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ABSTRACT Streptomyces parvus strain C05 was isolated from the walls of a Roman
tomb located in Carmona, Seville, Spain. Subsequent studies determined the capabil-
ity of this strain for producing granaticins. Here, we report the 8.7-Mbp draft genome
sequence for this bacterium.

The phylum Actinobacteria is common in caves (1). Microclimatic conditions as well
as the availability and nature of nutrients are critical elements for the biogeochemi-

cal processes carried out by different members of this group in subterranean environ-
ments (2–4), being especially relevant in the biodeterioration of cultural heritage (5).

The Circular Mausoleum is a small tomb located in the Roman Necropolis of
Carmona, Spain. This tomb presents abundant and unusual violet stains affecting the
mural paintings. A bacterium initially identified as Streptomyces sp. C05 was isolated
from these stains and produced a violet pigment in the laboratory. Chemical analysis
identified several granaticins as the source of the violet pigments (6). rRNA 16S and
multilocus sequence analysis (MLSA) identified this bacterium as a strain of Streptomy-
ces parvus (5). Granaticins exhibited antibacterial activity against Gram-positive bacteria
and are synthesized by other Streptomyces species, such as S. vietnamensis and S. violaceo-
ruber, but the type strain of S. parvus, NRRL B-1455, does not have the ability to
synthesize granaticins (5, 7, 8).

Streptomyces parvus strain C05 was cultivated in tryptone soy agar incubated at
30°C. Genomic DNA isolation from this bacterium was carried out using the Marmur
method (9) with modifications. The DNA concentration measurement was quantified
with an Invitrogen Qubit 2.0 fluorometer. Genomic DNA was sequenced using 250-bp
paired-end reads on an Illumina HiSeq platform by means of a Nextera XT library prep
kit. A total of 2,183,823 reads were generated with a median insert size of 515 bp.

The read quality was checked with FastQC 0.11.5 (10). Reads were adapter trimmed
using Trimmomatic 0.36 with a sliding window quality cutoff of Q15 (11). De novo
assembly for this draft genome was performed using SPAdes 3.11.1 (12) with the
“careful” option to reduce mismatches and short indels, and annotations were carried
out using the NCBI Prokaryotic Genome Annotation Pipeline (13), with Sma3s (14) for
functional annotations using the UniProt bacterium database with the “uniprot” option
and antiSMASH (15) for secondary metabolite biosynthesis gene cluster prediction. A
total of 729 contigs were obtained with a mean coverage of 29.94�. The N50 value was
28,163, and the largest contig was 102,255 bp. The genome size was 8,755,172 bp with
an average G�C content of 71.4%. A total of 8,111 genes were detected, with 17 rRNA
and 66 tRNA genes predicted.

Streptomyces sp. strain C05 was closely related to Streptomyces parvus NRRL B-1455T

(GenBank accession number VXCD00000000). The relatedness was assessed by calcu-
lating the average nucleotide identity with the BLAST and MUMmer algorithms using
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the JSpeciesWS Web service (16). Average nucleotide identity using BLAST (ANIb) and
MUMmer (ANIm) between C05 and type strains presented values of 95.50% and
96.86%, respectively, suggesting that the S. parvus type strain and C05 belong to the
same species.

The prediction of secondary metabolite clusters using antiSMASH corroborated the
granaticin production since its genome presented 86% of the granaticin biosynthesis
gene cluster described in S. violaceoruber (GenBank accession number AJ011500), in
addition to 54 biosynthetic gene clusters involved in the production of different
bioactive compounds. Therefore, the results obtained in former in vitro studies (5, 6),
along with the prediction of secondary metabolites derived from in silico analysis
carried out for Streptomyces parvus C05, promote the exploration of subterranean
environments as a prolific source for biocompounds of biotechnological interest (17).

Data availability. This whole-genome shotgun project has been deposited at
DDBJ/ENA/GenBank under the accession number VSZQ00000000. The version described
in this paper is the first version, VSZQ01000000. BioProject and raw data are available
at the accession numbers PRJNA562075 and SRR10059654, respectively.
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