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Background. Idiopathic scoliosis accounts for over 80% of all cases of scoliosis but has an unclear pathogenic mechanism. Many
studies have introduced conventional image processing methods, but the results often fail to meet expectations. With the
improvement and evolution of research in neural networks in the field of deep learning, many research efforts related to spinal
reconstruction using the convolutional neural network (CNN) architecture of deep learning have shown promise. Purpose. To
investigate the use of CNN for spine modeling. Methods. The primary technique used in this study involves Mask Region-
based CNN (R-CNN) image segmentation and object detection methods as applied to spine model positioning of radiographs.
The methods were evaluated based on common evaluation criteria for vertebral segmentation and object detection. Evaluations
were performed using the loss function, mask loss function, classification loss function, target box loss function, average
accuracy, and average recall. Results. Many bony structures were directly identified in one step, including the lumbar spine
(L1-L5) and thoracic spine (T1-T12) in frontal and lateral radiographs, thereby achieving initial positioning of the statistical
spine model to provide spine model positioning for future reconstruction and classification prediction. An average detection
box accuracy of 97.4% and an average segmentation accuracy of 96.8% were achieved for the prediction efficacy of frontal
images, with good image visualization. Moreover, the results for lateral images were satisfactory considering the evaluation
parameters and image visualization. Conclusion. Mask R-CNN can be used for effective positioning in spine model studies for
future reconstruction and classification prediction.

1. Introduction

Scoliosis is defined as a C- or S-shaped lateral spine curvature
greater than 10°. Adolescent scoliosis is a common three-
dimensional deformity of the spine that manifests as a disease
with abnormal spinal sequences in the coronal, sagittal, and
transverse planes. Scoliosis is classified as idiopathic, congeni-
tal, or neuromuscular, depending on its etiology.

Cases of scoliosis where the pathogenic mechanism is
unclear are classified as idiopathic scoliosis, currently account-
ing for over 80% of cases. In the United States, the prevalence
of adolescent idiopathic scoliosis is 1-3% [1]. Although the

incidence of congenital scoliosis is much lower than that of
idiopathic scoliosis, congenital scoliosis has a more significant
impact on the physical andmental health of patients because it
is accompanied by structural deformities such as vertebral
hypoplasia [2]. Without timely intervention and treatment
during spinal growth and development, the angle of scoliosis
gradually worsens, leading to spine deformity, ribcage defor-
mity, and possibly pain and even nerve compression in the
shoulder, back, and thoracic and lumbar spine and respiratory
distress [3, 4]. Given the high incidence and impact on the
physical and mental health of adolescents, scoliosis has been
listed as one of the four major diseases of adolescents and
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has received widespread attention from all segments of society.
Therefore, the classification and prediction of the tendency of
scoliosis through technology are of great interest.

Three-dimensional reconstruction of the spine is impor-
tant for future scoliosis staging and outcome prediction. Fur-
ther, the classification of scoliosis is an important foundation
for determining an appropriate treatment plan. Currently,
the classification of scoliosis and treatment guidelines are
based on 2D spine radiographs. However, scoliosis manifests
as a disease with abnormal spinal sequences in the coronal,
sagittal, and transverse planes and the three-dimensional spa-
tial structure of the abnormal vertebrae. Consequently, the
diversity in curve types and morphology cannot be appreci-
ated through 2D radiographs alone, possibly leading to misin-
terpretation of different scoliosis deformities with similar 2D
parameters. Artificial intelligence technology can be used for
objective measurement and analysis of the characteristic
parameters of scoliosis and to achieve accurate classification
based on the characteristic parameters. However, the progres-
sion and prognosis of scoliosis are difficult to determine even
after accurate and objective scoliosis classification owing to
vertebral growth disorders causing imbalances in spinal
growth and other causes. Therefore, spine model positioning
is important for subsequent studies requiring 3D reconstruc-
tion of the spine for scoliosis classification and treatment.

In this paper, we propose a training network model
based on the Mask Region-based convolutional neural net-
work (Mask R-CNN) architecture for one-step direct identi-
fication of spine models in human frontal and lateral X-ray
images, including the lumbar spine (L1-L5) and thoracic
spine (T1-T12). In addition, we provide the initial position-
ing of statistical spine models, thus providing spine model
positioning for future reconstruction and classification pre-
diction. Figure 1 shows a flow diagram of this study.

2. Related Work

Many studies have introduced conventional image processing
algorithms for spine model positioning, including using con-
ventional segmentation algorithms such as the Canny edge
detector, the active contour (snake) algorithm [5], and the
generalized Hough transform for automatic segmentation of
vertebral projections. Subsequently, in conjunction with a
generic 3D model of the spine and segmented vertebral radio-
graph images, 3D/2D alignment is used to separately estimate
the position of each vertebra. However, the results of these
attempts have predominantly been inadequate. Difficulties
such as low contrast in fluoroscopic images and overlapping
or concealed tissue structure make conventional segmentation
algorithms ineffective. In addition, applying 3D/2D alignment
to each vertebra is time-consuming, and the local alignment
results are incompatible with the overall structure of the spine.

With the continued improvement and evolution of
research in neural networks, encouraging research results have
been obtained in academic studies. Many research studies
related to spinal reconstruction have used the CNN architec-
ture. Arif et al. employed a CNN-based segmentation model
to segment the spine in lateral radiographs and obtained ideal
experimental results with high accuracy [6]. However, because

of the single output of the CNN, the boundaries of overlapping
parts are difficult to determine. The individual optimization of
CNNs in multiple fragmented processes increases algorithm
complexity and makes quality control difficult. In contrast,
the primary technique used in our study is Mask R-CNN-
based image segmentation and object detection methods as
applied to spine model positioning in X-ray images.

2.1. Developments in 3D Spine Reconstruction. The evolution of
3D spine reconstruction algorithms has been following the
technical route of gradually increasing the fine-tuning parame-
ters of 3D spine models while reducing manually controllable
parameters during the reconstruction process. Commonly used
spine models are typically obtained by generating 3D models
from boundaries outlined in sectioned computed tomography
or magnetic resonance imaging images [7]. Owing to differ-
ences in algorithms and use cases, the generated 3D models
are of three primary types: point cloud, mesh, and nonuniform
rational B-splines [7–10]. Earlier reconstruction algorithms
required manually locating 0-30 bony marker points for each
vertebra in projection images to predict its 3D coordinates
and generate a 3D mesh model for morphological adjustments
and eventually complete the reconstruction [11]. Various statis-
tical models based on standard a priori databases have since
emerged to reduce the processing time. Semiautomaticmethods
using these models require only a small number of parameter
inputs to predict the geometric parameters of a 3D model of
the spine. There are two types of models: parametric dimen-
sionality reduction models and parametric spine models. The
parametric dimensionality reduction model is a principal com-
ponent analysis model or a multiple linear regression model
aimed at reducing the parameter inputs [12, 13].

Early parametric spine models generally utilized sixmarker
points per vertebra, which were sufficient to generate the entire
point cloud model of the spine. However, such models lacked
parametric degrees of freedom and could not fully represent a
fine-grained 3D mesh model [12, 13]. To address this issue,
Humbert et al. made modifications and proposed a more
mature and easy-to-use semiautomatic reconstruction algo-
rithm [14]. Their method accounts for both the longitudinal
and transverse geometric morphologies of the spine. The longi-
tudinal morphology is determined by a line through the center
of the vertebral body, whereas the transverse morphology is
determined according to a simplified parametric model of the
local deformation of the vertebrae. This two-level parametric
description is still used today. However, this semiautomatic
method has different sensitivities to the location of individual
marker points for manual input. Operator interaction with
the iterative input process is often nonintuitive and time-con-
suming, at approximately 11.5min on average [15].

Recently, Parent et al. proposed a CNN-based architecture
for bony anatomical landmark detection in frontal and lateral
images. These include the vertebral arch and the vertebral end-
plate, which allow for finer adjustments in the reconstructed
model [16]. Aubert et al. conducted a study based on bony
landmark detection and achieved rapid automated reconstruc-
tion within 2 minutes [17]. However, individual optimization
of CNNs inmultiple fragmented processes increases algorithm
complexity and makes quality control difficult; in addition,
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such algorithms still suffer from low contrast caused by over-
lapping tissue structures.

2.2. Developments in Spine Model Positioning in Spinal
Reconstruction. Before spinal reconstruction, the coordinate
system and geometric scale relationships must be defined
based on the accurate positioning of bony structures such as
the femoral head, sacroiliac joint, and sacral endplate. In semi-
automatic reconstruction methods, these data are manually
marked. In a recent automatic reconstruction study, Aubert
et al. used a multilevel, mutually independent CNN model to
determine these bony structures separately to improve the
accuracy of parameter estimates throughmultiple adjustments
[17]. However, training multiple CNNs separately in this
manner makes it difficult to achieve global cooperative train-
ing optimization and poses problems for quality control of
the algorithm in clinical applications.

In recent years, the accuracy and speed ofmultitarget recog-
nition frameworks in the field of computer vision have reached
unprecedented levels owing to the development of deep learn-
ing [18]. In contrast to conventional CNN, the R-CNN archi-
tecture can classify multiple regions of interest in the input
image based on a feature map obtained from the shared CNN
training, eventually resulting in multitarget recognition and
positioning. Mask R-CNN can further segment the object
boundaries to facilitate higher-order in-depth analysis. There-
fore, we aimed to use the R-CNN architecture to train the net-
workmodel to directly identifymany bony structures, including
lumbar and thoracic vertebrae in frontal and lateral X-ray
images in a single step, thereby achieving the initial positioning
of the statistical spine model.

Thus, the present study differs from recent studies in
that the Mask R-CNN architecture is used to train the net-
work model to directly identify many bony structures,
including the thoracic spine and lumbar spine, in frontal
and lateral radiographs in a single step, while providing the
initial positioning of the statistical spine model, thereby sim-
plifying the positioning process.

3. Materials and Methods

3.1. Preprocessing and Serial R-CNN Models

3.1.1. Preprocessing. In this study, we preprocessed the
human X-ray images acquired before putting the dataset
into a standard format. The X-ray images used were anon-
ymized X-ray images in DCM format. First, ImageJ was used
to convert the X-ray images from DCM to JPG format.

3.1.2. R-CNN. R-CNN uses an object recognition method on
regions based on sliding windows. First, category-
independent sets of candidate regions are generated on a
given image, and each candidate region set is labeled with
a category and a bounding box. Next, for each candidate
region, a CNN is used to extract a fixed-length eigenvector.
A support vector machine (SVM) classifier is trained for
each category to determine the probability that the eigenvec-
tors belong to each category. The eigenvectors output from
the CNN are fed into the SVM classifier to predict the prob-
ability that the objects in the candidate regions belong to
each category. Figure 2 depicts the R-CNN model.

3.1.3. Faster R-CNN. Faster R-CNN improves upon R-CNN
by adding a region proposal network (RPN) for detecting
target regions instead of using selective search to extract can-
didate regions. The RPN is a fully convolutional network
that can exclude meaningless regions not belonging to any
target category, reduce the number of proposed regions gen-
erated, and increase the speed of candidate region generation
while ensuring precise object detection. Figure 3 illustrates
the Faster R-CNN model.

3.1.4. Mask R-CNN. Mask R-CNN adds a feature pyramid
network (FPN) to overcome the limitations of region trans-
formation, improve algorithm efficiency, and effectively use
the pixel-level location information of the training data
image labels. Introducing a residual network as deep seman-
tic information prevents the vanishing gradient problem,
thereby improving model accuracy. Figure 4 illustrates the
Mask R-CNN model algorithm.

Mask R-CNN uses a residual network to better utilize the
features extracted from deep convolution. The RoIPool is
replaced with a region of interest alignment layer using a bilin-
ear difference method instead of roughly selecting a value to
substitute for the value of the entire region because each region
also has a size gap. The bilinear interpolation method is
extended by calculating the linear difference in each of the
two directions and ismore appropriate for mapping the region
of interest to the feature map by performing bilinear interpo-
lation for each point. The output of the region of interest align-
ment layer contains the same shape as the feature map and can
be used for mask classification prediction and the bounding-
box shape of the region of interest in all regions of interest.
In addition, the pixel-level mask position of the target can be
predicted using the full CNN. Improving the RPN to FPN
connects different convolutional layers to better identify fea-
tures at different scales.

Data preprocessing Data annotation and
dataset assembly Mask R–CNN training

Segmentation mask
prediction

Classification
prediction

 Analysis of resultsBounding–box
prediction

Figure 1: Flow diagram of our Mask R-CNN-based spine model positioning study.

3BioMed Research International



3.2. Basic Principles of the Mask R-CNN Model

3.2.1. Spine Positioning Model Design. As shown in Figure 5,
the spine X-ray image positioning network structurally con-
tains modules such as a CNN backbone, feature map pro-
cessing, mask calculation, bounding-box prediction, and
category prediction. First, spine radiographs are input into
the Mask R-CNN, and then, the convolutional layer of the
CNN backbone extracts features from the input image. Next,
the candidate regions of the vertebrae are extracted using the
RPN, with feature maps of different scales generated by the
FPN. Finally, the feature map set is passed into the head of
the network, comprising three branches: mask branch that
calculates the 2D mask of vertebra instances in each region
of interest, box regression branch to determine the extent
of the vertebra box, and classification prediction branch,
for instance, classification prediction.

3.2.2. Convolutional Computation.At the base of the model is a
convolutional backbone that extracts the input image feature
map through layer-by-layer convolutional computation. The
entire spine model localization process must undergo convolu-
tional computation before subsequent classification, vertebral

mask generation, and vertebral box computation can be per-
formed. Convolutional computation often requires improve-
ment. Simply increasing the network depth results in the
vanishing gradient problem, causing the accuracy of results to
gradually tend toward fitting after increasing to some value,
and the accuracy will instead keep decreasing as the network
depth increases.

In deep convolutional networks, although the number of
convolutional layers and the feature expression capability
increase with increased convolutional computation, the vanish-
ing gradient problem often remains. The deeper the layers of an
ordinary neural network, the closer the initialization parameters
are to zero. As the training of neural networks usually involves a
backpropagation algorithm for chain product derivation, the
more the gradient of the shallow layer tends to zero as the infor-
mation is propagated forward when the parameters of the shal-
low layer are updated, the more the gradient eventually
disappears. In other words, the accuracy tends to fit after the
depth of the model increases to a certain limit, and the accuracy
decreases if the convolution depth of the network continues to
increase. Therefore, theMask R-CNNmodel introduces a resid-
ual convolutional network (ResNet) to effectively avoid the van-
ishing gradient problem and improve model accuracy [19–21].

Bounding–box prediction

Category prediction

Convolutional
neural network

Selective search

Bounding–box prediction

Category prediction

Convolutional neural
network

Figure 2: Schematic of R-CNN model.

Classification prediction Bounding–box prediction

Fully connected layers

RolPool

Selective search

No–maximum suppression

Two–category prediction

Bounding– box prediction

Convolutional layers

Anchor box

Figure 3: Schematic of the Faster R-CNN model.
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Classification prediction Bounding–box prediction

Fully connected layers

RolPool

Selective search

Regional proposal network

Mask prediction

Convolutional neural network

Figure 4: Schematic of the Mask R-CNN model.

Mask
prediction

Box regression Classification

Fully connected
layers

Fixed size
feature map

ROI align
layer

Feature map

Convolution
backbone

RPN

Figure 5: Schematic of spine model positioning network.
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Equation (1) is the mathematical representation of the residual
module. The input data xi of the residual block are identity
mapped to wixi (W = 1 without dimensional conversion)
through a shortcut connection, and xi is convolved and acti-
vated by the activation function Gi to output the residual value
Fðxi,GiÞ.

xi+1 = F xi,Gið Þ +Wxi: ð1Þ

Here, xi is the data input of the residual block at layer i,Gi is
the activation function, Fðxi,GiÞ is the residual value,W is the
constant mapping parameter (usually 1), and xi+1 is the input of
the residual block at layer ⅈ + 1.

Any layer xk deeper than layer xi can be represented as xi
(Equation (2)). The gradient dl/dxi of the loss function for xi
is found using Equation (3) with W as one.

xk = 〠
k−1

j=i
F xi,Gið Þ + xi, ð2Þ

ⅆl
ⅆxi

= ⅆl
ⅆxk

ⅆxk
ⅆxi

: ð3Þ

Here, xk is the residual block input value of layer kðk > iÞ,
xj is the residual value from layer j to layer j − 1, Gj is the
activation function from layer i to layer k − 1, and Fðxi,GiÞ
is the residual value from layer i to layer k − 1.

Equation (2) is substituted into Equation (3) to obtain
Equation (4). Equation (4) shows that the gradient of the dee-
per layer xk can be transferred to any layer xi that is shallower
than xk. In addition, as the constant one in the parentheses
and the product calculation in the conduction become a sum-
mation, its gradient never disappears regardless of the depth of
the network layers.

ⅆl
ⅆxi

= ⅆl
ⅆxk

ⅆ ∑k−1
j=i F xi, Gið Þ + xi

� �

ⅆxi
= ⅆl
ⅆxk

1 +
ⅆ∑k−1

j=i F xi,Gið Þ
ⅆxi

 !
: ð4Þ

3.2.3. Multiscale Processing. Usually, image targets have differ-
ent scale sizes at the time of acquisition, and the objects in the
dataset have different scales and sizes. A general dataset does
not capture all image attributes, with objects of sizes smaller
than the step size of the convolutional network not recognized
effectively because they are ignored; this phenomenon is
known as the multiscale problem. Vertebrae exist in different
sizes, thus causing multiscale problems in training and recog-
nition scenarios. FPNs using Fast R-CNN can effectively solve
the multiscale problem [22–24]. As shown in Figure 6, FPNs
employ a double pyramidal structure where they use lateral
connections and top-down paths together through a simple
merging layer, which is highly effective for feature processing.

The left pyramid is a conventional feature map CNN, and
the feature map shrinks layer by layer with the number of con-
volutions. The classification task cannot be completed because
the initial semantic information and features obtained from
the bottom feature map after convolutional computation fea-
ture extraction in the initial convolutional layer are not suffi-
ciently strong. The deep feature map has stronger semantic
information and features; FPN exploits this key feature to cap-
ture stronger semantic information from the deep feature map
and use it for the classification task through the path connec-
tions of the pyramid. However, the middle pyramid reverse
samples the convolved image from top to bottom and
enhances the expression of spatial and semantic information
at different scales for each layer on the right side of the pyra-
mid to detect small-scale targets by scaling up the feature
map and then summing the elements with each pixel point
of the feature map on the left side of the next layer without
increasing the number of operations. The FPN takes the fea-
ture maps of images to the deepest layer of the network
through a top-down connection path.

Reverse sampling

Prediction

Convolution

Convolution

Convolution

Reverse sampling

Prediction

Prediction

Reverse sampling

Deep residual convolutional network Multiscale reverse sampling

Figure 6: Schematic of the feature pyramid network (FPN).
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The FPN architecture cleverly combines lateral and top-
down connectivity paths, allowing the extraction of deeper
feature semantic information from images, feature fusion,
and multiscale feature output, preventing the loss of seman-
tic information caused by the limitations of existing process-
ing. In scenarios where vertebral bone recognition is
performed, the FPN model can exploit its multiscale recog-
nition and increase the probability of detecting small-scale
vertebral bone objects in images.

3.2.4. Loss Calculations. After feature region extraction and
screening, the network head separately calculates the mask,
box, and classification loss values for the feature regions. The

classification loss value is the logarithmic loss that divides the
object and nonobject classes after binary discrimination of
the target. The segmentation error is the loss calculated for each
class of the mask. The innovation of the segmentation error is
that if the region of interest is detected to belong to a certain
category, the relative entropy error of that category is used for
the calculation. Kaiming et al. empirically demonstrated that
selecting the sum of the classification, box, andmask loss values
(Equation (5)) as the overall loss value in model training yields
good results for multiple datasets [25].

L = Lcls + Lbox + Lmask: ð5Þ
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Here, Lcls is the loss value calculated using classification,
Lbox is the loss value calculated using the bounding-box, Lmask
is the loss value calculated using the mask, and L is the overall
loss value of the network.

4. Results and Discussion

4.1. Experimental Environment

4.1.1. Database Construction. The human spine images
acquired for the experiments were anonymized and divided
into frontal and lateral views. One category comprised human
X-ray images converted from DCM to JPG format using Ima-
geJ; these images were used to study the images to be processed.
The other category comprised ground-truth images obtained
by converting DCM to JPG format using ImageJ, adding mask
annotation using LabelMe image annotation software with
alignment using ImageJ, and generating mask images and
mask annotated images required for model training. The
images of the 12 thoracic vertebrae and the 5 lumbar vertebrae
were labeled, with different vertebrae being labeled with differ-
ent colors. Labeling was performed based on vertebra identifi-
cation according to human anatomical morphology, starting
from T1 and labeling the thoracic vertebrae (T1-T12) and the
lumbar vertebrae (L1-L5).

4.1.2. Data Settings and Augmentation. In this study, there
were 250 frontal and lateral X-ray images of the human

spine. In order to obtain standard X-ray images, we took the
following measures. First, we minimized the overlap between
the bone and soft tissue of the shoulder joints and the upper
thoracic spine by standardizing the position and method of
radiography. Second, we carefully observed each image and
reject images with artifacts. Finally, we adjusted the contrast
of the images to obtain the best experimental results.

ImageJ was used for grayscale adjustment to facilitate
annotation. The data were created in the COCO dataset for-
mat, and the dataset was divided into 170 images for the train-
ing set in the frontal and lateral position, 6 images for the
validation set in the frontal position, 5 images for the valida-
tion set in the lateral position, and 70 images for the test set.

4.1.3. Data Settings and Augmentation Experimental Platform
Construction and Environment Configuration. Python pro-
gramming language and Linux operating system were used
in this study. The environment was configured to use Python,
PyTorch, and CUDA to build the Mask R-CNNmodels using
a ResNet-50 convolutional backbone. Two GPUs were used
for training.

4.2. Analysis of Experimental Results

4.2.1. Frontal Spine Radiograph Experiments. In this study,
we first trained and tested frontal spine radiographs, and
the model was trained with the Mask R-CNN on the existing
training set. Figure 7 shows the changes in loss values.

Figure 8: Example of test results of frontal image semantic segmentation.
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The experimental results show that the loss function, mask
loss function, regression loss function, and classification loss
function converge after approximately 10,000 iterations of
training on frontal radiographs. After model training, frontal
spine radiographs were tested, the test set was selected, and
the results were obtained, as shown in Figures 8 and 9. For
spine model positioning, the vertebrae were identified during
object detection, with semantic and instance segmentation of
the vertebrae also achieved at the thoracic and lumbar levels.
As shown in Figure 8, the thoracic vertebrae (T1-T12) and
the lumbar vertebrae (L1-L5) were individually segmented in
the semantic segmentation, and the detection box was distin-
guished between the thoracic vertebrae and lumbar vertebrae.
In the instance segmentation in Figure 9, the vertebrae are seg-
mented into different colors, and the detection box distin-
guishes between the thoracic vertebrae and lumbar vertebrae.

Table 1 shows the values of the average recall (AR, the
average value at a threshold of 0.5-0.95 as the IoU), the average
precision (AP) 50 (at an IoU of 0.50), and accuracy for the seg-
mentation and object detection box using the ResNet-50

CNN. The table indicates good test results with the frontal
radiographs, with the accuracy of both vertebral segmentation
and vertebral object detection boxes reaching 99.8%. The aver-
age accuracy of vertebral segmentation was 96.8%, and the AR
was 62.2%. The average accuracy of the object detection box
was 97.4%, and the AR was 70.5%. As the vertebrae in the
frontal human spine radiographs are relatively clearly visible
and virtually completely unobstructed by tissue or bone, it
had good performance in both the labeling and training tests.

Spine model positioning of frontal spine radiographs based
on the Mask R-CNN architecture provides good performance
for recognition of vertebrae, including detection of frontal spine
radiographs by segmentation and the object detection box.

4.2.2. Lateral Spine Radiograph Experiments. In this study, lat-
eral spine radiographs continued to be used as test objects.
While labeling the lateral spine radiographs, we found that
some of the vertebral structures were almost invisible because
they were obscured by the body, especially in the upper tho-
racic vertebrae, where the vertebral column was nearly invisible

Figure 9: Example of test results of frontal image instance segmentation.

Table 1: Parameters for evaluating the experimental results of the spine model positioning (frontal images).

Accuracy
IoU = 0:5

Average precision (AP50)
Average recall (AR)

Spine segmentation 99.8% 96.8% 62.2%

Detection box 99.8% 97.4% 70.5%

Note: average recall (AR) represents the average IoU in the range of 0.5-0.95 at intervals of 0.05.
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during labeling and could only be judged by the scale bar. This
made it difficult to label, train, and make predictions using lat-
eral radiographs, thus increasing the difficulty of the experiment.

The model was trained with the Mask R-CNN on the
existing training set of lateral radiographs. Figure 10 shows
the changes in loss values.

After 24000 iterations of model training, the test set of lat-
eral spine slices was tested; the results obtained are shown in
Figures 11 and 12. The test results of spine model positioning
based on the Mask R-CNN architecture, including detection
of lateral spine radiographs by segmentation and the object
detection box, were unsatisfactory. Although the vertebrae
can be identified in object detection and semantic and instance

segmentation of the thoracic and lumbar vertebrae was per-
formed, there were cases of incomplete image segmentation.
In addition, although the object prediction box predicted the
vertebra position correctly, the classification of thoracic and
lumbar vertebrae was incorrectly predicted.

Table 2 shows the values of the AR (the average value at
a threshold of 0.5-0.95 as the IoU), the AP75 (at an IoU of
0.75), and accuracy for the segmentation and object detec-
tion box using the ResNet-50 CNN. The table indicates sat-
isfactory test result parameters with the lateral radiographs,
with an average accuracy of vertebral segmentation of
81.6% and an AR of 63.8%. The average accuracy of the
object detection box was 90.1%, and the AR was 90.0%.
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Figure 10: Change in loss values for lateral image training set.
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Figure 11: Example of test results of lateral image semantic segmentation.

Figure 12: Example of test results of lateral image instance segmentation.
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The experimental results of spinal model positioning of
lateral images are analyzed as follows:

(1) In clinical work, because the first to third thoracic ver-
tebrae overlap with the shoulder joints on both sides in
the lateral radiographs, sometimes, part of the thoracic
vertebrae cannot be clearly displayed. In this case, it is
difficult for even experienced radiologists to accurately
label this part of the thoracic vertebrae on the lateral
radiographs. Consequently, there were difficulties in
labeling, training, and prediction in the experiments.
The loss was still approximately 0.08 after training
for 24000 iterations, and the rate of decline was also
slow. This made the final prediction results not reach
the best state, resulting in inaccurate segmentation
and classification reversal errors

(2) In this study, the training of lateral images required
twice as many iterations as frontal images to achieve
a similar loss. The loss function was not yet optimal,
and the existing experimental results could not yield
completely correct results for the positioning of the
lateral image spine model. The prediction results
have some incomplete skeletal segmentation, and
the reason for the reversed thoracic and lumbar clas-
sification prediction warrants further investigation.
To solve the problems, more training or comparison
iterations or a more efficient training backbone net-
work may be required

(3) The dataset partitioning performed in this study still
needs to be improved as the excessive number of train-
ing sets without a reasonable proportion of datasets
may lead to errors in the evaluation parameters. In
future studies, a more reasonable dataset division for
training, testing, and validation should be performed.
In addition, constructing a larger database will also
help improve the accuracy of experimental results

5. Conclusions

In this study, we performed human X-ray image spine model
positioning based on an R-CNN. We focused on object detec-
tion and image segmentation and the effect of Mask R-CNN
on human radiograph spine model positioning, detection,
and segmentation. Considering application directions, we
focused on radiographic spine model positioning.

Python language was used to configure Mask R-CNN,
including FPN with ResNet-50 and other network architec-
tures, to conduct extensive training on a large amount of data
from frontal and lateral slices and testing on spine radio-

graphs. The segmentation and detection results of many bony
structures, including L1-L5 in the lumbar spine and T1-T12 in
the thoracic spine, were obtained in a single step. Considering
the experimental results, the prediction efficacy for frontal
images and image visualization was good, with an average
detection box accuracy of 97.4% and an average segmentation
accuracy of 96.8%. The results for lateral images were satisfac-
tory considering the evaluation parameters and image visuali-
zation, but the problem of classification and prediction errors
warrants further attention. Overall, the study provides a basis
for spine reconstruction, scoliosis classification, and scoliosis
prediction and adds value to the research on automatic spine
model positioning.

Based on the characteristics of the vertebrae in lateral
radiographs of the spine, there are still many shortcomings
in this study that must be addressed. In this study, the lateral
images were often not as easily observed because the body
blocked the thoracic spine, leading to inaccurate labeling,
which affected training and testing. We reduced errors by
standardizing the photographic position, adjusting the con-
trast of the images, and using the scale bar. There were still
shortcomings in the positioning and segmentation of the lat-
eral images in this study. In the future, more network architec-
tures such as ResNet-101 and VGG neural networks should be
used as convolutional backbones for comparison, with the net-
work parameters adjusted more carefully to select the optimal
network architecture to solve the problems of incorrect classi-
fication and segmentation of lateral radiographs.
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