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Abstract

Motivation: Literature-based gene ontology annotations (GOA) are biological database records that use controlled
vocabulary to uniformly represent gene function information that is described in the primary literature. Assurance of
the quality of GOA is crucial for supporting biological research. However, a range of different kinds of inconsisten-
cies in between literature as evidence and annotated GO terms can be identified; these have not been systematically
studied at record level. The existing manual-curation approach to GOA consistency assurance is inefficient and is
unable to keep pace with the rate of updates to gene function knowledge. Automatic tools are therefore needed to
assist with GOA consistency assurance. This article presents an exploration of different GOA inconsistencies and an
early feasibility study of automatic inconsistency detection.

Results: We have created a reliable synthetic dataset to simulate four realistic types of GOA inconsistency in bio-
logical databases. Three automatic approaches are proposed. They provide reasonable performance on the task of
distinguishing the four types of inconsistency and are directly applicable to detect inconsistencies in real-world GOA
database records. Major challenges resulting from such inconsistencies in the context of several specific application
settings are reported. This is the first study to introduce automatic approaches that are designed to address the chal-
lenges in current GOA quality assurance workflows. The data underlying this article are available in Github at https://
github.com/jiyuc/AutoGOAConsistency.

Contact: jiyuc@student.unimelb.edu.au or karin.verspoor@rmit.edu.au

1 Introduction

Literature-based gene ontology annotation (GOA) (Carbon et al.,
2021) is the representation of gene product functions in terms of
controlled vocabulary descriptors, based on information reported in
the primary literature (Ashburner et al., 2000). GOA provides a
snapshot of current knowledge about specific gene products. Such
annotations support a wide range of computational biomedical re-
search tasks, including gene-category analysis (Bauer, 2017) and
gene enrichment analysis (Huang et al., 2009). More recent annota-
tions within databases have been found to provide more informative
results than earlier annotations during gene enrichment analysis
(Kramarz et al., 2020). This may be because more recent annota-
tions and published literature have higher consistency and are more
current and specific in representing gene function knowledge.

Several quality issues have been reported to occur in biological
databases, including redundancy, inconsistency, or errors (Bateman
et al., 2021; Bult et al., 2019; Carbon et al., 2021; Chen et al.,
2017a,b). Faria et al. (2012) estimated that 23% of the proteins and
83% of protein functions in the UniProtKB database (Bateman

et al., 2021) have inconsistent GOA when considering orthologous
or homologous genes. Both electronically inferred and literature-
based GOA have been found to utilize broad GO terms without suf-
ficient representation of specificity in gene functional information
(Camon et al., 2005; �Skunca et al., 2012), violating the GOA prin-
ciple that GO terms should be grounded in the most granular level
supported by evidence (Poux and Gaudet, 2017). In prior work,
Chen et al. (2021) formalized the typology of three types of term-
inconsistency and one type of code-inconsistency in literature-based
GOA. They proposed a text mining model for discriminating con-
sistency and different kinds of inconsistency on a synthetic dataset.
However, their implementation requires the manual pre-extraction
of evidence sentences from full-text articles. Thus, it is not directly
applicable to GOA records in real-world databases that point only
to a PubMed identifier.

Consistency review of GOA has been prioritized in quality main-
tenance routines by the GO curation community (Carbon et al.,
2021). However, existing approaches are neither efficient nor direct-
ly applicable to assuring literature-based GOA consistency. A purely
manual approach, relying on comprehensive guidelines and time-
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consuming quality review of primary literature by professional cura-
tors (Balakrishnan et al., 2013; Poux and Gaudet, 2017; Thomas,
2017), is costly and does not scale with rapidly evolving gene func-
tion knowledge. Automatic approaches are needed to improve the
efficiency of GOA maintenance. However, existing automatic
approaches are not directly applicable to the detection of inconsist-
ency in existing records that are currently stored within databases,
but rather focus on the task of adding new GOA records into data-
bases. For example, the document triage system TextPresso (Müller
et al., 2018) improves the efficiency of GOA production by auto-
matically retrieving only a subset of publications relevant to the an-
notation of a certain gene product for human curators.

An automated dictionary-based concept recognition tool such as
ConceptMapper (Tanenblatt et al., 2010) can improve the efficiency
of GOA production. This tool has achieved competitive perform-
ance in annotating GO concepts over the Colorado Richly
Annotated Full Text (CRAFT) corpus (Bada et al., 2012; Funk et al.,
2014). However, it cannot recognize GO concepts that do not expli-
citly occur as phrases within evidence texts. For example, ‘positive
regulation of vesicle fusion (GO: 0031340)’ cannot be recognized
from ‘Rat SYT1 gave rise to efficient Ca2þ-promoted fusion
activity’.

To date, no tools have been implemented to evaluate the consist-
ency between gene mentions in experimental statements and the
gene product annotated in GOA. For example, given a GOA with
an experimental statement that contains two gene mentions ‘RHGF-
2 RhoGEF activity is specific to the Caenorhabditis elegans RhoA
homolog RHO-1 as determined by direct binding, GDP/GTP ex-
change and serum response element-driven reporter activity. (PMID:
22363657)’ and the GO term ‘GDS (GO: 0005085)’, a consistent
GOA should associate the term with gene ‘RHGF-2 (GeneID:
173748)’, not gene ‘rho-1 (GeneID: 178458)’.

GOA is an important resource for supporting modern biological
research. However, GOA is subject to inconsistencies such as the se-
lection of overly shallow GO terms or incorrect association to gene
mentions. These inconsistencies are problematic because they can in-
fluence the reliability of downstream biological research tasks or
cause cascading errors in biological databases (Gilks et al., 2002).
There is no existing approach to automatically detect GOA incon-
sistency. To address this issue, we have undertaken an initial feasi-
bility study to explore and characterize four major types of
inconsistencies in literature-based GOA and propose automatic
methods for the detection of inconsistency grounded at record level.
We focus on a particular type of GOA in which the evidence is ex-
perimental statements within primary literature and is tagged with
experimental evidence codes (http://geneontology.org/docs/guide-
go-evidence-codes/) (EXP, IDA, IPI, IMP, IGI, IEP).

To the best of our knowledge, this is the first study that empiric-
ally explores the feasibility of automatic methods for real-world lit-
erature-based GOA consistency assurance. We make three key
contributions:

• We provide a definition for a novel GOA inconsistency detection

task applicable for GO curation.

• We construct a dataset that simulates both self-consistent and

four realistic types of inconsistent GOA instances derived from

curation guidelines (Balakrishnan et al., 2013; Carbon et al.,

2021; Poux and Gaudet, 2017; Thomas, 2017), extending the

heuristic rules proposed by Chen et al. (2021). Each inconsistent

instance is synthesized using real-world GOA records sampled

from either the NCBI gene database (Brown et al., 2015) or the

curator-validated BC4GO corpus (Van Auken et al., 2014).
• Several automatic approaches are proposed. Evaluation over our

dataset shows that they achieve reasonable performance in classi-

fying inconsistencies in GOA, thus demonstrating that automatic

methods are feasible and of value. An overview of this article is

visually demonstrated in Figure 1.

2 Approach

We model GOA self-consistency or inconsistencies at record level as
typed semantic relationships in a triplet of GO term, gene product
and naturally written evidence, extending prior work where the
gene product was not explicitly included (Chen et al., 2021). Our
approach is directly applicable for the detection of inconsistencies in
GOA, also extending the previous approach that required (manual-
ly) pre-extracted short sentence as input. We aim to develop classifi-
cation models that, for a given GOA triplet as input, make a
classification decision as to whether the triplet is self-consistent, and
if not, what type of inconsistency is reflected in the instance. That is,
the classifier makes a determination about whether the textual evi-
dence supports the GO term annotation to the given gene product.
To simplify our study, we initially focus on exploring feasible imple-
mentations that aim to detect the primary single type of inconsist-
ency in each record. Hence, we assume that a GOA can only be in
one type of inconsistency, and further that the typed inconsistencies
are independent of each other.

We first review methods applicable to infer the semantic rela-
tionship between naturally written text pieces, or to quantify onto-
logical biological knowledge as vectors. We then introduce our
proposed automatic GOA inconsistency detector extended from
these approaches.

2.1 Language models
Distributional language models such as PubMedBERT (Gu et al.,
2020) are potentially applicable to GOA consistency assessment.
PubMedBERT has achieved competitive performance in semantic
relation inference between short pieces of text in the biological do-
main, such as for the extraction of drug–drug interactions (Herrero-
Zazo et al., 2013), gene–disease associations (Becker et al., 2004)
and sentence-pair similarity estimation (So�ganc io�glu et al., 2017).
However, these models have difficulties in discriminating between
semantic relatedness and similarity (Kolb, 2009), limiting their abil-
ity to capture the nuanced semantics of related GO terms such as
‘feeding behavior (GO: 0007631)’ and ‘drinking behaviors (GO:
0042756)’. Besides, the input of PubMedBERT must be either a
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single or a pair of short text pieces while GOA involves a triplet of
biological entities. The relatively long length of title and abstract
texts may also negatively impact PubMedBERT’s reliability for se-
mantic inference (cf. short sentence with 20 words or less).

2.2 GO semantic structure
Inference of GOA consistency requires a reference to the
GO-directed acyclic graph (DAG) to make use of knowledge of GO
specificity. This DAG can be modeled as a non-Euclidean heteroge-
neous graph where GO terms are vertices and hierarchical relations
are typed edges. For example, the vertex ‘programmed cell death
(GO: 0012501)’ is connected to the vertex ‘cell death (GO:
0008219)’ by ‘is_a’ typed edge. A single GO term does not have a
clear specificity level, given that there may be multiple paths from
the term to the root. Specificity is also only computable for a pair of
directly or indirectly connected GO terms. For example, we cannot
infer the specificity of gene function knowledge between two chil-
dren of ‘feeding behavior (GO: 0007631)’, ‘salt aversion (GO:
0035199) and ‘drinking behavior (GO: 0042756)’, as they are dis-
connected on the GO DAG. Hamilton et al. (2017) developed
GraphSAGE by extending the graph neural network (GNN) model
to represent the semantics of vertices through the iterative aggrega-
tion of features in neighboring vertices. GraphSAGE is based on in-
ductive learning and thus can learn a set of universal parameters
across non-overlapping sub-graphs to encode structural informa-
tion. These characteristics are suitable for quantifying the GO speci-
ficity relations as new terms are continuously added into the
vocabulary. However, the suitability of this architecture for encod-
ing GO specificity knowledge needs to be explored.

2.3 Transfer learning
An effective method for GOA consistency assurance requires the in-
ference of both GO distributional semantics and knowledge of speci-
ficity. Transfer learning, a machine learning method where a model
developed for a given task is reused as the starting point for a second
task (Pan and Yang, 2010), is potentially suitable. Among other
examples, Hu et al. (2019) proposed the use of transferred node rep-
resentations learned from a biomedical knowledge graph to infer
protein–protein interactions. Fout et al. (2017) used transferred
structural information about proteins to predict protein interfaces.
Zitnik et al. (2018) transferred the interactions between drugs and
disease to another task in predicting polypharmacy side effects.
Thus, it might be feasible to transfer quantified GO hierarchical
knowledge to the task of GOA consistency assurance.

However, these approaches can easily encounter negative trans-
fer (Rosenstein et al., 2005), in which features transferred from a
different task can lead to significant drops in performance. The pres-
ence of out-of-distribution samples is another challenge in transfer
learning (Hu et al., 2019). The semantics of a GO term can be differ-
ent between different species, such as human and rats, which can
lead to a non-uniform representation of the same GO term. It is in-
feasible to train a GOA consistency assurance model on all known
existing species while new species are being annotated. Thus, the ap-
plicability of transferring a model from one learned species to new
species is unclear.

2.4 GOA inconsistency modeling
We set up a rule Baseline using ConceptMapper (Tanenblatt et al.,
2010) and implement two machine-learning-based approaches to
support GOA inconsistency classification through analysis of the
evidence texts. One model is derived from fine-tuning the
PubMedBERT distributional language model (Gu et al., 2020) on
the GOA inconsistency dataset. A novel model, GNN-BERT, is
implemented through transfer learning and the combination of GO
specificity knowledge and PubMedBERT.

We find that the rule Baseline can discriminate between over-specific
and over-broad GOA inconsistencies. Two machine-learning-based
approaches provide reasonable performance in discriminating all four
types of inconsistency and are robust to noisy samples in the training set.
The implementation using transfer learning does not appear to suffer

from the negative transfer, while the implementation without transfer
learning has higher confidence over most types of predictions on the test
set. However, the machine-learning-based approaches are challenged by

out-of-distribution samples due to different species across the training
and test sets. They may also fail on unusually shallow or deep GO terms,

or when related genes are provided as input.

3 Methods

3.1 Data
The NCBI provides a gene2go dataset through the GO

Annotation File (http://geneontology.org/docs/download-go-
annotations/), updated daily. We randomly sampled 5000 GOA
records from gene2go where the associated evidence is a PubMed

identifier (PMID) and the evidence code is experiment type. These
GOA records are considered as the most reliable while the true
scale of inconsistency (noise) is unknown. To simplify the study,

we initially assume that all sampled GOA records are consistent
and manipulate these via a targeted noise injection strategy to em-

pirically analyze the impact of noise to the automatic implemen-
tations. We formalize four major types of inconsistencies
including over-specific (OS), over-broad (OB), irrelevant GO

mention (IM), incorrect association of gene product (IG) through
the inference of database curation guidelines, quality reports and

informal discussion with database curators. We synthesize each
type of inconsistency by extending the heuristic rules proposed by
Chen et al. (2021). Examples of this synthesis process are shown

in Table 1 for each type of inconsistency. We randomly sample 20
000 instances to form a training set and 250 instances to form a

development set. Each dataset is balanced with an equal number
of self-consistent instances and the relevant type of inconsistency.

We use the BC4GO corpus to synthesize a silver-standard test set

with little or no noise. The BC4GO corpus was created by eight ex-
pert curators from five different model organism databases for the

GO annotation task in BioCreative IV (Van Auken et al., 2014). In
contrast to a mention-based GO corpus such as CRAFT (Bada et al.,
2012), BC4GO provides each GO annotation with traceable evi-

dence grounded at the sentence level within a literature source.
BC4GO mirrors the real-world GO curation scenario and contains

GOA in real-world database format. Thus, we assume there is no
noise within BC4GO regarding annotation inconsistency. We ran-
domly sample instances from BC4GO where the associated evidence

texts are within either the title or abstract of the associated article.
The same inconsistency synthesis strategy (Table 1) is applied to

generate inconsistent instances. Only a small fraction of instances
are inconsistent in real-world databases, and, while the exact frac-
tion is unknown, we wish to explore the impact of the existence of

imbalance. We therefore create an imbalanced test set by re-
sampling instances from the synthesized dataset. We sample 238

self-consistent instances and 48 instances of each type of inconsist-
ency to form an imbalanced test set, 430 instances in total.

The three datasets provide a realistic GOA format where each in-

stance is represented as a triplet of gene product (identified by NCBI
GeneID, represented by gene symbol), GO term (identified by

GOID) and evidence (identified by PMIDs). The three synthesized
datasets are independent of each other as the associated PMIDs do
not overlap. We only work with the text in title and abstract as

evidence because many publications do not grant accessibility to
full-text articles.

We also explore different models in terms of their ability to dis-
criminate the subtle semantics of GO specificity. Thus, we synthe-

size over-specific instances with GO terms as directly connected
children and over-broad instances with GO terms as an ancestor. An
ancestor may not directly connect to a descendant on GO DAG thus

can have greater semantic distance. As a result, over-specific instan-
ces are more challenging than over-broad instances to automatic se-

mantic inference models.
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3.2 Modeling
We set up a Baseline using ConceptMapper (Funk et al., 2014) and
heuristic rules. We implemented two machine-learning models
extending PubMedBERT (Gu et al., 2020) for our proposed GNN-
BERT models. We empirically explore the feasibility of the imple-
mentations in discriminating the four major types of inconsistent
GOA on the test set.

Baseline

We set up a two-step rule-based Baseline to (a) identify inconsistent
GOA and (b) classify inconsistent GOA into certain types. The
Baseline is implemented by using ConceptMapper to automatically
extract a list of GO terms in the first step. These GO terms were ex-
plicitly mentioned as phrases in the evidence text of each instance.
An instance is considered to be inconsistent if its associated GO
term does not appear in the output of ConceptMapper. After identi-
fying an inconsistent instance, two heuristic rules are set up in the se-
cond step to further classify this instance as either over-specific or
over-broad:

• Over-specific. An instance is over-specific when its associated

GO term is a descendant of every GO term with either ‘is_a’ or

‘part_of’ relation in the output of ConceptMapper.
• Over-broad. An instance is over-broad when its associated GO

term is an ancestor of one of the GO terms with either ‘is_a’ or

‘part_of’ relation in the output of ConceptMapper.

This Baseline is not applicable to the detection of the ‘irrelevant
GO mention’ inconsistency; all IM instances will be classified as

consistent since their associated GO terms will appear in the output
of ConceptMapper. This will result in no TP predictions for the de-
tection of IM inconsistency. Also, this Baseline cannot identify the
gene product inconsistency (IG) because ConceptMapper, as used
here, does not recognize gene mentions from free text. An alterna-
tive option is to use PubTator (Wei et al., 2013) to recognize gene
mentions, which we will explore in future work.

Fine-tuning on PubMedBERT

We select PubMedBERT, pre-trained using the title and abstract of
many PubMed articles (Gu et al., 2020). We fine-tune PubMedBERT
using a sentence pair classification head on the training set, with the ob-
jective of classifying an input sequence as self-consistent or (one type
of) inconsistency. We form every GOA triplet as a structured input se-
quence in the following format: ‘[CLS] title jj abstract jj gene symbol
[SEP] GO term [SEP]’. (‘jj’ denotes flat joint of texts, ‘[CLS]’ and
‘[SEP]’ are the mandatory markers in BERT-based models for indicat-
ing paired input entities). Each input sequence can be seen as consisting
of gene conditioned evidence and GO term. We apply the
PubMedBERT AutoTokenizer to the input sequence to split it into
tokens. Out-of-vocabulary words are tokenized into separate text
pieces; for example, ‘polyc’ and ‘##omb’ are counted as two individual
tokens. The average length of the tokenized input sequences is 334
tokens in the training set and a majority of them are under 350 tokens.
Thus, we pad input sequences using ‘[PAD]’ or truncate them into a
fixed length of 350 tokens. The outputs of PubMedBERT are vectors
of logits in five-dimension. Finally, the argmax function is applied to
each logit vector to decide the most likely (in)consistent class an input
sequence belongs to.

Table 1. Example of consistent GOA in BC4GO corpus annotated by expert curators and four major types of inconsistent GOA; in each case

we show the synthetic strategy for modifying a consistent instance to generate an inconsistency

Consistent GOA (CO)

Evidence: Only a subset of syt isoforms stimulated SNARE-catalyzed fusion in the presence of Ca2þ: syt I–III, V–VII and IX–X. (Remaining texts of

title and abstract identified by (PMID: 18508778) are omitted.)

GO term: response to calcium ion (GO: 0051592)

Gene: Syt1 (GeneID: 25716)

Over-specific GO term selection (OS)

GO term: cellular response to calcium ion (GO: 0071277)

Inconsistency: The provided evidence does not indicate the stimulus of calcium ion lead to the change of state or activity of cell. Thus, the annotated

GO term is over-specific.

Synthesis: Retrieve and randomly select the direct children with either ‘is_a’ or ‘part_of’ relation to replace the GO term in the consistent GOA instance

on GO DAG. If no children are retrieved for a given consistent GOA, the synthesize of its over-specific inconsistency will be skipped.

Over-broad GO term selection (OB)

GO term: response to metal ion (GO: 00106038)

Inconsistency: The evidence has specified the experimented metal ion is calcium ion. Thus, the annotated GO term is over-broad.

Synthesis: Retrieve and randomly select ancestors with either ‘is_a’ or ‘part_of’ relation to replace the GO term in a consistent GOA instance on GO

DAG. If no ancestor are retrieved for a given consistent GOA, synthesis of its over-broad inconsistency will be skipped.

Irrelevant GO Mention (IM)

Evidence: At anaphase, Mtor(GeneID: 36264) plays a role in spindle elongation, thereby affecting normal chromosome movement. (PMID: 19273613)

GO term: spindle (GO: 0005819)

Inconsistency: Although the GO term ‘spindle’ is mentioned as a keyword in the evidence text, it does not indicate gene ‘Mtor’ is localized at cell spin-

dle. Thus, the annotation is an irrelevant GO mention.

Synthesis: Apply ConceptMapper (Funk et al., 2014) to recognize GO mention from the text in title and abstract identified by the associated PMID in

each consistent GOA instance. Then, randomly select a GO mention that was not annotated to the gene product in that PMID. Use the selected GO

mention to replace with the original GO term to synthesize irrelevant GO mention inconsistency.

Incorrect association of gene product (IG)

Evidence: RHGF-2 RhoGEF activity is specific to the C.elegans RhoA homolog RHO-1 as determined by direct binding, GDP/GTP exchange and

serum response element-driven reporter activity. (PMID: 22363657)

GO term: GDS (GO: 0005085)

Gene: rho-1 (GeneID: 178458)

Inconsistency: The evidence indicates guanyl-nucleotide exchange factor activity was associated with gene ‘RHGF-2(GeneID: 173748)’ instead of gene

‘rho-1(GeneID: 178458)’. Thus, the annotation is an incorrect association of gene product.

Synthesis: Retrieve all gene products and GO terms that associated with the same PMID in the consistent GOA dataset. Iterate over every GO term and

shortlist gene products that were not associated to the GO term. Randomly select a shortlisted gene product to pair with the GO term and PMID to

form incorrect association of gene product inconsistency.
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Encoding of GO specificity knowledge

We model the GO as a DAG using the DGL toolkit (Wang et al.,
2019). A GO term is selected if it appears in either the training, de-
velopment, or test set. Ancestors and direct children are retrieved
using the QuickGO API (Binns et al., 2009) if they have either ‘is_a’
or ‘part_of’ relations to the selected GO term. All retrieved GO
terms are modeled as vertices on the graph. The relationships be-
tween each ancestor–child pair are modeled as directed edges typed
with ‘is_a’ or ‘part_of’ label. Two additional directed edges are cre-
ated as ‘parent_is_a’ and ‘parent_part_of’ to reverse all ‘is_a’ and
‘part_of’ edges. This will allow bidirectional aggregation of node
features during node representation learning between ancestors and
children. This graph includes 40 400 vertices and 1 045 432 edges in
total. The features of each vertex are encoded into 120D vectors
using PubMedBERT’s AutoEncoder.

The encoding of GO specificity knowledge is learned from the
objective of edge type classification on the constructed graph. We
randomly partition and mask the labels of 770 979 edges from the
graph as a training set and the remaining 274 453 edges as a test set.
We use a GNN model (Fig. 2) to classify edge labels on the con-
structed graph, consisting of two GraphSAGE layers with pooling
aggregation function in each layer (Hamilton et al., 2017) and a
single-layered multi-layer perceptron (MLP). The input and output
of the two GraphSAGE layers are both 120 in dimension. The input
of MLP is a 240-dimension vector, which is the flat concatenation
of the two vertex vectors. Batch normalization is added after the ac-
tivation functions in two GraphSAGE layers. We do not explore the
alternative of adding normalization before the activation function
(Ioffe and Szegedy, 2015) as this is out of the scope for our research.
The output of the MLP layer is logit vectors in four dimensions.
Finally, the argmax function is applied to each logit vector for decid-
ing the most likely edge label that two connected vertices belong to.

We retrieve the specificity encoding of GO by extracting the vec-
tors of vertices from the output of the last hidden layer (h

ð2Þ
u ; h

ð2Þ
v )

after training with edge type classification. Table 2 shows the per-
formance of GNN in classifying labels of test edges.

GNN-BERT for GOA inconsistency detection

We implement a GNN-BERT model (Fig. 3) that combines the dis-
tributional semantics and specificity knowledge of GO in each GOA
instance for automatic GOA inconsistency detection. The combin-
ation is achieved by the flat concatenation of the specificity encoding
of associated GO with the encoding of ‘[CLS]’ token in the last hid-
den layer of PubMedBERT for each instance. The concatenated vec-
tor will then be forwarded into a single-layered MLP, making the
GNN-BERT as a single type multi-class classifier. The learning ob-
jective, input sequence format and operation to output logit vectors
of GNN-BERT are exactly same as PubMedBERT. We assume
GNN-BERT can outperform PubMedBERT in detecting GOA
inconsistencies regarding GO specificity.

3.3 Metrics
We use Precision (P ¼ TP

TPþFP), Recall (R ¼ TP
TPþFN) and F1 score

(F1 ¼ 2� P�R
PþR) as evaluation metrics. Evaluation follows the one-vs-

all strategy for the detection of each specific type of inconsistency,
e.g. assume positives are instances with over-specific label and nega-
tives are instances with any other label. In this case, true positives
(TP), false positives (FP) and false negatives (FN) are counted as
follows:

• TP: The predicted label is over-specific for a positive instance
• FP: The predicted label is over-specific for a negative instance
• FN: The predicted label is not over-specific for a positive instance

Considering the number of instances is balanced across each type
of inconsistency in the test set (48 instance in each type), we quantify
a model’s overall performance by taking the average of the sum of
Precision, Recall or F1 over each type of inconsistency (macro

average). We focus on the evaluation of model’s discriminative
power on different types of inconsistency. Thus, an instance will be
treated as negative during evaluation if it is labeled as consistent. By
doing so, we ensure that the evaluation is not biased by the number
of consistent instances, as these are the majority class in real-world
databases and the test set.

We quantify the uncertainty of model prediction using
Shannon’s entropy; Equation 1, where pi denotes the probability
that a GOA instance is of a given (in)consistency type i. Higher s
indicates greater uncertainty or lower confidence towards the pre-
dicted inconsistency label of an instance.

s ¼ �
X4

i¼0

pi log 2pi; s 2 ð0;2:32Þ: (1)

3.4 Experiments
The best fine-tuned hyperparameter settings are summarized in
Table 3 for PubMedBERT and GNN-BERT, using tricks suggested
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Fig. 2. Architecture of graph neural network (GNN) with the objective of edge type

classification for encoding GO specificity knowledge. hn
u, the vector of vertex u in

the nth layer of GNN; e, denotes the edge type vector; jj, flat concatenation of vec-

tors; ReLU, rectified linear unit, the activation function; Norm, batch normaliza-

tion; MLP, single-layered multi-layer perceptron

Table 2. Performance of GO-GNN on edge type classification

Edge type Precision Recall F1

is_a 0.98 0.96 0.97

part_of 0.97 0.95 0.96

parent_is_a 0.97 0.96 0.96

parent_part_of 0.97 0.94 0.95

PubMedBERTBase

[CLS] Tok1 TokN [SEP] Tok1 TokM [SEP]... ...

E[CLS] E1 EN E[SEP] E1
' EM

' E[SEP]... ...
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Evidence Text
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MLP

||

Fig. 3. Architecture of GNN-BERT model for GOA (in)consistency detection. Tok*

denotes a linguistic token, E* and T* denote a token embedding, [CLS] and [SEP]

are special tokens marking the boundary of an input pair

Exploring automatic inconsistency detection for literature-based gene ontology annotation i277



by Popel and Bojar (2018). PubMedBERT has two more fine-tuning
epochs than GNN-BERT, giving current training set. We assume
GNN-BERT converges faster than PubMedBERT due to its addition

of informative GO specificity knowledge. The fine-tuning batch,
warmup steps and weight decay are the same between two models.

The values of these settings may slightly change when different
training set are provided in future use. We design three experiments
to explore the feasibility of two models.

Initial experiment

We directly apply the rule Baseline on the test set for classifying

over-specific and over-broad inconsistencies as it does not need
training. We fine-tune PubMedBERT and GNN-BERT on the syn-
thesized training and development set and evaluate their perform-

ance on the test set.

Experiment on robustness to noise in the training set

We define noise of GOA (in)consistency as instances that are incor-
rectly labeled as consistent type but are actually a type of inconsist-

ency, or vice versa. To simplify our study, we regard mis-annotations
between different types of inconsistency as noise and focus on model
robustness in discriminating all types of inconsistency as a whole

from consistency. Precisely quantifying the amount of noise in either
NCBI-gene2go resources or our synthesized dataset is infeasible as
doing so would require manual curation. Thus, we propose an alter-

native strategy, designing a noise injection strategy to analyze the
model’s robustness in detecting inconsistencies in the test set based on

controlled manipulation of noise during the fine-tuning stage. We
generate 8 noise-injected training sets by randomly relabeling 0, 10,
15, 25, 40, 60, 80 and 100% of instances in the original training set.

The relabeling strategy involves the alternation of either one type of
inconsistency label into consistent, or vice versa. Each instance is

relabeled only once. Eight groups of PubMedBERT and GNN-BERT
are independently fine-tuned on the right noise-injected datasets and
evaluated on the same test set.

Experiment on robustness to out-of-distribution data

We define a GOA instance in the training set as an out-of-

distribution (OOD) sample if the species of the associated gene
product is excluded in the test set. A GOA instance in the training
set as an in-distribution (ID) sample if the species of the associated

gene product is shared with instances in the test set. We analyze the
impact of fine-tuning with OOD samples on the performance of

PubMedBERT and GNN-BERT. The test set consists of four species
including fruit fly (taxonid: 7227), rat (taxonid: 10116),
Arabidopsis thaliana (taxonid: 3702) and C.elegans (taxonid:

6239). All instances in the test set are in-distribution samples to the
training set. We synthesize a new training set that contains only

samples OOD w.r.t. the test set, consisting of 20 000 instances
where all instances are associated with gene products in human (tax-
onid: 9606). Two groups of PubMedBERT and GNN-BERT models

are independently fine-tuned on the original training set and OOD
training set, and evaluated on the same test set. The rule Baseline is

excluded in this experiment as it does not require fine-tuning during
application thus will naturally not be influenced by OOD samples in
the training set.

Correlation between prediction uncertainty and performance

We consider automatic models to be feasible in real-world applica-
tion settings if they can quantify the uncertainty of predictions, so
that human curators can decide whether to manually re-inspect an
automatically flagged GOA. We explore this by analyzing the
change in a model’s F1 considering various uncertainty values as the
threshold for positive prediction. Uncertainty quantification was
introduced in Section 3.3. The calculation of F1 under a certain un-
certainty threshold is described as follows: Assume the uncertainty
threshold s ¼ 1:0, the true label of an instance is OS. Then, the pre-
diction of this instance is treated as TP if the predicted label is OS
and s < 1:0. The prediction of this instance is treated as FN if the
predicted label is not OS. The prediction of an OB instance is treated
as false OS instance (FP) if the predicted label is OS and s < 1:0.
We calculate eight groups of TP, FN, FP for each type of inconsist-
ency and each instance under different values of s f0.5, 0.75, 1,
1.25, 1.5, 1.75, 2, 2.3g. Each group of TP, FN, FP will be used to
calculate F1.

4 Results

Table 4 shows that PubMedBERT and GNN-BERT, fine-tuned with
ID samples, are reasonable in distinguishing four types of inconsis-
tencies. They all significantly outperform the Baseline in detecting
over-specific inconsistencies. Generally, the detection of IG incon-
sistency is poor (F1 < 0:3). The rule Baseline outperforms two
machine-learning-based approaches in distinguishing over-broad
instances. However, it is not promising for the detection of over-
specific instances and is not applicable to detect ‘irrelevant GO men-
tion’ and ‘incorrect gene association’ instances, as discussed in
Section 3.2.

GNN-BERT outperforms PubMedBERT in detecting over-specific
instances (þ 0.2 in F1) and achieves comparable performance (–0.02)
in detecting over-broad instances. In particular, GNN-BERT
outperforms PubMedBERT in discriminating the semantics of GO
specificity, as supported by the more competitive performance on

Table 3. Hyperparameter settings for PubMedBERT and GNN-BERT

during fine-tuning on the synthetic training set

params PubMedBERT GNN-BERT

Fine-tune epochs 5 3

Fine-tune batch 16 16

Warmup steps 300 300

Weight decay 0.01 0.01

Table 4. Performance of baseline, PubMedBERT and GNN-BERT in

discriminating inconsistencies including over-specific (OS), over-

broad (OB), irrelevant GO mention (IM) and incorrect gene (IG).

The bold values indicate the highest performance in detection of

each type of inconsistency.

Baseline PubMedBERT GNN-BERT

ID OOD ID OOD

OS

Precision 0.18 0.30 0.41 0.54 0.45

Recall 1.00 0.52 0.42 0.62 0.56

F1 0.30 0.38 0.41 0.58 0.50

OB

Precision 0.75 0.53 0.49 0.52 0.53

Recall 0.56 0.73 0.69 0.69 0.65

F1 0.64 0.61 0.57 0.59 0.58

IM

Precision NA 0.38 0.33 0.42 0.33

Recall NA 0.73 0.71 0.83 0.79

F1 NA 0.50 0.45 0.56 0.47

IG

Precision NA 0.18 0.15 0.24 0.17

Recall NA 0.19 0.27 0.40 0.35

F1 NA 0.18 0.20 0.30 0.23

ID, the model is fine-tuned using in-distribution samples and OOD indi-

cates the model is fine-tuned with out-of-distribution samples; NA, not applic-

able (the Baseline method does not recognize gene mentions and has zero

Recall as it considers every GO mention as negative regardless of true IM

inconsistency).
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detecting over-specific instances. This type of instance requires detec-
tion of smaller semantic differences than over-broad instances as men-
tioned in Section 3.1.

Figure 4 shows that both PubMedBERT and GNN-BERT are ro-
bust to noisy samples, with good maintenance of Precision, Recall
and F1 on the test set when the level of noise is below 40% during
fine-tuning stage. Besides, GNN-BERT has slightly outperformed
PubMedBERT in terms of robustness to noisy samples, potentially
indicating its feasibility in combining GO specificity knowledge dur-
ing consistency inference.

Table 4 demonstrates that both PubMedBERT and GNN-BERT
are robust to OOD samples in detecting over-broad instances but
are challenged in the detection of other GOA inconsistencies.
PubMedBERT gained slight improvement in F1 when detecting
over-specific (þ 0.03) and ‘incorrect gene’ (þ 0.02) instances.

Figure 5 illustrates the correlations between model’s uncertainty
and F1 on the detection of different typed inconsistencies. The per-
formance of both PubMedBERT and GNN-BERT can be main-
tained at a promising level when the tolerance towards prediction
uncertainty is set at a high value (s > 1.75). GNN-BERT outper-
forms PubMedBERT on the detection of over-specific instances re-
gardless of the prediction uncertainty. PubMedBERT outperforms
GNN-BERT on the detection of IM and IG instances when only low
uncertainty predictions are treated as positives. PubMedBERT is
more competitive than GNN-BERT in detecting over-broad incon-
sistencies. The detection of over-broad inconsistency outperforms
over-specific inconsistency for both PubMedBERT and GNN-
BERT. We assume it is due to over-broad instances were synthesized
with greater semantic distance, as introduced in Section 3.1, allow-
ing both models more capability to distinguish between inconsist-
ency and self-consistency.

5 Discussion

In this article, we have demonstrated that automatic detection of
inconsistencies in GOA is feasible. Our presentation of three auto-
matic approaches for effective detection of four realistic types of
inconsistencies shows good levels of effectiveness, providing a prac-
tical basis for flagging suspicious records to human curators for
manual review if any inconsistency is detected among GO term,
gene product and literature.

5.1 General observations
Relative to prior research on this topic (Chen et al., 2021), we have
extended the formal specification of GOA inconsistency modeling
from the consistency of a pair—a GO term and the corresponding
literature evidence for the GO annotation—into a triplet, with the
addition of gene product to the input. This means that the consist-
ency of gene function knowledge is checked in the context of a spe-
cific gene product, GO term and literature evidence. To explore
modeling of this extended task, we have constructed a dataset from
biological database records, which includes not only the inconsisten-
cies reflected in both datasets, including over-specific (OS) and ir-
relevant GO mention (IM) but also two types of GOA inconsistency
not previously considered, over-broad (OB) and incorrect gene (IG).
Based on an informal survey of database curators, we understand
that these two new types of inconsistencies often occur in databases
but have not been covered in prior work. We also excluded two

inconsistencies considered in that prior work, unsupportive evidence
and erroneous evidence code, as they were confirmed by curators
from 14th Annual biocuration conference (https://www.biocuration.
org/14th-annual-biocuration-conference-virtual/) to be rare.

Our results indicate strong feasibility for the real-world applica-
tion of the automatic methods we introduce. The proposed GNN-
BERT model combines GO specificity knowledge as part of the
GOA inconsistency inference. In the systematic comparison with
PubMedBERT and Baseline methods shown in Table 4, we can ob-
serve the strong competitiveness of the GNN-BERT model in dis-
criminating GO terms with smaller semantic distance, and its strong
robustness to noise.

The analysis in Figure 4 indicates that PubMedBERT and GNN-
BERT are both robust to moderate noise (< 40%) during fine-
tuning. However, the existence of noisy samples in the training set
eventually reduces model performance on the inference of GOA in-
consistency. The trend indicates that the performance of
PubMedBERT and GNN-BERT could be directly improved by pro-
viding a small collection of expert-reviewed instances during fine-
tuning, without the requirement of altering the architecture of the
models. Accordingly, the fluctuations of performance seen in
Figure 4 (cf. a linear degradation in performance with additional
noise) may support the conclusion that these types of simulated
inconsistencies do exist in current databases, as a small injection of
noise may have inadvertently flipped a true inconsistency to a con-
sistency in the training set, or vice versa.

The two machine-learning approaches outperform the rule-
based Baseline in detecting over-specific instances even they were
fine-tuned with OOD samples. The OOD samples have a more
negative impact to GNN-BERT than PubMedBERT overall. This
suggests that both proposed models would reach higher reliability if
they were able to be fine-tuned with a small amount of manually
verified GOA records for the target species during application in a
specific curation workflow.

Both learned models are feasible in real-world application set-
tings in the face of prediction uncertainty while there is variability in
their relative performance ranking for specific GOA inconsistencies
under different uncertainty thresholds.

The results of the Baseline on over-broad cases demonstrate the
value of incorporating existing automatic approaches to identify
GO terms (e.g. ConceptMapper) into the two-step rule-based GOA
inconsistency detection model. This strategy may be extended to
convert a broad range of existing biological concept or entity recog-
nition models to inconsistency detection, such as using PubTator
(Wei et al., 2013) to identify genes directly mentioned in the litera-
ture evidence and applying a check for (in)consistency with the tar-
get gene product.

5.2 Error analysis
Previous work by Chen et al. (2021) proposed a linguistic test suite
to understand the relationship between certain superficial linguistic
features of GO terms and prediction errors in inconsistency detec-
tion for relating GOA to evidence text. However, this approach is
not generally meaningful to biological database curators as it does
not explain errors from a more biological perspective. To address
this issue, here we provide qualitative case studies with the objective
of identifying biologically interpretable causes of prediction errors.
These cases demonstrate clear directions for future improvement

Fig. 4. Change of performance of PubMedBERT and GNN-BERT on the test set with respect to the fraction of noisy samples in the training set
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and can be directly leveraged as use cases for real-world application
settings.

Case 1 [GO depth]. We find both PubMedBERT and GNN-
BERT are ineffective for classifying inconsistent instances where the
associated GO terms are either very shallow or very deep (i.e. roots
or leaves, or terms directly connected to roots or to leaves) on the
GO DAG. This is probably caused by annotation bias in the training
set, where many GOA utilize broad GO terms without sufficient
representation of specificity in gene functional information (Camon
et al., 2005; �Skunca et al., 2012). Thus, the model may label a rarely
occurring GO term as over-specific and a frequently occurring GO
term as over-broad. Apart from this, we find both models failed to
discriminate inconsistencies between over-specific and IM, or over-
broad and IM. However, we consider this type of error to be toler-
able when the models are applied in real-world application settings.
This is because all suspicious records flagged by the automatic mod-
els as inconsistent will be eventually forwarded to human curators
for further review regardless of their inconsistency types. And fur-
thermore, these cases are not likely to cause false consistent predic-
tions (FNs) for the proposed models. Thus, it will not impact the
models’ reliability in discriminating inconsistent GOA from consist-
ent records.

Case 2 [Related gene]. We find both PubMedBERT and GNN-
BERT cannot discriminate inconsistencies for related genes. We find
the outcome of the two models remain unchanged when the gene in
the input is replaced with another related gene, such as ‘elt-
2jGeneID: 181250’ is replaced with ‘elt-1jGeneID: 177794’ in a
GOA that associates with ‘PMID: 17183709’ and ‘GO: 0050829’.
We assume this type of error is probably caused by the tokenization
process of two models. The pre-trained BERT tokenizer will split
gene variant symbols into text pieces during preprocessing. Because
most of the gene symbols are out-of-vocabulary to PubMedBERT
and GNN-BERT. For example, ‘elt-2’ will be tokenized into ‘el, ##t,
-, 2’, which cannot represent the full semantics of gene variants.
Thus, both models failed to discriminate inconsistencies regarding
the gene variant. A possible solution is to apply ensemble models to
PubMedBERT or GNN-BERT specifically for recognizing gene
variants.

Case 3 [Gene synonyms]. We find neither model can infer gene
synonyms between the evidence and gene symbol. For example,
both models incorrectly predict the following consistent instance as
an inconsistency: ‘Tinman/Nkx2-5 acts via miR-1 and upstream of
Cdc42 to regulate heart function across species (PMID: 21690310)’,
‘FSD1 (GeneID: 79187)’, ‘heart process (GO: 0003015)’, where
gene ‘FSD1’ is also known as ‘miR-1’ but was not explicitly men-
tioned within the evidence. A potential solution is to apply gene nor-
malization to the input instance before feeding into PubMedBERT
or GNN-BERT, to resolve synonyms and other name variations.

Case 4 [Titles]. We find both models can be slightly improved in
F1 when they are fed with only abstract text (no title) as evidence in
the input. On the contrary, we find both models are negatively
impacted in F1 when they are only provided with title as evidence in
the input. However, some older primary literature does not have ab-
stract content published (e.g. PMID: 4186849). The reliability of the
predictions is below expectation on these GOA records.

Case 5 [Related GO terms]. We find both models under-perform
in discriminating the nuance between semantic relatedness and con-
sistency of GO terms. For example, the gene functions ‘cytokinasis
(GO: 0000910)’ and ‘chromosome segregation (GO: 0007059)’ are
semantically related to each other but not consistent to the same

GOA instance. However, we find both models cannot distinguish in-
consistency when ‘cytokinasis’ is replaced with ‘chromosome segre-
gation’, such as in the following instance: ‘The CeCDC-14
phosphatase is required for cytokinesis in the C.elegans (PMID:
12213836)’, ‘cdc-14 (GeneID: 173945)’.

6 Conclusion

Automatic GOA consistency assurance is important to maintain cur-
rency and quality of the information of gene function knowledge in
modern organism databases and may improve the efficiency of man-
ual GOA curation. We explored the feasibility of automatic methods
assisting the validation of literature-based GOA records. We formal-
ly identified four major types of inconsistent GO annotations that
reflect the major GO annotation quality concerns for the GO cur-
ation community. We proposed a novel and efficient approach
based on automatic methods and comparatively explored two mod-
els derived from benchmark natural language processing technolo-
gies to automatically detect self-consistent and these four major
types of inconsistent GO annotations, evaluated using a new auto-
matically generated data set that fully simulates realistic GOA
records. While there is substantial room for improvement in the
models, particularly in detecting the irrelevant GO mention and in-
correct gene inconsistencies, the results are sufficiently promising to
warrant further work on automatic GOA inconsistency detection.

In future, our methodological work will focus on improving the
detection of GOA inconsistencies relating to incorrect gene products
(IG). We will experiment with ensemble models for improving the
performance of our models in detecting GOA instances of special
cases. We will extend the detection of inconsistency of gene function
knowledge from a single GOA record to GO causal activity model
(Thomas et al., 2019).

To better understand the value of our approach in the context of
quality control of GO annotations in biological databases, we also
plan to apply an end-to-end GOA inconsistency detection model on
an existing biological database and to explore the implications of
the approach for biological database curation processes.
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