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Abstract 

Background:  Gut microbial alteration is implicated in inflammatory bowel disease but 
is noted in other diseases. Systematic comparison to define similarities and specificities 
is hampered since most studies focus on a single disease.

Results:  We develop a pipeline to compare between disease cohorts starting from 
the raw V4 16S amplicon sequence variants. Including 12,838 subjects, from 59 disease 
cohorts, we demonstrate a predominant shared signature across diseases, indicating 
a common bacterial response to different diseases. We show that classifiers trained on 
one disease cohort predict relatively well other diseases due to this shared signal, and 
hence, caution should be taken when using such classifiers in real-world scenarios, 
where diseases are intermixed. Based on this common signature across a large array 
of diseases, we develop a universal dysbiosis index that successfully differentiates 
between cases and controls across various diseases and can be used for prioritizing 
fecal donors and samples with lower disease probability. Finally, we identify a set of 
IBD-specific bacteria, which can direct mechanistic studies and design of IBD-specific 
microbial interventions.

Conclusions:  A robust non-specific general response of the gut microbiome is 
detected in a large array of diseases. Disease classifiers may confuse between different 
diseases due to this shared microbial response. Our universal dysbiosis index can be 
used as a tool to prioritize fecal samples and donors. Finally, the IBD-specific taxa may 
indicate a more direct association to gut inflammation and disease pathogenesis, and 
those can be further used as biomarkers and as future targets for interventions.
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Introduction
Gut microbial imbalance is noted in inflammatory bowel diseases (IBD) [1–3]. How-
ever, studies spanning different countries failed to report consistent unified microbial 
alterations [4], and while altered microbiome likely plays a role in IBD pathogenesis, the 
precise microbial dysfunction is not entirely understood. In parallel, many other dis-
ease-control studies, most of which are not linked with chronic gut inflammation, have 
shown alteration in the gut microbial composition. Those various microbial shifts across 
diseases emphasize the lack of systematic understanding regarding the role of the gut 
microbiota in healthy and disease states, and its link with the overt gut inflammation 
seen in IBD. Specifically, we still lack a comprehensive understanding whether different 
diseases like IBD are characterized by distinct microbial shifts that may be therapeuti-
cally targeted or rather by a non-specific general “sick-microbial” state [5].

We re-analyzed raw data from publicly available V4 16S amplicon sequences using a 
unified pipeline (28 diseases, 59 disease cohorts, and 12,838 subjects). We defined 731 
bacterial amplicon sequence variants (ASVs) that were associated with a disease state 
in at least one disease cohort, and by examining the behavior of these ASVs across all 
disease cohorts, we identified a robust nonspecific microbial response shared by many 
diseases. Random forest disease-classifiers trained on one disease cohort (i.e., IBD) also 
predicted relatively well the disease state in other cohorts with different diseases, likely 
due to this shared microbial pattern, and we used it to define a novel universal dysbio-
sis index (UniDI) that successfully differentiates between most cases and controls across 
diseases. Finally, we identified a set of UC/CD-specific taxa that show a pronounced 
change in UC/CD compared to other diseases. Those can be prioritized for laboratory 
exploration to study their potential role in eliciting the intestinal inflammation seen in 
IBD and can direct future IBD-specific interventions.

Results
Uniform case‑control analytic pipeline

We identified 59 case-control studies that used V4 16S rRNA amplicon sequencing 
spanning 28 diseases and 12,838 subjects from different geographical regions includ-
ing North America, Europe, Middle East, and Asia (Table 1, Additional file 1: Table S1). 
Raw reads from all samples were trimmed and denoised using Deblur. We included two 
large studies with multiple diseases: the UK Twins and the American Gut Project (AGP) 
cohorts. In those and other studies where several diseases were investigated, samples 
were split to specific disease cohorts, with controls randomly divided between the dif-
ferent disease cohorts and using only one sample per patient. Since all cohorts used the 
same V4 16S rRNA region, we were able to process, combine, and analyze all cohorts 
together at the ASV sequence level, thus leading to an enhanced phylogenetic resolution 
compared to taxonomy-based comparisons, which are usually limited to the genus level 
for 16S amplicon sequencing. Study-specific variation was a major confounder (Addi-
tional file 1: Fig. S1A), likely due to sample collection, processing methods [36], and dif-
ferences in the populations studied. This was further supported by measuring distances 
(beta-diversity) between sample-groups within and between studies (Additional file  1: 
Fig. S1B), showing significantly higher distances between studies.
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Table 1  Description of case control comparison included in our analyses

Disease Study Cases Controls Country Reads (mean) Reads (median)

Anorexia (n = 1) Mack, Cuntz [6] 55 54 Germany 46637 47815

Autism (n = 2) American Gut 
Project

135 179 USA 16676 14735

Zurita, Cardenas [7] 27 31 Ecuador 9805 9792

Autoimmune dis‑
eases (n = 1)

American Gut 
Project

298 522 USA 15891 14541

Alzheimer (n = 1) Vogt, Kerby [8] 25 25 USA 97726 96469

Bipolar (n = 2) American Gut 
Project

6 11 USA 15095 14835

Evans, Bassis [9] 115 64 USA 19952 20540

Cancer (n = 2) UK Twins Project 22 23 UK 74459 60149

American Gut 
Project

220 405 USA 15024 13786

C. difficile infection 
(n = 1)

American Gut 
Project

32 61 USA 15718 14641

Chronic fatigue 
syndrome (n = 1)

Giloteaux, Goodrich 
[10]

49 39 USA 74627 71306

Depression (n = 2) American Gut 
Project

272 388 USA 15552 14197

UK Twins Project 75 40 UK 75927 67004

Diabetes T1 (n = 1) Cinek, Kramna [11] 71 103 Multi 15300 13815

Diabetes T2 (n = 4) American Gut 
Project

36 64 USA 15224 13805

Kaplan, Wang [12] 349 275 Multi 15804 14155

UK twins project 20 21 UK 64289 57280

Li, Chang [13] 19 39 China 45028 46362

Gastroenteritis (n 
= 2)

Braun, Di Segni [14] 203 31 Israel 21453 16920

Castano-Rodriguez, 
Underwood [15]

75 423 Australia 33723 29980

Gout (n = 1) UK Twins Project 17 16 UK 64756 54688

Heart diseases (n 
= 2)

American Gut 
Project

106 168 USA 16411 13559

UK Twins Project 32 31 UK 74859 65651

Hepatitis B (n = 1) Liu, Li [16] 35 33 China 56086 55684

HIV (n = 4) Cook, Fulcher [17] 41 79 USA 34830 34421

Dillon, Lee [18] 18 14 USA 71275 74700

Lozupone, Li [19] 22 12 USA 10506 9562

Vujkovic-Cvijin, 
Sortino [20]

82 84 Netherlands 46028 44876

Hypertension (n = 1) UK Twins Project 124 74 UK 69815 61608

IBD (n = 2) American Gut 
Project

107 194 USA 14866 13099

UK Twins Project 13 17 UK 64397 59889

IBD-Crohn’s Disease 
(n = 7)

American Gut 
Project

31 58 USA 16298 14187

Braun, Di Segni [1] 37 29 Israel 22712 19035

Contijoch, Britton 
[21]

144 35 multi 61224 59415

aGevers, Kugathasan 
[2]

479 116 USA 21719 16229

Ijaz, Quince [22] 23 70 UK 26140 15395

Shaw, Bertha [23] 15 10 USA 34801 32161

Zhou, Xu [24] 183 68 China 4219 4075



Page 4 of 23Abbas‑Egbariya et al. Genome Biology           (2022) 23:61 

To overcome these study-specific signals and facilitate comparison across disease 
cohorts, we devised a per-study effect size-based pipeline (Fig. 1). The concept is to cal-
culate the case/control effect-size for each ASV within each disease cohort separately, 
and then perform the meta-analysis on these effect-sizes rather than on the ASV fre-
quencies. Specifically, we first identified ASVs showing a potential case/control dif-
ference in at least one study. Since this initial screening is used to identify ASVs that 
are then further selected using additional statistical tests, and in order to prevent bias 
in ASV identification due to different cohort sizes, we selected a small subset of sam-
ples per study, with a high FDR (dsFDR< 0.25 [37]), in order to include as many studies 
and differentially abundant ASVs as possible (Fig. 1). Seven hundred thirty-one bacte-
rial ASVs showing significant disease association in at least one cohort were combined 
(Fig. 1 heatmap), and the effect size [labeled herein as normalized rank mean difference 

a Studies using biopsies

Table 1  (continued)

Disease Study Cases Controls Country Reads (mean) Reads (median)

IBD-Ulcerative Colitis 
(n = 5)

American Gut 
Project

39 66 USA 16149 16209

Contijoch, Britton 
[21]

109 35 multi 58202 57492

aGevers, Kugathasan 
[2]

85 29 USA 22600 21069

Mar, LaMere [25] 30 13 USA 103111 91547

Zhou, Xu [24] 73 69 China 3974 3948

Irritable bowel syn‑
drome (n = 3)

American Gut 
Project

444 717 USA 15510 13368

Pozuelo, Panda [26] 110 66 Spain 37606 37624

UK Twins Project 21 22 UK 60589 58436

Lupus (n = 1) Luo, Edwards [27] 14 17 USA 27159 25961

Obesity (n = 4) American Gut 
Project

503 436 USA 15842 13939

de la Cuesta-
Zuluaga, Corrales-
Agudelo [28]

172 269 Colombia 30051 25461

Vangay, Johnson 
[29]

24 151 multi 4507 3500

UK Twins Project 33 40 UK 68091 64462

Pancreatitis (n = 1) Zhu, He [30] 145 35 China 18158 17881

Parkinson’s (n = 3) Heintz-Buschart, 
Pandey [31]

46 37 Germany 14819 14880

Hill-Burns, Debelius 
[32]

213 135 USA 9561 9050

Wallen, Appah [33] 524 316 USA 66616 66459

Psoriasis (n = 1) UK Twins Project 43 42 UK 66034 61304

Rheumatoid arthritis 
(n = 1)

UK Twins Project 34 40 UK 74062 64753

Schizophrenia (n 
= 2)

Nguyen, Kosciolek 
[34]

18 20 USA 21810 17053

Xu, Wu [35] 44 40 China 69747 70013

Total 28 disease Total 59 case-control 
comparisons

6337 6501
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(NRMD)] was now calculated between cases and controls within each disease cohort, 
using all samples in each disease cohort (n = 12,838).

Similarities and differences in the microbial composition within and between disease 

states

To evaluate the ability of our pipeline to reduce the study specific contribution and to 
capture signals across diseases/studies, we used a Bray-Curtis based principal coordi-
nates analysis (PCoA) either on the original mean ASVs relative abundance in cases 
and controls in each study (Additional file 1: Fig. S1C-D) or on the NRMD effect size 
resulting from our pipeline. Using the original mean relative abundance, cases, and 
controls from each disease cohort tended to be positioned together (Additional file 1: 

Fig. 1  Meta-analysis pipeline. We reanalyzed 12,838 human gut samples, spanning 59 disease cohorts 
linked with 28 unique diseases (A). Per-sample V4 16S amplicon sequencing raw reads were processed 
using Deblur, resulting in bacterial amplicon sequence variants (ASVs) (B). Potential disease dependent ASVs 
within each original study were identified separately within each disease cohort (rank mean tests, FDR < 0.25, 
using a random subset of 23 cases and 10 controls to include as many case/control comparison and avoid 
dominance of large cohort size) (C). ASVs were then combined, resulting in 731 unique ASVs (D). For each 
disease cohort, the effect size (normalized rank mean difference—NRMD) was calculated for these 731 ASVs 
using all available samples in each cohort (n = 12,838) (E), and results were combined to a single table (F). 
Each column in the heatmap represents a single disease cohort, and each row represents a single ASV, with 
color representing the NRMD effect size; red and blue colors indicate higher or lower in disease respectively, 
while white indicates ASVs not present in the disease cohort. Non-disease specific ASVs were identified using 
a binomial test (FDR < 0.1) (G), whereas CD/UC specific ASVs were identified using rank-mean test (FDR < 0.1) 
(H)
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Fig. S1C). In contrast, when using the effect size (NRMD) based distances, we were 
able to eliminate much of the cohort specific signal, with the signal from the different 
cohorts being spread-out (Additional file 1: Fig. S1D). The full NRMD-based distance 
matrix (Fig. 2A) shows clustering according to disease rather than study. For example, 
three Parkinson studies from 3 different cohorts (2 from the US and 1 from Europe) 
showed high similarities with each other (Fig.  2A). IBD studies were significantly 
enriched in the left main dendrogram branch (chi-squares p value = 0.009, 11/28 vs. 
3/30), and CD and UC disease cohorts seemed to intermix. However, 17 other disease 
cohorts including Alzheimer, lupus, and autism also clustered on the left dendrogram 
branch. Coloring of the NRMD-based PCoA by country of origin or disease shows 
that cohorts from the same geographic region are spread through the graph (Fig. 2B) 

Fig. 2  Similarities and differences in the microbial composition between diseases. Modified Bray-Curtis 
distance matrix was calculated using the 731 ASV effect size ratios between cases and controls across the 
different disease cohorts using all samples (n = 12,838). Comparisons were performed between two disease 
cohorts only on ASVs found in both. This modified Bray-Curtis metric was used to build the distance matrix 
(A). Darker color indicates high similarity and bright color indicates low similarity. Bar colors on X and Y axes 
indicate the specific disease of each disease cohort, as indicated in the disease key. CD UC and IBD are all 
colored in dark-red but the labeling specifically indicates the disease type; however, those tend to intermix. 
IBD represent studies in which patients were only labeled as IBD rather than CD or UC. This matrix was then 
used for the generation of a principal coordinate analysis (PCoA) depicting disease cohort similarity (B, C), 
where disease cohorts are colored by country (B) or specific disease (C)
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and that different IBD cohorts or different Parkinson cohorts cluster together by dis-
ease type (Fig. 2C).

Non‑specific microbial alteration associated with multiple pathologies

To define those non-specific general changes, we searched for ASVs whose NRMD effect 
size direction significantly differed from a 0.5/0.5 binomial distribution. This resulted in 
128 ASVs that have similar behavior across multiple diseases (two sided binomial test 
with dsFDR< 0.1, Fig. 3A) and therefore associated with general disease state. Most (97 
ASVs) showed reduced abundance, while only 31 showed higher abundance across dif-
ferent diseases (Fig. 3A and Additional file 2: Dataset S1). Specifically, we use the direc-
tion of the effect (rather than the effect size) for the binomial test used to identify the 
non-specific bacteria and therefore give equal weight to all studies not depending on 
the amplification level of the bacteria within each study. The relative taxonomy compo-
sition of the two groups showed that Bacteroidetes comprise 11 of the 97 nonspecific 
health-associated ASVs, whereas none were within the 31 disease-associated ASVs (chi-
square p = 0.01, Fig.  3B). In contrast, Actinobacteria taxa (chi-square p = 0.02) were 
more abundant within disease associated ASVs (3/31) compared to health-associated 
ASVs (1/97) (Fig. 3B). Lactobacillales order (phylum: Firmicutes) were also significantly 

Fig. 3  Non-specific microbial signal shared across diseases. A Heatmap showing 128 non-specific ASVs 
identified by applying a binomial test on the ratios of the 731 ASVs across all diseases (FDR < 0.1). Columns 
are disease cohorts, and rows represent the non-specific ASVs that were significantly changed in at least four 
different diseases, with colors representing the NRMD. Red and blue indicate higher or lower abundance in 
disease respectively, while white indicates ASVs not present in the study. B Non-specific ASVs were separated 
to two groups; those lower in disease (76% of non-specific ASVs, left column), and those that are higher in 
disease (24% of non-specific ASVs, right column). The fraction of bacteria from each of these groups is shown 
for three taxonomic levels as indicated: phylum, order, and class
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enriched within the disease-associated ASVs (5/31 vs. 0/97 for disease- and health-
associated ASVs respectively, chi-square p < 0.001). To validate the use of the NRMD 
effect size calculation approach, we reanalyzed the same studies using two additional 
approaches: (i) rarifying each sample across all studies to 4000 reads/sample (Additional 
file 1: Fig. S2A, Additional file 2: dataset S1) and (ii) using the LEFSE [38] LDA score 
instead of the NRMD (Additional file 1: Fig. S2B and Additional file 2: Dataset S1). Those 
present similar results compared to the NRMD approach, with the mean effect size (i.e., 
higher, or lower in disease) showing similar direction for 31/31 of the disease-associated 
and 96/97 health-associated bacteria using the rarified data and 30/31 of the disease-
associated and 95/97 health-associated bacteria using the LEFSE LDA score (see supple-
mentary methods for details).

To infer microbial functions enriched in the health vs. disease-associated ASV bac-
teria, we applied Picrust2 [39] and identified 10 KEGG functions that were more com-
mon in disease, and 14 more common in controls (rank-mean test with dsFDR < 0.1, 
Additional file 1: Fig. S3 and Additional file 3: Dataset S2). Functions enriched in dis-
ease associated ASVs included carbohydrate metabolism, whereas functions enriched in 
health associated ASVs included metabolism of cofactors and vitamins, and amino acid 
metabolism. Interestingly, cellular community pathways  and more specifically quorum 
sensing genes, were more common in disease associated ASVs process allowing bacterial 
populations to communicate and coordinate group behavior, a process which is more 
commonly used by pathogens [40].

IBD‑specific microbial alteration is predominantly linked to increased abundance 

of individual taxa

We next searched for ASVs specifically associated with CD/UC. For that, the naïve 
approach of performing differential abundance on CD/UC samples compared to con-
trols without considering the behavior in other disease cohorts does not suffice. We 
therefore defined CD/UC-specific ASVs as ASVs showing significantly higher or lower 
NRMD effect size in fecal samples from CD and UC disease cohorts (n = 10) compared 
to other non-IBD disease cohorts (n = 45) (using permutation-based rank mean test 
of the per-disease cohort NRMDs, with dsFDR = 0.1). Fifteen ASVs were significantly 
related to UC and CD, with 13 showing a higher NRMD between UC and CD cases and 
controls and 2 showing a decrease in NRMD between UC/CD and controls (Fig. 4A and 
Additional file 4: Dataset S3). Those specific CD and UC enriched ASVs included taxa 
from Gemellaceae, Veillonellaceae, Fusobacteriaceae, and Streptococcaceae families. 
Term enrichments of those 13 CD/UC-associated specific ASVs using dbBact database 
showed enrichment for microbial taxa seen in saliva samples (Fig. 4B), with more sig-
nificant overlap with salivary samples in 2 additional studies (Fig. 4C). Attempts to find 
other disease-specific signals, including for Parkinson’s disease failed, likely due to lack 
of sufficient number of studies linked with a specific condition.

Inaccuracy of classifier to differentiate between different disease states

Machine learning classifiers are commonly used to differentiate between healthy and 
disease cases [43]. However, the fact that a large set of bacteria display a consistent 
change across multiple disease raises the concern that classifiers may capture this shared 
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signal, which may lead to incorrect disease identification and the inability to differenti-
ate between diseases. To test this, we used a supervised learning Random Forests (RF) 
classifier. For each disease cohort, we separately trained RF to differentiate cases/con-
trols for this disease cohort and then tested its ability to differentiate cases/controls on a 
different disease cohort. AUC performances are shown in Fig. 5A, where each row rep-
resents a disease cohort on which a classifier was trained, and columns represent the 
disease cohort on which the classifier was tested (when the training and test cohorts 
were the same, samples were split 2:1 for training/validation). As an estimate for the 
inherent noise present in the classifier performance, we also tested the performance of 
the same procedure where the case/control labels of each testing disease cohort were 
randomly shuffled (Fig. 5B and Additional file 1: Fig. S4). Predicting case/control state in 
UC and CD by using models built upon other UC and CD cohorts worked relatively well 
and mostly above what is expected by random. However, models built on other diseases 
also predicted CD and UC relatively well, and vice-versa, models built on CD and UC 
were able to predict other diseases. Those results indicate that disease classifiers perform 

Fig. 4  Salivary bacteria are enriched in samples from Ulcerative colitis and Crohn’s disease. A Heat map 
showing 15 CD/UC “specific” ASVs with significantly higher (or lower) effect size in fecal samples of CD and 
UC cases compared to controls in comparison to other disease cohorts [rank-mean test on the NRMD effect 
sizes in 10 fecal CD and UC studies compared to other disease (n = 45)]. Columns are disease cohorts, and 
rows represent the CD/UC specific ASVs with colors representing the NRMD; red indicates higher abundance 
and blue indicates lower abundance in cases vs. controls, and white indicates ASVs not present in the study. 
B A word cloud was generated using dbBact (http://​dbbact.​org/) [41] using the increased UC/CD-specific 
bacteria, indicating that UC/CD-specific increased bacteria has been previously found in fecal and saliva 
human samples. C Venn diagram showing overlap between the 31 increased non-specific ASVs and 13 
IBD-specific ASVs (red and green circles respectively) salivary obtained samples including those ASVs that 
are present 25% and above of the samples (blue) identified from other cohorts [AGP (left) and PRJNA38386 
[42] (right) see methods section for additional details], emphasizing significant larger overlap between the 
IBD-specific ASVs and salivary ASVs (chi-square p < 0.05) in contrast to the disease non-specific increased 
ASVs

http://dbbact.org/
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well in identifying sick vs. healthy states but may fail to differentiate between different 
diseases.

Universal dysbiosis index (UniDI)

A universal dysbiosis index (UniDI) was built on the identified 128 non-specific ASVs 
signal. We calculated the per-sample UniDI by rank-transforming the bacteria and com-
puted the normalized log ratio of the sum of the ranks of the 97 health-associated and 31 

Fig. 5  Disease classifier and dysbiosis index predict general microbial signal rather than disease specific 
signals. A Random Forest classifier heatmap, showing the disease/control prediction AUC in each disease 
cohorts (columns) based on training the classifier on datasets in the different rows (see methods for details). 
Blue indicates high prediction AUC (> 0.5) and red indicates AUC < 0.5. Training and prediction in each 
comparison were performed only on shared ASVs between the trained and the predicted cohorts. Squares 
marked in the heatmap, indicate the prediction results obtained after training of the classifier using the 
same cohort. B Random Forest classifier heatmap, showing the prediction AUC after performing random 
permutation of labels of the predicting cohort prior to the classifier prediction, to further validate the 
non-random results obtained in A. C Dysbiosis index per dataset was measured by two models: per-sample 
rank (UniDI) [5], and by using the CD dysbiosis index [2], and the resulting P-value (Mann-Whitney) after 
comparing disease and controls for each dataset is shown in the plot where the x-axis showing the 
sample-rank model (UniDI), and the y-axis showing the CD dysbiosis index [2]. For the performance 
evaluation, we used a leave-one-out approach. We iterated over all disease cohorts, and for each iteration, 
the analysis was performed while leaving out a single validation disease cohort. The up _ nonspecific, 
down _ nonspecific ASV groups were identified as described but without the validation cohort (i.e., the 
non-specific ASVs were identified based on 58 disease cohorts). Diseases with at least 2 cohorts were colored 
by a specific color, while single cohorts were all colored in gray (detailed map in Additional file 1: Fig. S5). 
Pink left down quadrant indicates non-significant p-value (p > 0.05) using both UniDI and CD dysbiosis index, 
green left upper quadrant indicates significant p-value (p < 0.05) only using CD dysbiosis index, the purple 
right down quadrant indicates significant p-value (p < 0.05) only using UniDI, while the larger white quadrant 
indicates significant p-values in both UniDI and CD dysbiosis index. All dot under the diagonal line received 
lower p value with UniDI while those above had a lower p value with the CD dysbiosis index
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disease-associated ASVs. We then compared the UniDI (using a leave-one-out approach) 
to a previously published taxonomy-based CD dysbiosis index [2]. For the performance 
evaluation, we used a leave-one-out approach: we iterated over all disease cohorts, and 
for each iteration performed the analysis while leaving out a single validation disease 
cohort. The up _ nonspecific, down _ nonspecific ASV groups were identified as described 
above (see the “Identification of shared (“non-specific”) ASVs” section), but without 
the validation cohort (i.e., the non-specific ASVs were identified based on 58 disease 
cohorts). The resulting UniDI performed better than the CD dysbiosis index, indicat-
ing that UniDI can successfully differentiate between most cases and controls across a 
wide variety of diseases (Fig. 5C, Additional file 1: Fig. S5, and Additional file 1: Fig. S6). 
Among the UC/CD studies, UniDI showed more significant changes between cases and 
controls (10/14 studies) than CD dysbiosis index (7/14). Similar results were shown in 
other diseases such as Parkinson’s; UniDI succeeded to show significant changes in dys-
biosis index in 2 out of 3 studies included in the meta-analysis, in comparison to 0 out of 
3 in the CD dysbiosis index. These results indicate that UniDI can successfully differenti-
ate between most cases and controls across a wide variety of diseases.

Discussion
Our meta-analysis used a novel standardized pipeline starting from per-sample raw 
reads, across diverse pathologic conditions, different parts of the world, 28 diseases, and 
12,838 subjects. We focused on studies that used the V4 regions, to facilitate comparison 
at the ASVs level rather than taxonomy and calculated the per ASV effect size between 
cases and controls within each original cohort, thus minimizing the study-specific sig-
nature. We identified a robust non-specific general disease response dominated by 
reduction of microbial ASVs (97 ASVs), with a smaller group of 31 bacterial ASVs being 
over-represented in disease. These non-specific microbial changes may reflect a general 
response of the body to pathologic conditions and therefore are less likely to be the main 
source of the chronic gut inflammation seen in IBD. Disease classifiers performed well 
in identifying many sick vs. healthy states, likely due to this general signal. We define 
a novel universal dysbiosis index (UniDI) utilizing the shared disease-associated ASVs, 
that can successfully differentiate between most cases and controls across a wide variety 
of diseases. Finally, we identified a set of IBD-specific taxa (most of which are salivary 
bacteria [2], with an increased abundance in IBD), potentially implying a more direct 
causal association between those and IBD pathogenesis and gut inflammation. Interest-
ingly, recent studies showed that ectopic displacement of oral bacteria in the gut envi-
ronment resulted in dysbiosis and a decrease in Th17 cells and fecal IgA levels and an 
increase in the M1/M2 macrophage ratio, thereby promoting chronic inflammation [44].

Meta-analyses systematically compare several independent studies to capture consist-
ent and specific signals across diseases, cohorts, populations, and protocols. The basic 
unit is the disease cohort rather than samples. Microbiome meta-analysis can take place 
at several levels; systemic review comparing the results without reanalyzing the raw data 
[4], reanalyzing the raw data but not focusing on a specific sequence, enabling only com-
parisons at the taxonomy level [5, 45], and lastly reanalyzing the raw data and focusing 
on a specific sequence that enables direct comparison within each cohort as performed 
here. Microbiome-related meta-analyses have already suggested some inconsistencies in 
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bacterial signals in IBD [4, 5, 36]. A thorough systematic review [4] of published results 
compared 45 articles noted that increase in Enterobacteriaceae taxa and a decrease in 
the butyrate producing Faecalibacterium prausnitzii seem to be consistent across stud-
ies. Our analyses imply that decrease in Faecalibacterium prausnitzii is seen across mul-
tiple diseases and are likely not IBD-specific. Another landmark meta-analysis study 
took the second approach [5], started from the raw data of 28 published case-control 
studies, that sequenced different regions on the 16S gene (not limited to the V4 region), 
and also highlighted the depletion of health-associated bacteria across multiple dis-
eases, and some specific microbial signal in colon cancer but not in IBD. We took the 
third approach, limiting the analyses to similar sequencing region of the 16S (V4). This 
reduces the number of available studies, but it enables ASV rather than taxonomy-based 
comparison. For example, 2 different Clostridium ASVs showed opposite direction of 
change (SV14256 increased and SV12376 decreased, Dataset S1) and a similarly opposite 
pattern was noted for 2 Ruminococcus ASVs (SV14506 and SV08112). The non-specific 
health-associated taxa included Faecalibacterium prausnitzii and Coprococcus (family: 
Lachnospiraceae) ASVs. In contrast to previous studies, we highlight also ASVs that are 
induced (rather than only reduced) as part of the non-specific signal including Clostrid-
ium XlVa (known as Enterocloster), Lactobacillus salivarius, and Rothia (family: Mic-
rococcaceae). Similarly, a recent meta-analysis of microbiome gene functions of nearly 
2000 publicly available fecal metagenomic samples of 7 different diseases also identified 
many functions that were linked to and overlapped with multiple diseases [46].

Disease-specific microbial ASVs may suggest a more direct link to pathogenesis, and 
those can be used as biomarkers for diagnostics and for design of potential future inter-
ventions. We identified 13 UC/CD-specific ASVs bacteria that were more increased 
in IBD compared to other diseases. Those included taxa from Gemellaceae, Dialister 
(family: Veillonellaceae), Blautia producta (family: Lachnospiraceae), and Streptococ-
cus (family: Streptococcaceae). Gemellaceae taxa were previously linked with the risk 
for future CD flare [1]. Additionally, in cystic fibrosis, Gemella was also increased dur-
ing exacerbation and was found to be the most discriminative genus between baseline 
and exacerbation samples [47]. Similarly, presence of Streptococcus in stool samples 
before CD surgery is predictive of future CD recurrence based on endoscopic scores 6 
months after surgery [48]. Streptococcus and Veillonella can interact metabolically, co-
occur in ecosystems, and co-aggregate in biofilms [49], and their combined incubation 
results in higher IL8 cytokines secretions from dendritic cells [50]. Two of the UC/CD 
specific ASVs (Clostridium perfringens and Ruminococcus gnavus) were also part of non-
specific signals but those showed significant increase in CD and UC. Those taxa were 
shown to be specifically reduced during antibiotic treatment in pouchitis IBD patients 
who responded to treatment, further indicating potential causal associations between 
those taxa and gut inflammation [51]. Interestingly, many of those IBD-specific bacteria 
were shown to be present in saliva samples. This may be due to the lower bacterial bio-
mass observed in IBD feces [2, 52, 53], thus leading to an increased fraction of bacteria 
present in swallowed saliva, or that some of these oral bacteria affect the gut immune 
response. Further studies are required to clarify these questions.

Disease classifiers are frequently used to identify patients with a given disease. How-
ever, since most focus on a single disease and a group of healthy controls, the presence of 



Page 13 of 23Abbas‑Egbariya et al. Genome Biology           (2022) 23:61 	

a strong disease non-specific bacterial response may influence the performance if used 
outside of the original study in diverse population with different diseases. Our results 
show that a classifier trained on IBD disease cohort classified with relatively good per-
formance disease/control states in lupus, schizophrenia, or Parkinson’s. This raises the 
concern that such classifier can incorrectly classify patients with other unrelated disease 
as cases of the disease of interest. Notably, our results do not preclude the possibility of 
classifiers to differentiate between different diseases when trained on datasets contain-
ing multiple diseases, but rather that it is recommended to train those classifiers also on 
a large set of diseases.

The concept of a dysbiosis index for estimation of the general host dysbiosis or healthy 
state was suggested in the landmark IBD study [2] and in recent shotgun sequencing 
dataset [54]. The recent shotgun sequencing dataset used 4347 human stool metagen-
omes from 34 published studies across healthy and 12 different disease conditions high-
lighting 50 bacterial species more prevalent in pooling data from healthy vs. nonhealthy 
state cases. Once generated, this index can be applied on other shotgun datasets. We 
expanded this idea using 12,838 subjects, 59 disease cohorts, and 28 diseases, and we 
generated an index that can be applied to dataset generated using 16S sequencing. We 
note that an advantage of shotgun compared to 16S sequencing is that shotgun dataset 
can also inform regarding metabolic pathways and functions, which can be an interest-
ing future approach for to define healthy vs. nonhealthy state pathways across diseases. 
Our UniDI is shown to perform better than the CD dysbiosis index [2] indicating that 
UniDI can successfully differentiate between most cases and controls across a wide vari-
ety of diseases. One possible use for UniDI is its application as an additional tool for pri-
oritizing fecal microbiota transplant (FMT) donors, where it is desired to obtain samples 
from donors with lower disease probability. Another application as already suggested 
[54] for such index is for providing insight into one’s health status from a gut microbi-
ome and for inferring the likelihood of disease independent of the clinical diagnosis. In 
addition, this index can be calculated per samples and can be included in gut microbial 
personal report, which can also be followed longitudinally for variations linked with diet 
and environmental modification in clinical studies.

Our work has several strengths, we included 12,838 subjects, 59 disease cohorts, and 
28 diseases from around the world, and the results can be generalizable to those regions. 
By analyzing only studies covering the V4 region, combined with a unified denoising 
approach, we combined the different studies at the ASV rather than taxonomic assign-
ments, which are typically limited to the genus level for amplicon sequencing. Addition-
ally, by calculating the within-study disease effect, and using these effect sizes rather 
than the per-sample abundances, we were able to mitigate biases originating from the 
different cohorts and experimental methods. Limitations include the need to have con-
trols in each study to capture the effect size, the inability to capture variations between 
controls, and that it is unlikely but possible that the controls in one cohort have the 
disease in another cohort. Nevertheless, the grouping of IBD and Parkinson’s disease 
cohorts from several cohorts using the effect size pipeline is reassuring, and in some 
of the larger cohort, controls were randomly divided between disease cohorts. Other 
limitations include the limited metadata characteristics across cohorts and the use of 
16S rRNA amplicon sequencing (rather than shotgun data) which limits the ability to 



Page 14 of 23Abbas‑Egbariya et al. Genome Biology           (2022) 23:61 

identify taxonomy up to the strain levels and the bacteria associated metabolic pathways 
and functions. All studies selected were based on the same region (V4), which limits the 
number of available studies. We included a single sample per subject and no longitudinal 
data, and there may be variations in microbial population overtime that are not cap-
tured [52]. However, we and others have shown persistent dysbiosis also in CD and UC 
patients in remission [1, 55]. While we were able to capture IBD-specific bacteria, using 
the same approach to identify other disease-specific signals failed, likely due to lack of 
sufficient studies linked with other diseases. Future analysis will require more disease-
specific studies and increased data sharing, as well as additional large population-based 
studies like UK Twins and the American Gut Project (AGP).

Conclusions
Despite numerous studies linking the microbiome to human health and disease condi-
tions, there are many gaps regarding which and how those bacteria contribute to spe-
cific human disorders. In this meta-analysis, we identified a robust non-specific general 
response dominated by reduction of microbial ASVs with a smaller group of bacteria 
that were up-regulated in a large array of diseases. Those non-specific taxa can define 
a novel universal dysbiosis index (UniDI) that can successfully differentiate between 
most cases and controls across a wide variety of diseases. Finally, we identified mainly 
increased IBD-specific taxa, potentially indicating a more direct causal association to 
pathogenesis and gut inflammation, that can be used as biomarkers and potential future 
targets for interventions.

Methods
Study search and disease cohort selection strategy

We searched for case–control (disease cohort) 16S amplicon sequencing studies using 
specific keywords in Google Scholar and dbBact (http://​dbbact.​org/) and by following 
references in meta-analyses and related case–control studies. Only studies with at least 
20 subjects, with stool or biopsies samples that were sequenced using hypervariable V4 
region, and for which the per-sample raw FASTA files were publicly available for down-
load or obtained after a specific request, were included. Those studies and sources are 
summarized in Table  1 and Supplementary Table  1. Only one sample per patient was 
kept in cases where several samples were obtained. In studies that had UC/CD patients, 
we considered each disease as a separate disease cohort and randomly divided the con-
trols between the two case-control comparisons. In this meta-analysis, we included two 
large cohorts with multiple diseases: the UK Twins cohort (https://​twins​uk.​ac.​uk/) and 
the American Gut Project (AGP) cohort (http://​human​foodp​roject.​com/​ameri​cangut/). 
In cases where controls were not defined (such as in the AGP and UK twins), we consid-
ered controls as those having BMI < 30 and not taking oral medications other than sup-
plements and vitamins. Controls were then randomly divided (taking into account age, 
gender, and country of origin when applicable) between the different disease cohorts in 
each study, so that each control sample participated only in one disease cohort. To define 
obesity, subjects with BMI 30 or greater were included in the obesity group. We included 

http://dbbact.org/
https://twinsuk.ac.uk/
http://humanfoodproject.com/americangut/
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only subjects with a single disease category and dropped those with two or more dis-
eases, except for IBD patients who were also diagnosed with IBS or autoimmune disease 
as those may co-exist (and therefore were included in the analysis as IBD patients).

V4 16S raw data processing

Single-end reads were left trimmed to begin at the end of the 515′F primer and right 
trimmed to a total length of 150 bp. Reads from each cohort were then aligned and 
denoised using the Deblur pipeline [56, 57] in qiime2 (qiime2-2019.2 [58]) using 
default parameters, resulting in a per-study bacterial amplicon sequence variants 
(ASVs) table. Based on a previous study [59], the AGP included 10 blooming bac-
teria due to sending samples via postal delivery. Those bacteria were filtered across 
all studies included in this analysis for consistency in order to prevent sample-stor-
age associated bacteria, and identification of the IBD-specific and non-specific ASV 
was performed before and after this filtering with very consistent results for the fil-
tered and non-filtered dataset. ASV taxonomic classification was performed using a 
naive Bayes fitted classifier [60], trained on the August 2013 99% identity Greengenes 
database, for 150 bp long reads and the corresponding primers set as implemented in 
qiime2 command: qiime2 feature-classifier classify-sklearn with default parameters.

Standard (frequency‑based) analysis

Sample preprocessing

To mitigate the effect of different cohort sizes in different studies, 23 samples were 
randomly chosen from each case/control group in each disease cohort. In cases 
where less than 23 samples were available for the group, we used all available samples 
instead. This resulted in a total of 2356 samples for downstream analysis. In addi-
tion, for the aggregated analysis, for each case/control group in each disease cohort 
all samples (up to 23) were combined into a single aggregate sample by taking the 
mean frequency for each ASV.

PERMANOVA

Samples were rarified to a constant depth of 3000 reads per sample, and sample-
sample distances were calculated using the Bray-Curtis and unweighted-unifrac 
metrics using qiime2. To quantify the contribution of different factors to the 
microbial composition, PERMANOVA was applied using the Adonis function 
in the R package Vegan (vegan: Community Ecology Package. R package version 
2.5-6.https://​CRAN.R-​proje​ct.​org/​packa​ge=​vegan) [61] using both metrics. Vari-
ables tested were as follows: case/control, specific disease, country, cohort, disease 
cohort, and age group (adult/child). Analysis was performed on the original sam-
ples as well as on the aggregated samples (i.e., one sample per case/control group in 
each disease cohort). The total variance explained by each variable was calculated 
independently of other variables (that is, as the sole variable in the model).

https://cran.r-project.org/package=vegan
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Quantification of cohort vs. case/control distance contribution

Bray-Curtis distances between pairs of aggregated samples were calculated for the 
following pairs: case and control pairs from the same disease cohort, cases from dif-
ferent disease cohorts, and controls from different disease cohorts. The distribution 
of the distances of these three groups was compared using a two-sided non-paramet-
ric Mann-Whitney test.

Effect size [normalized rank‑mean difference (NRMD)] based analysis

Selection of ASVs and calculation of the per‑ASV effect size

To create the per disease cohort ASV case/control effect table, we used only ASVs that 
show significant differential abundance (between cases and controls) within at least one 
disease cohort. These ASVs were identified independently within each disease cohort 
using a non-parametric rank mean test as implemented in Calour [62] with dsFDR mul-
tiple hypothesis correction [37] (FDR < 0.25), based on a random subset of 23 cases 
and 10 controls samples per disease cohort, in order to avoid the dominance of disease 
cohorts with a large number of samples (since a larger number of samples can provide 
higher statistical power). A unified list of ASVs showing potential differential abundance 
in at least one study was then generated. For each of those ASVs, we then calculated 
the direction of change and the effect size [normalized rank mean difference NRMD) 
between the mean of cases and controls] in each case-control comparison using all sam-
ples in the disease cohort across all studies (to provide a better estimation of the real 
effect size). The per-ASV normalized rank-mean difference (NRMD) is scaled to be in 
the range of − 1 to 1 (independent of the number of samples in each group) and was 
calculated using the formula:

where NRMD(i, x) is the normalized effect size for ASV x in disease cohort i, Gcase(i, x), 
Gcontrol(i, x) represent the ranked frequencies of the case/control (respectively) for ASV x 
in disease cohort i, and n(G) represents the number of samples in group G.

NRMD‑based beta diversity analysis

To quantify the similarity/dissimilarity between the different disease cohorts, we used 
the normalized difference between cases and controls in each disease cohort (NRMD). 
Since not all ASVs are present in all disease cohorts, for each pair of disease cohorts, we 
calculated a modified Bray-Curtis distance using only the ASVs present in both disease 
cohorts. The distance was calculated as follows:

where i and j denote two disease cohorts, and D(i, j) is the modified Bray-Curtis distance 
between these two disease cohorts.

NRMD(i, x) = (mean(Gcase(i, x))−mean(Gcontrol(i, x)))/
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This modified Bray-Curtis distance is similar to the classic Bray-Curtis distance, but 
calculated only on ASVs present in both samples. We opted for this modified Bray-Cur-
tis metric to reduce the effect of the different disease cohorts (i.e., different populations/
extraction protocols etc.) that can lead to the lack of observations of some ASVs in spe-
cific cohorts, therefore prohibiting the determination of the NRMD for the ASV in the 
specific cohort.

A distance matrix for all disease cohort pairs was calculated using this modified Bray-
Curtis metric. This matrix was then used for the generation of a PCoA depicting disease 
cohort similarity using qiime2.

Identification of shared (“non‑specific”) ASVs

Non-specific ASVs are expected to share the same behavior (i.e., higher in cases or lower 
in cases) across multiple diseases, whereas for ASVs not associated with a non-specific 
disease response (the null hypothesis), the direction of change (higher in cases or lower 
in cases) is expected to follow a 0.5/0.5 binomial distribution. We therefore tested the 
direction of the effect size (i.e., higher (positive NRMD) or lower (negative NRMD) in 
cases compared to controls for the given disease cohort) and identified for ASVs whose 
effect size direction significantly differed from 0.5/0.5 binomial (i.e., ASVs that are 
higher (or lower) in cases compared to controls in a significant number of different dis-
eases). This was implemented by using a two-sided binomial test (p = 0.5) on the sign 
of the NRMD in the different disease cohorts (only on disease cohorts where the ASV 
was present), followed by Benjamini-Hochberg FDR control (FDR < 0.1). To prevent bias 
introduced by diseases represented in multiple disease cohorts, all disease cohorts with 
the same disease were aggregated to a single entry (prior to the binomial test) with the 
NRMD defined as the mean of the NRMD of all cohorts with the same disease. The anal-
ysis was performed only on ASVs present in at least 4 disease cohorts.

NRMD results validation using additional metrics: NRMD is calculated separately for 
each disease cohort, and since it is rank based, it should be relatively robust to the num-
ber of reads per sample. In order to validate the results obtained using NRMD, we addi-
tionally tested for non-specific bacteria using two additional metrics: rarified NRMD and 
LEFSE-based LDA [38]. Following these additional effect size calculations, we identified 
the set of non-specific bacteria as described previously (see specific implementation 
details below). Since significance depends on the p-value, which is highly variable even 
between replicates [63], we also compared the results of LEFSE and rarified NRMD to 
the basic (non-rarified) NRMD by testing how the direction of change overlap between 
the two methods on the bacteria identified as non-specific following initial NRMD anal-
ysis as follows: for each bacteria identified as significantly non-specific (i.e., higher/lower 
in multiple disease cohorts compared to healthy controls), we calculated the mean of the 
LEFSE LDA or rarified NRMD over all disease cohorts and tested whether this mean 
effect size is positive (higher in disease) or negative (lower in disease). We then counted 
the number of bacteria for which the basic NRMD and the rarified NRMD (or LEFSE 
LDA) agree on the change direction. This indicates whether the same behavior (higher 
or lower in disease) is replicated using the different metrics used.
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Calculation of rarified NRMD

Prior to NRMD calculation, all samples from all disease cohorts were rarified to 4000 
reads per sample. Samples with < 4000 reads were discarded. The NRMD calculation was 
then performed as described above.

Calculation of LEFSE LDA

LEFSE (1.1.01) was used to calculate the LDA for each disease cohort using the 
parameters -a 1 -l 0 -w 1 (no filtering based on LDA/Wilcoxon or subgroup val-
ues). The resulting per-bacteria LDA were converted to positive/negative based 
on the direction of the higher group (disease/healthy) and were then used for the 
direction overlap analysis. For the identification of LEFSE LDA based non-specific 
bacteria, since LEFSE does not provide FDR correction, we used a p-value cutoff of 
0.1 (as compared to FDR = 0.25 in the NRMD-based analysis).

Identification of IBD‑specific ASVs

IBD-specific ASVs were defined as ASVs showing significantly higher (or lower) 
NRMD values in CD and UC fecal disease cohorts in comparison to all other dis-
ease cohorts. These IBD-specific ASVs were identified using a rank-mean test (imple-
mented in Calour) on the NRMD in all studies (i.e., 10 CD and UC disease cohorts, 
vs. 45 disease cohorts with other diseases, not including the 2 non-specific IBD diag-
nosis disease cohorts, and the 2 disease cohorts that used biopsies rather than fecal 
samples), with dsFDR correction (FDR = 0.1).

dbBact terms word clouds

ASVs (either specific or non-specific), that were shown to be related to a given dis-
ease, were compared to all the annotations in the dbbact database to search for ontol-
ogy terms related to those ASVs (i.e., diseases, geographical locations, bacterial main 
niches in the body, and habitant for those bacteria). For each term, the word size is 
the F-score combining the precision (i.e., how many of the query sequences contain 
the given term) and the recall (i.e., how many of the dbBact annotations containing 
the term contain the query sequences). Blue and red word colors indicate terms posi-
tively or negatively associated with the query sequences respectively.

Identification of salivary ASVs in additional studies

Per-sample FASTA reads files were downloaded from the SRA for two studies that 
included salivary microbiome samples (AGP and PRJNA383868 [42]) sequenced 
using the V4 region. Sequences were processed using the same pipeline described for 
the current dataset, and we summarized those ASVs that were present in 25% and 
more in the salivary samples (those 2 cohorts included 500 and above participants) 
and looked for overlapped with disease non-specific increased ASVs (n = 31) and 
IBD-specific increased ASVs (n = 13).
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Functional enrichment analysis in non‑specific bacteria

Functional analysis was performed using per-ASV prediction of KEGG functions 
obtained using PICRUSt2 [39]. We then searched for KEGG functions present at 
significantly higher (or lower) fractions in health-associated non-specific bacteria 
compared to disease-associated non-specific bacteria (e.g., KEGG functions more 
common in bacteria that increase (decrease) in multiple diseases compared to the 
bacteria that decrease (increase) in controls). The test was performed on the normal-
ized per-ASV KEGG function table aggregated at KEGG level 2, using the rank-mean 
test (implemented in Calour) with dsFDR multiple hypothesis correction (FDR < 0.1), 
comparing relative abundances of KEGG functions in disease-associated vs. health-
associated ASVs.

Classifier building and performance

For the classification, each disease cohort was randomly subsampled to a maximum of 
23 cases and 23 control samples. For each pair of disease cohorts (train, predict), ASVs 
were filtered, keeping only ASVs present in both cohorts. A random forest classifier 
(implemented in scikit-learn version 0.23.1, using default parameters, 100 trees per for-
est) was trained on the case/control samples in the training cohort. The trained classifier 
was then used to predict the case/control status of the prediction cohort, and false and 
true positive rates and AUC were calculated using scikit-learn. In the cases where the 
train and predict disease cohorts were the same (i.e., assessing the classifier predictions 
on the same disease cohort), the disease cohort samples were randomly split to 2/3 of 
the samples to be used as the training cohort, and the remaining 1/3 of the samples used 
as the prediction cohort.

Three random null-models were used: in the random-prediction model, labels of the 
prediction cohort (i.e., case/control) were randomly permuted prior to the classifier pre-
diction. In the random-training model, labels of the training cohort (again case/control) 
were randomly permuted prior to the training (thus leaving intact the case/control dif-
ferences in the prediction cohort). In the third model, labels of the prediction cohort 
were randomly permuted prior to the classifier prediction, and the labels of the training 
cohort were randomly permuted prior to the training.

AUC values shown represent the mean AUC results of 50 repeats of the entire process 
described (for both real data and randomizations).

Universal dysbiosis index (UniDI)

For a given sample (containing ri reads for ASV 1…n):

per-sample reads were first rank-transformed, following the method described in [5]:

and the dysbiosis index is then defined as the normalized log ratio of the sum of the 
ranks of the up and down regulated ASVs:

S = (r1, r2, . . . , rn),

∼

S = rank(S)
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where NSDI(S) is the non-specific dysbiosis index of sample S, and up _ nonspecific and 
down _ nonspecific represent the group of disease nonspecific ASVs higher and lower in 
cases vs. controls respectively, as described in the paper.

The taxonomy based dysbiosis index was calculated following the method described in 
[2], implemented for the denoised data using the taxonomy assigned to each ASV:

where up _ taxonomies, down _ taxonomies are the lists of taxonomies identified as 
higher and lower in Crohn’s disease, as listed in [2].

For the performance evaluation, we used a leave-one-out approach. We iterated over 
all disease cohorts and for each iteration performed the analysis while leaving out a sin-
gle validation disease cohort. The up _ nonspecific, down _ nonspecific ASV groups were 
identified as described above (see the “Identification of shared (“non-specific”) ASVs” 
section) but without the validation cohort (i.e., the non-specific ASVs were identified 
based on 58 disease cohorts). The dysbiosis index was then calculated for all samples of 
the validation cohort, and the p-value (for the null hypothesis of similar dysbiosis index 
distribution for cases and controls in the validation cohort) was tested using the non-
parametric Mann-Whitney test with the single sided hypothesis (cases > controls).

Data and code availability

Accession numbers for all studies used in the analysis are available in Additional file 1: 
supplementary table S1.

Commands and Scripts used for the generation of the per-study biom table and code 
are available in the sites Github and zenodo [41, 64].
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