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Abstract

Background: Dispersal is a major factor in ecological and evolutionary dynamics. Although empirical evidence
shows that the tendency to disperse varies among individuals in many organisms, the evolution of dispersal
patterns is not fully understood. Previous theoretical studies have shown that condition-dependent dispersal may
evolve as a means to move to a different environment when environments are heterogeneous in space or in time.
However, dispersal is also a means to genetically diversify offspring, a genetic advantage that might be particularly
important when the individual fitness is low. We suggest that plasticity in dispersal, in which fit individuals are less
likely to disperse (Fitness-Associated Dispersal, or FAD), can evolve due to its evolutionary advantages even when
the environment is homogeneous and stable, kin competition is weak, and the cost of dispersal is high.

Results: Using stochastic simulations we show that throughout the parameter range, selection favors FAD over
uniform dispersal (in which all individuals disperse with equal probability). FAD also has significant long-term effects
on the mean fitness and genotypic variance of the population.

Conclusions: We show that FAD evolves under a very wide parameter range, regardless of its effects on the
population mean fitness. We predict that individuals of low quality will have an increased tendency for dispersal,
even when the environment is homogeneous, there is no direct competition with neighbors, and dispersal carries
significant costs.

Keywords: Phenotypic plasticity, Genetic mixing, Outcrossing, Stress-induced variation, Fitness-dependent dispersal,
Condition-dependent dispersal, Partial migration, Stochastic simulations
Background
Dispersal affects fundamental processes in ecology and
evolution such as gene flow, genetic drift, and inbreeding.
However, the evolution and regulation of dispersal are not
yet fully understood. Dispersing individuals spend time
and energy and, among other costs, may be exposed to
uninhabitable environments, predation, and the risk of
failing to find a new site in time for reproduction [1].
Classical theory suggests that individuals may disperse in
order to change their environment [2-4], to avoid compe-
tition with kin [5-8], to avoid inbreeding [9-11], or a com-
bination of the above [12-16]. These models, however, do
not account for individual plasticity in dispersal behavior,
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in particular the ability of an individual to adjust its
dispersal behavior according to circumstances (biotic,
abiotic, internal, external, or a combination of them). Such
plastic dispersal has been observed in many species
(reviewed in [17-20]; Table 1).
Recently, various ecological drivers of plastic dispersal

strategies have been suggested [17,18,31,32]. Plastic mi-
gration can be induced, among other causes, by density
effects [33-36], by competition with superior individuals
[37,38], by limited resources, e.g. nutrients [24], or by
predation risk [39,40]. In all these models, the dispersing
individual is assumed to benefit directly from dispersal
by moving to a different environment: one where there
is a chance to find fewer or less intense competitors,
more tolerable conditions, more food, or fewer predators
[20]. For such a mode of dispersal to be advantageous,
the expected benefits resulting from moving to the new
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Table 1 Empirical evidence of plastic dispersal

Citation Species Data Dispersal driver supported

Baguette et al.,
2011 [21]

Bog fritillary
butterfly
(Boloria
eunomia)

Lower habitat quality raises the emigration rates
and higher habitat quality raises the residence
probability

Negative density-dependence as a cue; lower habitat quality
(limited resources)

Vercken et al.,
2012 [22]

Juvenile
common lizard
(Lacerta
vivipara)

Frequencies of female classes affect dispersal
decisions differentially among classes

Competition with superior conspecifics; conspecifics as
environmental condition cue

Donohue, 2003
[23], Imbert &
Ronce, 2001
[24]

Holy’s Hawk’s-
beard (Crepis
sancta)

Environmental stress results in a higher proportion
of wind-dispersal structures

Lower habitat quality (limited resources)

Wender et al.,
2005 [25]

Arabidopsis
thaliana

Density effects on maternal traits, such as plant
height and fruits, have diverse effects on seed
dispersal patterns

Density-dependence (with various effects)

Hanski et al.,
1991 [26]

Siberian flying
squirrels (Sorex
araneus)

Juvenile dispersal strategy changes with density
from conditional to effectively non-conditional

Competition with superior individuals; density-dependence

Chaput-Bardy
et al., 2010 [27]

Damselfly
(Calopteryx
splendens)

Females tend to disperse more often than males;
emigration probability decreases with density;
probability to move decreases when sex-ratio is
male biased

Conspecific negative density-dependence (sex-ratio
dependence); sex-dependence;

Clarke et al.,
2008 [28]

Chacma
baboons
(Papio
hamadryas
ursinus)

Males disperse; individual well-being combined with
numbers of males and females is associated with
differential and plastic dispersal strategies

Competition with conspecifics

Solmsen et al.,
2011 [29]

African striped
mice
(Rhabdomys
pumilio)

Locally inferior males disperse with a higher
tendency

Competition with conspecifics; sex-dependence(?)

Shafer et al.,
2011 [30]

The mountain
goat
(Oreamnos
americanus)

Dispersers have lower observed heterozygosity
compared to their population of origin

Inbreeding avoidance; heterosis; competition with
conspecifics
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location should be greater than the expected cost of dis-
persal for the individual [17,41]. Consequently, one would
not expect the evolution of plastic migration in a uniform
and stable environment where the cost of dispersal is high,
and sib competition is weak.
Here we concentrate on the effect of dispersal on the

rate of outcrossing. Outcrossing has been suggested in
the past as a possible advantage of dispersal in general
(heterosis, e.g. [42,43]), and we suggest that it favors the
evolution of plastic dispersal in particular. From the
point of view of a gene regulating dispersal tendency,
dispersal can be viewed as a move in both the physical
and the genotypic space, because a dispersing individual
has a higher probability of mixing its genome with that
of an unrelated individual. Both types of movement are
more beneficial for a gene linked to a maladapted
genetic background than to one linked to a well-adapted
one. In particular, even in the absence of environmental
heterogeneity, and even if deleterious mutations are not
recessive, selection can favor a gene inducing increased
dispersal tendency among the less fit individuals. Thus
dispersal may be regulated according to the well-being
of the individual, so that fit individuals are less likely to
disperse, i.e. Fitness-Associated Dispersal, or FAD [44].
Indeed, such association between poor condition and
dispersal has been observed in many organisms
[24,30,45-47] (but not always, e.g. [48]). Different terms,
including condition-dependent dispersal and matching
habitat [17,49], are used in the literature to describe
such associations. Since we concentrate on the genetic
(internal) aspects of individual condition rather than the
environmental (external) ones, we use FAD, which has
been used in the past in the exact same sense [44].
In this work, we used stochastic simulations to study

the evolutionary dynamics of a modifier gene that deter-
mines the individual dispersal strategy in an homoge-
neous environment. We show that FAD can evolve even
when the environment is homogeneous and the cost of
dispersal is high. We predict that stress will result in an
increased tendency to disperse even when the cost of
dispersal is very high, as long as there is potential for
regulated plasticity in dispersal rates.
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Results
We found that Fitness-Associated Dispersal (FAD) is
favored by selection over uniform dispersal throughout the
examined parameter range. Specifically, when alleles for
FAD invaded UNI populations with the same average
dispersal rate, invasion was successful throughout the
parameter range (Figure 1, p < 10-10, exact binomial test).
Takeover time generally decreased with the cost of disper-
sal, since the relative advantage of the high-quality FAD
genomes (which were dispersing less often) was greater
than that of the high quality UNI genomes (Figure 1). This
trend was mainly noticeable for high values of the dispersal
rate, since in this case the cost of dispersal is taken into
consideration more often. However, for a low cost of dis-
persal the takeover time actually increased with dispersal
rate, since in this case FAD leads to slightly decreased mean
fitness (Figure 2).
In our model, fitness and heterozygosity are two distinct

concepts – heterozygosity is defined by the number of loci
in heterozygote state and fitness is defined by the number
of loci both in a heterozygote state and in a homozygote
state, according to the dominance coefficient h and the
selection coefficient s. The interaction of these two key
concepts with FAD is complex and depends on the cost of
dispersal. Under FAD, the cost is paid mainly by individuals
with a higher than average number of deleterious muta-
tions, reducing their ability to reproduce. Therefore, when
the cost is high, deleterious mutations are purged from the
population more effectively with FAD than with UNI. This
purging effect drives an increase in the population mean fit-
ness (Figure 2) and a reduction in the mean heterozygosity
of deleterious mutations (Figure 3). When the dispersal rate
increases, more individuals pay the cost of dispersal and the
purging effect becomes stronger (compare panels A and C
in Figure 2).
Dominance coefficien
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Figure 1 Invasion of Fitness-Associated Dispersal. FAD invaded a popu
tested (p ≤ 10-10 for each parameter set, exact binomial test), even though
held equal in each simulation (αF = αU). The figure shows the mean numbe
from 0.01 to 0.8 in the cases where FAD took over the population (cells’ cla
mean dispersal rate α (A: α = 0.01, B: α = 0.1, C: α = 0.3). As the cost of dispe
disperse increases and it takes FAD less time to spread. As the average rate
rapidly when the dispersal cost is high, and more slowly when it is low. Th
dispersal rates together with low dispersal cost, where the number of hete
other values of α.
Under a low cost of dispersal with FAD, unfit individuals
disperse and outcross more often than their fit counter-
parts, leading to a more even distribution of deleterious
mutations in the population, and less effective natural
selection. As a result, population mean fitness decreases
(Figure 2), while mean heterozygosity of deleterious muta-
tions increases (Figure 3). Mean heterozygosity of neutral
mutations might also increase [50-52], and heterozygosity
could be advantageous in the very long term if the envi-
ronmental conditions change [53,54]. The effect of dispersal
on the distribution of deleterious alleles is stronger than
that of random genetic drift – when the cost of dispersal
was removed entirely (c = 0), a higher dispersal rate, which
leads to a larger effective population size, was correlated
with a reduced population mean fitness (Figure 2).
Note that the invasion of FAD did not depend on its

long-term effect. Specifically, FAD evolves even when it
reduces mean fitness (Figure 4, corresponding to left side of
Figure 2B where c = 0), because it reduces the mean fitness
of the UNI sub-population more than that of FAD sub-
populations. In this scenario the major driving force of the
evolution of FAD is the abandon-ship effect of the modifier
allele [55,56]: by increasing the dispersal rate when carrying
a poor genetic background, the FAD modifier allele
increases its own probability to move to a different genetic
background in the next generation. That improves its
chances to spread in the population by breaking away from
less fit genetic backgrounds and associating with fitter ones.
This advantage of the FAD modifier is “selfish” - both the
individual and the population might not benefit from such
a dispersal strategy that has evolved due to its selective
advantage at the gene level [57].
Interestingly, FAD alleles coding for increased average

dispersal rate may invade a population with a uniform and
lower dispersal rate, whereas similar UNI alleles cannot
t (h)
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Figure 2 Mean fitness under different dispersal rules. Mean fitness (±SE) at the steady state in populations homogeneous at the modifier
locus as a function of the cost of dispersal c, the dominance coefficient h, and the mean dispersal rate α (A: α = 0.01, B: α = 0.1, C: α = 0.3). The
mean fitness of UNI (open markers) decreases with the cost, because the cost is a component of the fitness. This effect becomes stronger as the
dispersal rate α increases (from A to C) and the cost is paid more often. In contrast, the mean fitness of FAD (filled markers) increases with the
cost of dispersal, because less fit individuals pay the cost more often and deleterious alleles are purged from the population. As the dominance
coefficient h increases, the masking of deleterious mutations in a heterozygous state weakens and fitness is slightly reduced in most cases. Note
that in most cases the error bars, showing the standard error of the mean, are smaller than the markers.
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Figure 3 (See legend on next page.)
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(See figure on previous page.)
Figure 3 Mean heterozygosity under different dispersal rules. Mean frequency (±SE) of deleterious heterozygous alleles at the steady state
in populations homogeneous at the modifier locus - either FAD allele (filled markers) or UNI allele (open markers). Heterozygosity is plotted as a
function of the cost of dispersal c, of the dominance coefficient h, and of the mean dispersal rate (A: α = 0.01, B: α = 0.1, C: α = 0.3).
Heterozygosity decreases as h increases in all cases, because the masking of deleterious mutations in a heterozygous state is less efficient. Under
both dispersal rules heterozygosity decreases with c, because fewer dispersers - which are likely to be outcrossers - survive; but the effect is
stronger under FAD, because under FAD individuals carrying many deleterious mutations are more likely to disperse and pay the cost of
dispersal. Comparing Figures 2 and 3, heterozygosity with FAD tends to be higher when mean fitness is lower, but not always to the same extent
(see, for example, the effect of c in Figure 2C compared with Figure 3C). Note that in most cases the error bars, showing the standard error of
the mean, are smaller than the markers.
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(Figure 5). Similarly, FAD alleles coding for decreased
average dispersal rate invade populations with a uniform
and higher dispersal rate under a wider parameter range
than similar UNI alleles (Additional file 1). Together, these
results suggest that the advantage of FAD lies in its plasti-
city, and not necessarily in the direction of change in dis-
persal rate.
Three major factors play a role in the evolution of FAD:

(i) through dispersal, FAD alleles can find better genetic
backgrounds, with fewer deleterious mutations overall; (ii)
through dispersal, FAD alleles (as well as UNI) can find
genetic backgrounds with different deleterious mutations,
resulting in the masking of deleterious mutations at a
heterozygote state when the wild type allele is dominant;
and (iii) under FAD, the cost of dispersal is paid primarily
by the less fit individuals. When invaders have a higher
dispersal rate than residents and the cost of dispersal is low
(including c ≤ 0.1, Figure 5C,D), the benefit from the
masking of deleterious alleles in a heterozygote state can be
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Figure 4 FAD can invade despite a long-term disadvantage. The figure
line and solid line, respectively) and UNI (open markers dashed line and da
function of time. For this parameter set, FAD succeeds in invading a popul
αF = αU), but the invasion is accompanied by a substantial decrease in mea
successfully invades because of the abandon-ship advantage: FAD modifier
backgrounds through dispersal and outcrossing. They become associated w
higher mean fitness than UNI throughout the period of invasion. Paramete
dispersal rate αF = αU =0.1. Qualitatively similar results were obtained for th
higher than the costs of dispersal, and both FAD and UNI
alleles can spread. However, in the absence of masking
(dominance coefficient h = 0.5), only FAD can evolve,
through efficiently associating itself with genetic back-
grounds carrying fewer deleterious mutations. Similarly,
intermediate masking (0.2 < h < 0.5), with intermediate
costs (0.1 ≤ c ≤ 0.5), allow FAD, but not UNI, to invade.
When c is high and h is low, neither FAD nor UNI can
invade and increase the dispersal rate. Altogether, no single
factor accounts for the evolution of FAD throughout the
parameter range, with each factor being dominant in a
different setting.
When FAD alleles invade a UNI population with a

substantially lower dispersal rate there are cases where FAD
alleles do not take over or become extinct, and polymorph-
ism of FAD and UNI alleles - coding for lower dispersal
rate - is maintained (Figure 5). This might be due to a
frequency-dependent advantage of FAD alleles when they
increase dispersal rates above the optimum: when the
150 200 250
rations 

UNI mean fitness

FAD mean fitness

shows the frequency and mean fitness of FAD (filled markers solid
shed line, respectively) modifier alleles in an average of 100 runs as a
ation with a uniform dispersal rate (with equal average dispersal rates,
n fitness for both the FAD and the UNI sub-populations. FAD invasion
alleles tend to break away more effectively from deleterious genetic
ith relatively good genetic backgrounds, consistently leading to
rs: cost of dispersal c = 0, dominance coefficient h = 0.2, average
e introduction of FAD modifier alleles at a frequency of 0.01.
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Figure 5 FAD facilitates the evolution of increased dispersal rates. Each cell shows the outcome of invasions of FAD or UNI modifier alleles.
Modifier alleles are introduced at 50% to a population dispersing at a uniform rate of α = 0.3 (A and B) or α = 0.1 (C and D). If both FAD and UNI
invasions were significantly more successful than expected by a neutral allele, the cell is white. If no strategy was successful, the cell is black. If
only FAD was successful, the cell is light grey. If FAD was maintained at polymorphism but did not take over, the cell is dark grey. FAD facilitates
the evolution of increased dispersal rates of α = 0.4 (A), α = 0.5 (B), α = 0.2 (C) and α = 0.3 (D) under a wider parameter range than UNI. The
difference is particularly noticeable when there is a cost to dispersal (c > 0) and when the masking of deleterious alleles is not very low (h > 0.1).
Qualitatively identical results were obtained for the introduction of FAD alleles at a frequency of 0.01 for a sample of the parameter range.
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invading FAD alleles are rare, most of them occur in FAD/
UNI heterozygotes, and exhibit an intermediate outcrossing
rate closer to the optimum. However, FAD/UNI poly-
morphism is unlikely to be stable: eventually, a FAD allele
coding for a more optimal dispersal frequency will appear
by mutation and take over the population. For example, a
FAD allele with dispersal rate α = 0.5 did not take over or
became extinct after invading the UNI population with a
dispersal rate of α = 0.3; but a FAD allele with dispersal rate
α = 0.4 did take over - compare Figures 5A and 5B for
h = 0.3 and 0.2 ≤ c ≤ 0.4.
Altogether, our model predicts that low quality individ-

uals tend to disperse more often than high quality
individuals. We expect the effect to be noticeable, particu-
larly in organisms featuring both very high rates of dispersal
and high costs of dispersal.

Discussion
Our results show that Fitness-Associated Dispersal (FAD)
evolves under a wide parameter range, regardless of its
effect on the population mean fitness, and even in an
homogeneous habitat (Figures 1, 2). Dispersal of less fit
individuals can explain the evolution of high dispersal rates
even under high costs of dispersal, and even when a
uniform increase in dispersal rate is not favored by
selection (Figure 5).
These results complement existing models showing that

when the environment is heterogeneous, and mismatch
between genotype and environment results in low fitness,
selection favors conditional dispersal [31,37,58] such as
fitness-dependent dispersal [59] or matching-habitat choice
[49]. Altogether, we predict that organisms able to disperse
or stay will disperse at higher rates under stress. This
prediction is consistent with empirical evidence in numer-
ous species [21,24,29].
Our model suggests that plastic dispersal can be driven

by the benefits of genetic mixing, and not only of environ-
mental change. Focusing on the genetic benefits, the model
assumes conditions that are unfavorable for the evolution
of dispersal in classical models: a temporally and spatially
homogeneous environment, minimal kin competition, and
substantial costs of dispersal. This model thus differs from
classical models (reviewed in [18,32]) that assume environ-
mental heterogeneity [60,61] and conditional dispersal
[37,58] from unsuitable environments [31,62] or into suit-
able ones [59,63]. Our model does not assume within-deme
competition. It thus differs from studies that demonstrate
or require direct competition between conspecifics as a
driving force for the evolution of condition-dependent dis-
persal (such as despotic behavior,) [64-69]. Our model can
be viewed as an extension of inbreeding avoidance models
for the evolution of dispersal [13-15], as we assume condi-
tional dispersal of individuals carrying poor genomes –
individuals that are more likely to experience severe in-
breeding depression. The model offers unique predictions.
We predict that the least fit individuals within a population
will be the ones that invest more in dispersal even if there
is no direct competition, and even in a homogeneous
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environment. However, it might be hard to exclude the pos-
sibility that individuals show this dispersal pattern because
they do expect that the environment is heterogeneous, or
because they do compete even when resources are cur-
rently unlimited, since they evolved in environments that
on average are heterogeneous and competitive.
The concept of Fitness associated dispersal is part of the

more general concept of fitness-associated genetic variation
generated through mutation [70,71], recombination in a
mixed population [55,72,73], and in particular costly
variation, such as condition-dependent sex [56,57,74]. The
marked difference between condition-dependent sex and
FAD is that, in condition-dependent sex, individuals that
do not meet the conditions to reproduce sexually produce
offspring that are identical to themselves. However, in the
case of conditional dispersal, such as FAD, individuals that
do not meet the conditions to disperse essentially increase
the probability to produce offspring that are inbred and
may experience inbreeding depression. As a result, a gene
for FAD that is linked to a good genetic background does
not benefit from staying linked with that exact background
(a major advantage of plasticity in previous models).
Our dispersal model may be further developed in accord-

ance with several recent studies. First, there is no inter-
action among loci in this model. However, previous work
has shown that FAD can facilitate adaptation even when
the fitness landscape is rugged - where different mutations
can be separately harmful but jointly advantageous [44].
Second, further work could test the effects of environmen-
tal heterogeneity. We would expect that environmental
heterogeneity would sometimes facilitate the evolution of
FAD, as dispersal is favored when either the environment is
the cause of low fitness and the individual might prosper in
a different environment [59], or the genotype is the cause
of low fitness regardless of the environment, and changing
genetic backgrounds might be advantageous, as we have
shown here. In cases where the environment is heteroge-
neous and different genotypes match different patches in
the environment, FAD can result in better genotype-
to-environment matching [49,75] and accelerate local
adaptation [59,76]. Third, our model assumes no temporal
variation in the environment. Temporal variation often re-
sults in increased advantage for dispersal, whether uniform
or plastic [12,17,58,77]. Fourth, our model assumes that the
cost of dispersal is independent of condition. However, if
dispersal cost decreases with condition (so that unfit
individuals pay higher costs) [78] the predictions might
change, possibly narrowing the parameter range allowing
the invasion of FAD.
If fitness is associated with high levels of heterozygosity

[79,80], our FAD model suggests that highly inbred individ-
uals (potentially with low heterozygosity and fitness) tend
to disperse at a higher rate, as demonstrated in [30]. The
offspring of these dispersers are expected to show elevated
levels of heterozygosity, and possibly increased fitness and
decreased dispersal tendency.
Since our model does not assume that dispersal is driven

by direct competition, it can naturally be extended to
describe the dispersal of sessile organisms, such as plants.
Plants do not typically disperse during their adult life, but
rather disperse as pollen or seeds [81,82]. Thus our model
has two different predictions, one for seeds and one for
pollen. With respect to pollen, where gender bias is strong
(i.e., mainly male gametes disperse) it was observed that
maladapted hermaphroditic plants invest more in male
function than in female function [83-85], usually explained
through the different costs of male and female functions.
Our model presents an alternative explanation for this
phenomenon by suggesting that investment in pollen facili-
tates dispersal as well as outcrossing. With respect to seeds,
all else being equal, we would also expect the further
dispersing seeds to be produced more often by maladapted
parent plants. Such plasticity might even help to explain
the evolution of long-distance dispersal involving a high
cost of dispersal through high seed mortality [86], but this
topic calls for further research.
If dispersal is indeed fitness-associated in many organ-

isms, it might have dramatic implications for evolutionary
and ecological models [20]. For example, FAD in the form
of matching habitat choice might change the distribution of
variation across a species’ range, where clines are expected
to become steeper with responsiveness of dispersal to envir-
onment, in the sense that individuals more often move out
of the hybrid zone (where they may mix their gametes) in
response to gradients affecting fitness [87]. FAD may
further affect the stability of meta-populations, composed
of core populations, where individuals are well adapted and
are expected to disperse at lower rates, and peripheral
populations, where individuals are expected to disperse at
higher rates. FAD might thus maintain the size of core pop-
ulations more stable in comparison with uniform dispersal,
while allowing some gene flow of less successful individuals
[88]. The pattern of dispersal may also shape biodiversity.
Directed and conditional dispersal may maintain species
diversity by keeping core populations more separate, while
random dispersal can allow species coexistence [89].

Conclusions
Our results show that fitness-associated dispersal (FAD),
where less fit individuals are more likely to disperse, has
an evolutionary advantage over non-regulated uniform
dispersal, even in an homogeneous environment and in
the absence of direct within-deme competition. We have
demonstrated that FAD evolves regardless of its effect on
the population mean fitness, because FAD modifier alleles
become associated with good genetic backgrounds
(abandon-ship effect). Thus, we suggest that plastic disper-
sal can be driven by the benefits of genetic mixing and not
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only by the benefits of environmental change. We predict
that the least fit individuals in the population will disperse
at the highest rates. This is expected even if environmental
variability is low, individual strategy does not depend
on interactions with neighbors, and dispersal carries
significant costs.

Methods
We used stochastic individual-based simulations of struc-
tured populations to study the evolutionary dynamics of a
modifier gene that determines the individual dispersal strat-
egy in a homogeneous environment. The simulated popula-
tions are constant in size and are divided into demes.
Mating occurs exclusively within demes. In contrast to
previous work [59], here we assume that selection against
deleterious phenotypes is uniform across demes. Genera-
tions are discrete and non-overlapping, and each generation
starts with dispersal, followed by reproduction and selection
on the offspring.
During the dispersal stage, individuals either disperse to

another deme or stay in their natal deme, depending on
their dispersal strategy: uniform dispersal (UNI) or fitness-
associated dispersal (FAD). UNI individuals disperse with
probability αU, the uniform dispersal rate. In contrast, the
dispersal probability of FAD individuals depends on two
factors: the fitness of the individual, and the mean FAD
dispersal rate αF. Both αU and αF are constant throughout a
single simulation. The number of dispersing FAD individ-
uals is randomly drawn from a binomial distribution, but
their identity is determined by fitness, so that individuals
with low fitness disperse first. We assume an “island model”
[90], where every deme is equally close to every other deme.
At the end of the dispersal stage, individuals arrive at a
random deme as sexually mature adults. All dispersing
individuals, independent of genotype, pay a “cost of
dispersal” – they have a probability c (0 ≤ c ≤ 1) of perishing
without leaving offspring due to the direct energetic costs
of locomotion, predation and dispersal risks.
The genome is modeled by 10,000 diploid fitness loci

and a single diploid modifier locus determining the dis-
persal strategy. All loci are bi-allelic: the modifier locus
with UNI and FAD alleles, and fitness loci with wild-
type and mutant alleles. The dispersal strategy of UNI/
FAD heterozygots is set at birth, 50% of them as homo-
zygote UNI and 50% as homozygote FAD. Segregation is
Mendelian and recombination between the modifier
locus and the fitness loci is free (as if they are located on
separate chromosomes). The number of recombination
events between fitness loci is drawn from a Poisson dis-
tribution with an expected value of 20 events per ge-
nome per generation. The number of mutations
occurring at reproduction is drawn from a Poisson dis-
tribution with an expected value of 0.5 mutations per
genome per generation. Mutation and recombination
probabilities are uniform across the genome, and all mu-
tations are deleterious.
Mating is strictly within-deme but is otherwise random,

and all individuals are simultaneous hermaphrodites that
reproduce sexually with no self-fertilization. For each new
offspring, we first chose a deme with probability propor-
tional to the deme’s relative size (see below) in order to
minimize kin competition. We then chose a pair of parents
from that deme to reproduce. The offspring undergo
viability selection: juveniles survive to adulthood with a
probability (1-s)m(1-hs)n, where m and n are the number of
homozygous and heterozygous deleterious mutations in the
individual’s genome, respectively, h is the dominance
coefficient, and s is the selection coefficient. Surviving
individuals join the next generation of their parents’ deme.
This process continues until the offspring population
reaches the total population size, and the parental popula-
tion is then replaced by the offspring population.
We assume the environment is constant and homoge-

neous with respect to selection, but demes may vary in size
and number between generations. Demes that are occupied
by more successful genotypes tend to increase in size due
to: (a) higher survival probabilities; and (b) under FAD,
these demes would have more immigrants then emigrants,
on average. Demes that pass a preset maximum capacity
after the reproduction phase are split into two. Small demes
can disappear during the reproduction phase due to
random sampling, but the total population size is kept
constant at 5,000. In most of the simulations the preset
maximum deme capacity was 20. We performed a small
number of simulations with larger deme capacities of 50
and 100, but these did not demonstrate any qualitative
difference (data not shown).
We ran two types of simulations: those with populations

homogeneous at the modifier loci; and those of modifier
allele invasions. First, we simulated populations with an
homogeneous dispersal strategy evolving to a mutation-
selection balance, defined as a steady-state in population
mean fitness and heterozygosity. We monitored the long-
term (steady-state) effects of dispersal strategies on the
population mean fitness and the fraction of deleterious
alleles in a heterozygous state. We explored the following
parameter range: dispersal rate α = 0.01, 0.1 and 0.3; cost of
dispersal c = 0, 0.1, 0.3 and 0.5; dominance coefficient
h = 0.2, 0.3, 0.4 and 0.5; selection coefficient s = 0.1. In
addition, we simulated invasions of a modifier allele to a
homogenous resident population at a mutation-selection
balance. The invading modifier allele started at low fre-
quency (1% or 5% of the population, without any qualita-
tive difference). The simulation continued until one of the
modifier alleles became extinct or 30,000 generations had
passed. Invasion was successful if the invading modifier
allele took over the population significantly more often
than expected for a neutral modifier (teh expected
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invasion success of a neutral allele is its initial frequency,
1% or 5%). We simulated both invasions in which resi-
dents and invaders had the same dispersal rate, and inva-
sions in which invaders had a higher dispersal rate than
residents. The stimulation source code is available at
https://code.google.com/p/fagr/ under a CC-BY-SA 3.0
license.
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Additional file 1: Figure: Invasion of FAD and UNI with decreased
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with dispersal rate of 0.1; B - Invasion with dispersal rate of 0.066 into a
population with dispersal rate of 0.1; C - Invasion with dispersal rate of
0.1 into a population with dispersal rate of 0.3; D - Invasion with dispersal
rate of 0.2 into a population with dispersal rate of 0.3.
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