aspects of spatial tar-
geting of brain regions and locations within a region, and we have
demonstrated that this leads to a highly nonrandom micro-
structure. However, it is possible that similar rules apply for the
incoming long-range projections, i.e., which set of brain regions
individual neurons are innervated by, and possible interactions
between incoming and outgoing. In that case, we will be able to
extent our definition of p-types to be the concatenation of
incoming p-types and outgoing p-types.

In terms of the large-scale inter-area connectivity trends, i.e.,
the macro-connectome, our approach does not make any pre-
dictions, but is instead explicitly recreating the input data used.
While Harris et al.3 provided sufficient data for five projection
classes, it missed for example a GABAergic projection class!S.
Additional sources could be used in the future to add such a type.
In principle, completely different data sets could be used to define
projection strengths. For example, Giminut et al.> report a cor-
tical mouse macro-connectome that recreates biological trends,
such as a lognormal distribution over several orders of magnitude
of projection strengths. They argue that their data captures sev-
eral projections that are missed by Oh et al.>> (and consequently
also potentially by Harris et al.3, which is based on similar
computational methods). As their data provides potential sub-
area resolution (see their Fig. S2), it could be used to also con-
strain the mapping and consequently serve as the basis of a
stochastic micro-connectome predicted with our method, albeit
without distinction of projection classes.

The assumption of a continuous, linear mapping between
regions appears to solidly recreate the projection data, with only
three regions leading to significant error (Fig. 4; MOs, MOp, and
SSs). One explanation for the error would be that these regions
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contain subregions that each send and receive their own, con-
tinuous projections. Indeed, for the projections from SSp-Il and
SSp-ul to SSs (Supplementary Fig. 3b, right), we see several peaks
of the green and blue color channels in the data, whereas a single
continuous mapping can only generate single peaks. This is not
surprising, as MOs, MOp, and SSs are not broken up by body
part, unlike SSp that it strongly interacts with. In the future, the
projection data could thus be used to further break up these
regions, at least for the purpose of analyzing projections. With
more advanced analyses and more data it may even become
possible to hypothesize a brain parcellation scheme ab initio
based on projection data.

Even with the imperfections outlined above, the present model
will lead to advances in our understanding of brain function,
when employed in simulations of whole-neocortex activity. The
explicit parameterization of the constraints will allow us to
change parameters to assess their impact. For example, it is at this
point unclear whether the targeting rules for individual axons (p-
types) will have an effect on high-level brain activity. Similarly, we
can investigate to what degree the relatively simple topographical
mapping in the model is sufficient for the upstream propagation
of spatial information from VISp. Steps into that direction can be
undertaken both in morphologically detailed models and point
neuron models using the publicly available model connectome.

Methods

Accessing the mouse connectivity model. Unless noted otherwise, the data from
the voxelized mouse connectivity model of the Allen Institute was accessed using
the mcmodels python package provided by the authors (https:/github.com/
AllenInstitute/mouse_connectivity_models.git).

Volumetric synapse densities of projections. We formulated a target mean
density of synapses of 0.72 um~3 in the model, as measured by Schiiz and Palm?°.
Multiplied with the neocortex volume of the isocortex in the Allen mouse brain
atlas (123.2 mm?), this yielded a target number of 88.74 billion synapses. From this
number, we subtracted 36 billion synapses we predicted in local connectivity within
a brain region. This local connectivity was predicted by detecting axo-dendritic
appositions in the model and filtering them to fulfill biological constraints, such as
bouton density and synapses per connection?*. We then derived a matrix of
synapse densities in all projections between pairs of brain region by scaling the
wild-type connection density matrices provided by Harris et al.? in the

following way:

Let M; and M, be the 43 x 43 matrices of connection densities in ipsilateral and
contralateral projections between brain regions, provided by Harris et al.3. Entries
along the main diagonal of M;, corresponding to connectivity within a region are
set to 0. Furthermore, let V be the vector of region volumes and C; the matrix of
target region coverage in Supplementary Fig. 3d. Then we can calculate the scaling
factor o

o zh: (Mj[a, b] + M_[a,b]) - V[b] - C,[a, b] = 68.74 - 10° ©)

This factor was then applied to both M; and M, to convert them into matrices of
the average density of synapses in the target region due to a projection, measured in
pm 3. While this left no explicit room for synapses from extracortical sources, we
estimate them to contribute comparatively little. For example, the density of
thalamic synapses projected from VPM into SSp-bfd?’, when averaged over the
whole-cortical depth, is only about 1.5% of the average total density (0.72 um—3)2°.

Projection density matrices for individual projection types. We combined the
wild-type projection matrix from Harris et al.> with their incomplete information
on projections in individual projection classes, to get five individual projection
matrices, one for each projection class. As their wild-type experiments affected
neurons in all layers and classes of the source region, we assumed that the sum of
synapse densities over projection classes is equal to the density for the wild-type.
Furthermore, based on qualitative observations, we assumed that the region-to-
region connection matrices for each projection class are versions to the wild-type
matrix, where individual module-to-module submatrices are scaled by individual
values. The modules were six groups of contiguous brain regions (prefrontal,
anterolateral, somatomotor, visual, medial, and temporal) identified in Harris

et al.3. This assumption means that connectivity trends between modules will be
preserved for all projection classes, but more fine grained trends for regions within
a module will simply replicate the overall trends observed in the wild-type matrix
for all classes.

Based on these assumptions, we derived matrices of synapse densities for
individual projection classes with the following algorithm. First, we digitized the
available information for individual projection classes from the Harris paper using
the following mapping to cre-lines: 2/3: Cux2-IRES-Cre; 4: Scnnla-Tg3-Cre; 5it:
TIx3-Cre_PL56; 5 pt: A93-Tgl-Cre; 6: Ntsr1-Cre_GN220. Then we condensed
the information into five 6 x 6 matrices of average projection strengths between
modules and normalized results such that the sum of the five matrices is 1
for each entry. Finally, we generated full-size 43 by 43 matrices for each
projection type by scaling module-to-module specific submatrices of the wild-
type matrix by the corresponding entry in the condensed and normalized matrix
(Supplementary Fig. 7).

To reduce the computational demand of generating connectome instances, we
determined a minimal projection strength and removed projections weaker than
the cutoff. The cutoff was calculated as 0.0006 um~3, such that <5% of projection
synapses would be lost.

Projection density assumed symmetrical for both hemispheres. As the data in
Harris et al.? are focused on the right hemisphere, we assumed connectivity to be
symmetrical between hemispheres to be able to model both of them. This lead to 5
(projection classes) x 43 (source regions) x 86 (ipsilateral and contralateral target
regions) potential projections parameterized in terms of their strength by the data.
However, we considered the 5 x 43 ipsilateral projections within the same region to
be local connectivity, which we instead derived with our established approach?%. A
number of regions also lack layer 4, rendering projections in that projection
class void.

Predicting layer profiles. To assign one out of six layer profiles to each projection,
we digitized the data on profile frequencies of Harris et al.> and combined it
according to the process illustrated in Supplementary Fig. 8: first, for a source
module we counted the number of intra-module or inter-module projections
originating from it in each projection class. The example illustrates inter-module
feedforward projections from the prefrontal module (Supplementary Fig. 8, top
left). For the presence of a projection, we defined a minimum projection strength,
selected such that <5% of the total number of projection synapses are lost to the
cutoff. The counts were then used as weights for a weighted average of the vectors
of layer profile frequencies associated with each projection class. The result is a
vector of expected profile frequencies for intra- or inter-module projections from
the source module, if only the layer profile frequencies associated with projection
classes are considered (Supplementary Fig. 8, top right).

Next, we looked up the observed profile frequencies for the source module in
the data of ref. 3 and compared them to the expected ones (Supplementary Fig. 8,
bottom left). Dividing the observed by the expected frequencies yielded adjustment
factors for each layer profile that expressed which profiles were overexpressed or
underexpressed in intra- or inter-module projections from the source module
under consideration (Supplementary Fig. 8, bottom middle). We categorized
projections as feedforward or feedback, based on the hierarchical positions of brain
regions, reported in Fig. 8e of ref. 3, and, in accordance with their findings, reduced
by 50% the adjustment factors for profiles 1, 3, and 5 when considering feedback
projections and of profiles 2, 4, 6 when considering feed-forward projections.
Finally, we multiplied the vector of adjustment factors with the vectors of profile
frequencies for individual projection classes to get adjusted profile frequencies
(Supplementary Fig. 8, bottom right).

The method yielded unique profile frequencies for each combination of source
module, projection class and intra- or inter-module projection. To reduce the
vectors of adjusted frequencies to a single profile, we simply picked the profile with
the highest adjusted frequency (Supplementary Fig. 8, bottom right).

Topographical mapping of projections. The topographical mapping of projec-
tions was defined by barycentric coordinate systems in the source and target
regions and the assumption that a point in one region is mapped to the corre-
sponding point in the other. The local coordinate systems were derived using the
methods described in the Results section, implemented in custom python code
available at: https://github.com/BlueBrain/Long-range-micro-connectome. How-
ever, due to the potentially large extent in the target region of single-projection
axons, the biological mapping is rather point-to-area than point-to-point. There-
fore, we additionally predicted for each projection the width of the targeted area.

A point-to-area mapping would result in an Ni&t with lower saturation values,
i.e., when depicted as in Fig. 3 in an image with slightly washed-out colors. Indeed,
we found for most projections low saturation values in N& and consequently the
optimal solution for the target coordinate system M would place all three
defining points outside the target region. However, we assumed that low saturation
values were rather a result of a large extent of projection axons leading to a weak
mapping. We therefore added another objective to the optimization procedure for
Mstfc': minimizing the fraction of the source region that is mapped to points outside
the target region. To compensate, we defined points in the source region to be
mapped to 2d Gaussian kernels at their target location instead of a single point. The
width of the Gaussian was optimized such that a convolution of Mf§£ with the same
Gaussian resulted in the same distribution of saturation values as Nf‘,gf .
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Analyzing whole-brain axons. We acquired 183 neuron reconstructions from the
Janelia Mouselight data portal!® by querying for reconstructions where the soma
location is within the neocortex. We first manually annotated the apical dendrite
using Neurolucida (MBF Bioscience, Williston, VT, USA) given that it was not
available in the original data. Based on this, we classified the neuron as a pyramidal
cell or interneuron. Then, we performed a spatial analysis of the axon projection of
each neuron by mapping the terminal points of the axon as well as the soma
location into the Allen CCFv3 atlas coordinate system?°. This yielded a complete
list of brain regions containing axon terminal branches, as well as the brain region
and layer containing the soma. Together with the information previously extracted
from the annotated apical dendrite (e.g., shape, layer, number of branches), this
spatial information is used to perform classification of the m-type and projection
type (p-type) of the neuron.

Testing statistical independence of region innervation. Let N be the number of
analyzed axons (here: 61 for innervation from L5 of MOs). Let n, and n,, be the
number of them that innervate regions a and b, respectively. Then under the
assumption of statistical independence, the number of axons innervating both a
and b is distributed according to the hypergeometric distribution with parameters
N, 14, np. We tested where the observed number of dual innervations fell along the
cumulative distribution, and rejected the null hypothesis of independence if it was
within the first or last 2.5% (two-tailed test).

Constructing the p-type generating tree morphology. The Louvain algorithm
takes a weighted adjacency matrix as input, and then clusters the nodes into
communities trying to maximize the weights within a community and minimize
the weights across. An additional parameter is y, which defines the granularity of
the result: The smaller the value, the fewer communities it will result in, until a
value of zero resulting in a single community.

We began by setting gamma to a value of 6.0, such that every brain region
resulted in its own community. Correspondingly, we began constructing the tree
topology by associating every brain region with its own leaf node. We then
continuously lowered the value of y, such that regions and communities began to
merge into larger communities. We considered a pair of communities to be merged
when through lowering y a new community appeared that contained more than
half of the regions of each of the original communities. In that case, we placed a
new node in the graph representing the new community and connected it with the
two nodes representing the original communities. We continued lowering y until it
reached zero, at which point everything merged into a single community and the
root of the tree was placed.

We fit the weights of the edges to the predicted innervation probabilities using a
recursive algorithm that optimized the local weights in small motifs consisting of
two sibling nodes and their parent. It is based on the following observations
(Supplementary Fig. 9):

Let T; and T, be two sibling nodes and R their parent. In the model, any
difference in the innervation probabilities for axons originating in T} and T, can
only be due to differences in the lengths of the edges connecting each of them to
their parent. This is because once the parent is reached, the shortest paths to any
other region will be identical. Therefore:

Wr,r — W, ~ [M[Ty, ]| — [M[T,, ]| (7)

Wrt, — Wrot, ° [M[:, T,]| — [M[:, T,]], 8)

Where M denotes the matrix of the negative logarithm of predicted innervation
probabilities, M[x, :] a single row of it (i.e.,, the probabilities of neurons in x to
innervate each other region), and M[;, x] a single column of it (i.e., the probabilities
of x to be innervated by neurons in each other region).

Further, the probability a neuron in T; innervates T, is given by the path from
T, via R to T»:

M[T, Ty] = wy,_g + Wp_r, )

M[T,, T\] = wr, g + wr_r, (10)

We found values for the four edge lengths in the motif by finding the least-squares
solution of the system of linear equations. After this, we continued by performing
the same step for node R and its sibling, until the root was reached.

Generating connectome instances according to the constraints. As mentioned
previously, a long-range projection recipe is created which describes constraints on
the desired connectivity. By doing so, the same recipe can be used to instantiate
long-range projections with different circuit models, and to allow for different
implementations to create these instantiations. This section describes the imple-
mentation used to generate the connectomes published under https://portal.
bluebrain.epfl.ch/resources/models/mouse-projections.

The circuit representation and input data required for this implementation are:

® A placement of neuron morphologies in space
® A table describe their morphological types
® A spatial index, allowing the querying of morphology segments in a

bounding region

® An atlas describing the different regions and layers that are addressed by
the recipe

® A “flat-mapping” from 3d to 2d space

® the recipe, which has:

populations: defining which regions, subregions and morphological types are
part of the various source and target populations

projections: organized by source population; specifies per target population,
the expected synapse density, layer profile, and the barycentric source and
target triangles

p-types: organized by source population; specifies per target population the
first-order innervation probabilities for neurons of the source population,
and for pairs of target populations the conditional increase in innervation
probabilities

The basic circuit representation (first three items) was generated by a scaled-up
version of a published algorithm!®. The atlas was based on the Allen Common
Coordinate Framework?®. For the flat-mapping, we used the Allen Dorsal Flatmap
of the mcmodels python package (see above). With this data, the implementation
proceeds with the following steps:

Neuron allocation: For each source population, the neurons in those
populations are allocated to participate in projections to a number of target
populations according to specified fractions and statistical interactions. Where no
interaction is specified, the overlap (neurons participating in both projections) is
calculated from the fractions participating in one projection multiplied by the
other; this default value is scaled-up, where interactions are specified. The challenge
is then to assign neurons to each of the projections, such that the desired fractions
and overlap sizes are reached.

A simplistic greedy algorithm was used to perform this allocation. Each source
population group is assigned a sampled set of neurons, and pairwise the overlap is
calculated, and adjusted based on the first-order interactions. When the overlap is
too small, it is enforced by randomly sampling neurons from each group, and
replacing neurons in the other group such that the overlap is achieved. Attempts
were made to use a SAT solver to perform exact allocations, but the size of the
neuron counts and the constraint counts meant the model could not be solved in
the available memory.

Synapse sampling: Sampling happens at the target region level. The target
populations in the region are grouped, and the required densities per incoming
projection are computed based on the long-range projections recipe. The densities
are translated into counts based on the constrained volume created by intersecting
the area occupied by the barycentric triangles, and reversed mapped using the “flat-
map” to the voxels of the atlas within the region. Finally, all morphological
segments of a target population within this volume are found, and sampled with
replacement with weights proportional to their length. Synapses are placed at
random offsets within these segments. This structure allows for parallelization, as
each combination of target and source populations can be run at the same time,
subject to computation and memory limits.

In practice, finding all segments within the volume demands significant
memory which constrains the implementation. This, in turn, gives rise to per target
population order: all samples for this population are loaded, and then all the
sources referencing this population are calculated sequentially, with the
calculations parallelized when possible—the initial sampling, picking the segments
with in the barycentric coordinates, etc. Further parallelization can be achieved by
running many of these process on different machines, in a batch style.

Mapping: Following the allocation and sampling, the two results are brought
together in mapping: source neurons that are allocated to a projection are matched
to the synapses created during the sampling of the same projection. Because both
these data sets work with 3d coordinates, they are projected into the 2d
representation so that the barycentric coordinates, described earlier, can be used to
create the desired spatial organization.

To that end, since source neurons are less numerous, they are first projected
into the flat space, and from there mapped into the barycentric coordinate system
of the source region. The same coordinates in the barycentric system of the target
region are then mapped back into the flat space and considered the mapped
locations of the source neurons in the target region. Synapses in the target region
are directly mapped to the flat space. Finally, in parallel, synapses are then
stochastically assigned to a target neuron with a weighting based on the distance to
their mapped location in the flat space and the specified width of the mapping. To
speed this process, the source locations are put in a k-dimensional tree, and only
the 100 closest source locations are queried per potential target synapses.

Output: The final step is to output the circuit in a format that can be used for
simulation. For this, the SONATA file format was chosen: https://github.com/
AllenInstitute/sonata. In addition, for structural analysis, we output for each target
region a connectivity matrix of all incoming connections in the scipy.sparse.
csc_matrix format.

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.
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Data availability

The recipe constraining the long-range connectivity—underlying Figs. 1-4, S1-S3—and
stochastic instances fulfilling the constraints—underlying Figs. 6-8, S5 and S6—can be
downloaded from the Mouse whole-neocortex connectome model portal (https://portal.
bluebrain.epfl.ch/resources/models/mouse-projections/). The reconstructions of
individual axons—underlying Fig. 5—are available at the MouseLight project at Janelia,
mouselight.janelia.org.

Code availability
The model was constructed using python 2.7 with custom code available at https://
github.com/BlueBrain/Long-range-micro-connectome.
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