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Background: Preoperative identification of hepatocellular carcinoma (HCC), combined
hepatocellular–cholangiocarcinoma (cHCC-ICC), and intrahepatic cholangiocarcinoma
(ICC) is essential for treatment decision making. We aimed to use ultrasound-based
radiomics analysis to non-invasively distinguish histopathological subtypes of primary
liver cancer (PLC) before surgery.

Methods: We retrospectively analyzed ultrasound images of 668 PLC patients,
comprising 531 HCC patients, 48 cHCC-ICC patients, and 89 ICC patients. The
boundary of a tumor was manually determined on the largest imaging slice of the
ultrasound medicine image by ITK-SNAP software (version 3.8.0), and then, the high-
throughput radiomics features were extracted from the obtained region of interest
(ROI) of the tumor. The combination of different dimension-reduction technologies and
machine learning approaches was used to identify important features and develop the
moderate radiomics model. The comprehensive ability of the radiomics model can be
evaluated by the area under the receiver operating characteristic curve (AUC).

Results: After digitally processing tumor ultrasound images, 5,234 high-throughput
radiomics features were obtained. We used the Spearman + least absolute shrinkage
and selection operator (LASSO) regression method for feature selection and logistics
regression for modeling to develop the HCC-vs-non-HCC radiomics model (composed
of 16 features). The Spearman + statistical test + random forest methods were used for
feature selection, and logistics regression was applied for modeling to develop the ICC-
vs-cHCC-ICC radiomics model (composed of 19 features). The overall performance
of the radiomics model in identifying different histopathological types of PLC was
moderate, with AUC values of 0.854 (training cohort) and 0.775 (test cohort) in the
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HCC-vs-non-HCC radiomics model and 0.920 (training cohort) and 0.728 (test cohort)
in the ICC-vs-cHCC-ICC radiomics model.

Conclusion: Ultrasound-based radiomics models can help distinguish
histopathological subtypes of PLC and provide effective clinical decision making
for the accurate diagnosis and treatment of PLC.

Keywords: primary liver cancer, histopathological subtype, radiomics, ultrasound, identification

INTRODUCTION

Primary liver cancer (PLC) is one of the most lethal and
prevailing tumors, which is estimated to rank the fifth in cancer
mortality among men and the seventh among women. In recent
years, the incidence of PLC has continued to increase, rising faster
than that of other cancers (1, 2). In the same solid malignant
neoplasm, PLC can be classified according to histological sources.
A tumor that contains only cancerous hepatocytes is defined as
hepatocellular carcinoma (HCC), only cancerous bile duct cells
are defined as intrahepatic cholangiocarcinoma (ICC), and a
mixture of HCC and ICC is defined as combined hepatocellular–
cholangiocarcinoma (cHCC-ICC) (3, 4).

cHCC-ICC is a relatively rare subtype of PLC with a
variably reported incidence between 0.4 and 14.2%, and its
overall prognosis is worse than that of either HCC or ICC
alone (5, 6). Studies have revealed that in patients with PLC
undergoing liver resection surgery, the survival outcome of
cHCC-ICC is worse than that of HCC and that it is similar to
or worse than that of ICC patients (7). HCC patients who meet
the Milan criteria are indicated for liver transplantation, and
their transplantation effect is excellent (8). However, increasing
evidence indicates that the prognosis for cHCC-ICC patients
undergoing liver transplantation is worse than that of patients
with HCC alone and that cHCC-ICC is regarded as a relative
contraindication for liver transplantation (9–11). Considering
the scarcity of liver sources available for transplantation and
the poor prognosis for cHCC-ICC, the correct identification of
different PLC subtypes before surgery is a necessary condition
for the reasonable selection of surgical candidates for liver
transplantation and liver resection surgery, and it can improve
overall survival outcomes (12, 13). PLC is often diagnosed
as advanced, and many patients do not qualify for a curable
treatment; systemic treatments that are effective for either
HCC or ICC alone appears to be ineffective for cHCC-ICC
(5). Therefore, precise and proper preoperative diagnosis is
important for patient management to distinguish cHCC-ICC
from HCC and ICC since different PLC subtypes may determine
different treatment decisions.

Due to the high heterogeneity in the proportion and existing
forms of the two tumor components, the imaging manifestations
of cHCC-ICC have lacked specificity. At present, most cases of
cHCC-ICC are misdiagnosed as simple HCC or ICC. Theodora
et al. showed that the liver imaging reporting and data system
(LI-RADS) as a common method for qualitative diagnosis of liver
tumors applied in liver-contrast-enhanced ultrasound (CEUS)
diagnosis may misdiagnose 54.1% of cHCC-ICC lesions as HCC

(14). In contrast-enhanced imaging, cHCC-ICC has overlapping
imaging modes with HCC and ICC. The main tissue in the
tumor largely determines the main imaging features, making
it difficult to distinguish cHCC-ICC from HCC and ICC (15).
Moreover, most tumors can be diagnosed with core needle biopsy
before surgery, but due to the different proportions of ICC and
HCC in cHCC-ICC and sampling error, even histological biopsy
may lead to preoperative diagnosis error and misdiagnosis of
cHCC-ICC as HCC or ICC (16). Therefore, although accurate
preoperative diagnosis of the three subtypes of PLC is important,
it is still difficult.

Radiomics, a newly emerging concept in recent years, uses
computers to extract a large amount of non-visual quantitative
image information to realize the extraction of tumor features
and model establishment, and it further excavates and analyzes
image data information to assist doctors in diagnosis (17).
Through the radiomics approach, the features that can be
identified by human eyes and extracted by computers build a
complementary relationship; in addition, radiomics combined
with currently effective clinical evaluation indicators can improve
the accuracy of medical diagnosis (18, 19). Tumor features vary
from different tumor morphologies and biological behaviors.
Radiomics as a method of deep mining high-dimensional
image features can capture the characteristics of tumors
more comprehensively, providing a feasible new method for
identifying different tumors. Rafael et al. extracted 2D texture
features and 3D texture features from T1-weighed MR images
of 67 brain metastases and established a radiomics model
using a random forest method. This model was helpful in
distinguishing the primary tumors from brain metastases (breast
cancer, lung cancer, and melanoma) (20). In the research
by Yin et al., the radiomics model based on MR images
can effectively identify different sacral tumors for preoperative
identification of chordoma, giant cell tumor, and metastatic
tumor (21).

Currently, the diagnosis of cHCC-ICC is usually based on
postoperative pathology. Radiomics studies based on ultrasound
evaluation of three different PLC subtypes are still lacking, and
relevant reports have not been reported. In different imaging
examinations, ultrasound technology has the advantages of no
radiation, real-time observation, and simplicity with regard
to liver disease examinations. An ultrasound-based radiomics
approach may be better than other approaches in identifying
three types of PLC to provide additional information. In this
study, an ultrasound-based machine learning method was used
to extract radiomics features and develop radiomics models to
identify different pathological types of PLC.
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MATERIALS AND METHODS

Study Population
This study was approved by the Ethics Committee of the
First Affiliated Hospital of Guangxi Medical University.
A comprehensive retrospective research was implemented on the
medical records of patients diagnosed with PLC after surgery in
the First Affiliated Hospital of Guangxi Medical University from
January 2017 to September 2019.

The following inclusion and exclusion criteria were
implemented in this study. Inclusion criteria included the
following: (1) the lesions were primary liver tumors; (2) the
target nodule was confirmed by surgery pathology; (3) liver
ultrasound examination was performed within 14 days before
resection; and (4) the target lesions were displayed clearly on the
ultrasound images. Exclusion criteria included the following: (1)
anticancer treatment before surgery; (2) poor image quality; and
(3) uncompleted clinical data.

Finally, 668 eligible patients (544 male/124 female; mean
age, 50.5 ± 11.4 years; age range, 22–79 years) were enrolled
(Figure 1). The pathological tissue of the lesions was obtained by
surgical hepatic resection for pathological diagnosis to determine
the histological classification of PLC, of which there were 531
HCC patients, 89 ICC patients, and 48 cHCC-ICC patients.

Patient Clinical Pathological Parameters
Basic patient information was collected including data on gender,
age, tumor size, cirrhosis, hepatitis, and serum tumor markers.
Serological data included carbohydrate antigen 19-9 (CA19-9),
alpha fetoprotein (AFP), and carcinoembryonic antigen (CEA)
levels. These data were measured within 2 weeks before surgery.

We also collected patient pathological information, including
tumor differentiation, microvascular invasion (MVI), TNM
stage, and immunohistochemical information on Ki67, p53, and
vascular endothelial growth factor (VEGF). MVI referred to the
observation of a nest of cancer cells in a blood vessel lining
the endothelial cells by microscopy. In this study, the TNM
staging of PLC patients was analyzed according to the American
Joint Cancer Commission (AJCC) eighth edition staging system
(22, 23).

Radiomics Analysis
The research of radiomics mainly includes the following steps:
tumor segmentation, data preprocessing and feature selection,
modeling, and evaluation (Figure 2). In the training cohort,
we performed a combination of different dimension-reduction
technologies and machine learning approaches to establish
radiomics models. Finally, the test cohort was taken to evaluate
the generalization performance of the model.

Ultrasound Imaging and Tumor
Segmentation
GE Logiq E9 ultrasound diagnostic instruments (GE Healthcare,
United States, C5-1 abdominal probe, 2.8–5.0 MHz), Philips
EPIQ 5 ultrasound diagnostic instruments (Philips Medical
Systems, United States, C5-1 abdominal probe, 1–5 MHz), and

Aloka EZU-MT28-S1 ultrasound diagnostic instruments (Aloka,
Japan, abdominal probe, 2–6 MHz) were used to collect images.
We conducted a retrospective review of the image data and
selected two-dimensional ultrasound images in digital imaging
and communications in medicine (DICOM) format that clearly
showed the largest cross section of each lesion. We imported the
images into the ITK-SNAP software (version 3.8.0)1 to manually
draw the tumor boundary and determine the tumor region of
interest (ROI) (Figure 3). Under the supervision of a radiologist
with over 20 years of ultrasound diagnosis experience, another
radiologist with 15 years of ultrasound diagnosis experience
completed the ROIs for all tumors.

Feature Extraction and Data
Preprocessing
Intelligence Foundry software (GE Healthcare, version 1.3) was
used for radiomics analysis. Since the images were collected by
different ultrasound equipment and the feature vectors had a
wide range, we preprocessed the data before modeling analysis
to improve the accuracy of the calculation, including ultrasound
system supplier data alignment, median value replacement of
missing value processing, and data normalization processing.

We used 256 as the bin size to discretize the gray value of
the images and used the ComBat method to standardize the
radiomics features. The ComBat method was previously used
in radiomics studies of different PTE or MRI protocols (24,
25). The wavelet features were based on the original gray value
image for wavelet transformation (including HLH, LLL, and
HHL, with eight local matrices); the energy, skewness, and other
series of parameters were extracted from the obtained wavelet
transform matrix. In the same way, the shearlet change and
the gabor operator transformation were also carried out, and
different step lengths were used in the change to obtain multiple
sets of transformation intermediate value matrices. Based on the
above transformations, the radiomics parameters were extracted,
and finally, we obtained 5,234 high-throughput features. The
types of features included the following: first-order features
(energy, mean, skewness, kurtosis, etc.), shape features (minor
axis length, major axis length, elongation, etc.), wavelet features
and textural features [gray level co-occurrence matrix (GLCM)
features, grey level run length matrix (GLRLM) features, etc]
(Supplementary Part A). The feature parameters extracted by
the Intelligence Foundry software (GE Healthcare, version 1.3)
were algorithms provided using the pyradiomics package, which
calculated the radiomics features in accordance with the feature
definition described in the 2016 version of the image biomarker
standardization initiative (IBSI) (26, 27). The median was used
to fill in missing extracted feature values and substitute abnormal
value. Z-score normalization was used to convert different data
to the same order of magnitude, and the calculation formula was
as follows:

y = (x− µ)/σ

where µ is the mean and σ is the standard deviation.

1http://www.itksnap.org
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FIGURE 1 | Flow chart of study population screening.

The PLC patients were labeled according to different
histological types into different layers. In the HCC-vs-non-HCC
model, the non-HCC label was “0,” and the HCC label was “1.”
In the ICC-vs-cHCC-ICC model, the cHCC-ICC label was “0,”
and the ICC label was “1.” Then, PLC patients with different
histological types were grouped based on a 7:3 ratio (training
cohort : test cohort) in each layer using the method of stratified
sampling. The training cohort was used to build the model,
and the test cohort was an independent external verification to
evaluate the model established by the training cohort.

Feature Selection
We obtained 5,234 high-throughput radiomics features and
normalized the quantitative expression values of the radiomics
features using the Z-score method. Considering that some highly
correlated and redundant features in the data may affect the
classification effect of the model, we calculated the Spearman
correlation coefficient. A correlation coefficient between the two
variables close to 1 indicated that the linear relationship between
them was strong and that one of the two variables could be used
instead of the other. In this study, the high-correlation features
were removed with a threshold of 0.95 (HCC vs. non-HCC)

and 0.75 (ICC vs. cHCC-ICC). Then, we used the statistical test
method to screen for features that had differences.

Finally, we used four dimension-reduction technologies to
further deal with the features that were processed above.
Dimension-reduction technologies included random forest, max-
relevance and min-redundancy (mRMR), logistic regression, and
support vector machine recursive feature elimination (SVM-
RFE) (Supplementary Part B).

Modeling and Evaluation
The final selected radiomics features were imported into
the classifier to build a model for evaluating three different
histopathological types of PLC. Ten machine learning approaches
were used in this study, which were decision tree, naïve Bayes,
k-nearest neighbor (KNN), logistics regression, support
vector machine (SVM), bagging, random forest, extremely
randomized trees, AdaBoost, and gradient boosting tree
(Supplementary Part B).

We extracted 5,234 features from the ultrasound images. We
quantify the discriminative ability of the radiomics model by
calculating the receiver operating characteristic curve (AUC). We
constructed the model by separately combining the above four
dimension-reduction technologies and the above 10 machine
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FIGURE 2 | Important steps for the radiomics research. (A) Tumor regions-of-interest identification. (B) After the tumor images are digitalized, a total of 5,234
quantitative features were obtained, and data were standardized for preprocessing. (C) The combination of dimension reduction and classifier was performed to
develop radiomics models to identify primary liver cancers of different histopathological types. (D) Evaluation of the classification effects of the radiomics model in
identifying different histopathological types of primary liver cancer.

learning approaches and chose the combination with the highest
AUC to build the optimal radiomics model. In the training
cohort, to avoid overfitting the classifier, we used a 10-fold cross-
validation method.

We performed a receiver operating characteristic (ROC) curve
analysis and calculated the accuracy and precision. We also used
the confusion matrix as a measure of the quality of the machine
learning approaches to verify whether the prediction results were
consistent with the actual results. The confusion matrix is a
useful tool for evaluating the classification ability of radiomics
models (28).

In the HCC-vs-non-HCC and ICC-vs-cHCC-ICC radiomics
models, we performed univariate and multivariate logistic
regression analyses to analyze the relevant factors of different
pathological types of PLC. Univariate analysis factors with
P-values less than 0.1 were further analyzed by multivariate
logistic regression analysis. In multivariate analysis, a P-value less
than 0.05 was considered significant.

Statistical Analysis
R software (version 3.6.0) and SPSS software (version 22.0) were
applied for statistical analysis. In the quantitative data with a
normal distribution, the completely random design t-test was
performed for the two-samples contrast, the analysis of variance
was used to contrast several independent samples, and variables
were summarized as the mean ± standard deviation (SD). For
quantitative data with a skewed distribution, the Mann–Whitney
U test was performed to compare two independent samples, the
Kruskal–Wallis H test was used to compare several independent

samples, and variables were summarized as the median (q1–
q3). Qualitative data were compared using chi-square tests,
with variables described as percentages. P-values below 0.05 was
considered to be statistically significant differences. In the R
software (version 3.6.3), the “pheatmap” package was used to
draw heat maps of features.

RESULTS

Clinicopathological Data of PLC Patients
A total of 668 PLC patients were adopted in this research
(Figure 1). The clinicopathological parameters of the training
and test cohorts were shown in Table 1. There were no significant
differences in the distribution of clinicopathological features
between the two cohorts, including gender, age, tumor size,
hepatitis, cirrhosis, serum tumor markers, pathological subtype,
immunohistochemistry, or tumor stage. These results showed the
rationality of our training and test cohort partitions.

In the HCC-vs-non-HCC group, the study sample included
467 people in the training cohort (379 male/88 female, mean age,
50.5 ± 11.4 years), 371 cases of HCC, and 96 cases of non-HCC.
There were 201 patients in the test cohort (165 male/36 female,
mean age, 50.6 ± 11.3 years), 160 cases of HCC, and 41 cases
of non-HCC. In the ICC-vs-cHCC-ICC group, the study sample
included 95 people in the training cohort (65 male/30 female,
mean age, 49.4± 11.6 years), 33 cases of cHCC-ICC and 62 cases
of ICC. There were 42 patients in the test cohort (27 male/15
female, mean age, 51.8± 10.3 years), 15 cases of cHCC-ICC, and
27 cases of ICC.
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FIGURE 3 | Ultrasound and pathological images, tumor segmentation, and feature extraction of three different pathological types of PLC. (A,D) A 57-year-old man
with a pathological diagnosis of cHCC-ICC. (B,E) A 64-year-old woman with a pathological diagnosis of HCC. (C,F) A 44-year-old man with a pathological diagnosis
of ICC. (G) An example of manually sketching the region of interest (ROI) of a tumor on an ultrasound image and gray level co-occurrence matrix (GLCM) features,
run length matrix (RLM) features, and grayscale histogram feature extraction from the grayscale ultrasound image.

Identification of the Radiomics Signature
In the HCC-vs-non-HCC group, we used the LASSO regression
method for dimension reduction and modeling with the
logistics regression method. In the ICC-vs-cHCC-ICC group,
we used the random forest method for dimension reduction,
feature selection with a threshold value of 1.25 times the
mean value, and modeling with the logistics regression
method. Finally, we respectively identified 16 and 19 optimal
radiomics features for HCC-vs-non-HCC model and ICC-vs-
cHCC-ICC model predictions (Table 2). Figure 4 showed
the heat map of 16 features (HCC-vs-non-HCC model)
and 19 features (ICC-vs-cHCC-ICC model) of the final
radiomics models.

Radiomics Model Assessment
The results showed that the radiomics models we built had
a high overall classification performance for identifying three
subtypes of PLC. The AUC values in the training cohort and
test cohort were 0.854 and 0.775 (HCC vs. non-HCC) and 0.920
and 0.728 (ICC vs. cHCC-ICC), respectively (Figures 5A,B).
The confusion matrix was shown in Figures 5C,D. In
the HCC-vs-non-HCC model, the predicted results showed
that of the 160 actual HCC patients, 155 were correctly
predicted to be HCC. In the ICC-vs-cHCC-ICC model, the

15 patients with actual cHCC-ICC, 6 were predicted to
be cHCC-ICC, and among the 27 actual ICC patients, 22
were correctly predicted to be ICC. These results indicated
that the radiomics models can moderately distinguish three
different histological types of PLC and performed best at
HCC identification.

Tables 3, 4 showed the results of univariate and multivariate
logistic regression analyses of HCC-vs-non-HCC and ICC-
vs-cHCC-ICC radiomics models. In the HCC-vs-non-HCC
radiomics model, gender, hepatitis, AFP, CA19-9, CEA, stage,
and radiomics score were independent factors related to HCC
(P < 0.05). In the ICC-vs-cHCC-ICC radiomics model, AFP and
radiomics score were independent factors related to cHCC-ICC
(P < 0.05).

DISCUSSION

In this research, as far as we know, we are the first to identify an
ultrasound-based radiomics models that can be used to predict
HCC, ICC, and cHCC-ICC. The radiomics models achieved
good diagnostic efficiency in both the training cohort and the
test cohort, which is expected to help doctors improve the
accuracy of presurgical diagnosis and guide the further treatment
of PLC patients.
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TABLE 1 | Clinicopathological profiles of two radiomics models in the training cohort and test cohort.

HCC vs. non-HCC Model ICC vs. cHCC-ICC Model

Variables Training cohort
(n = 467)

Test cohort
(n = 201)

P-value Variables Training
cohort (n = 95)

Test cohort
(n = 42)

P-value

Gender Gender

Male 379 (81.2) 165 (41.8) 0.78 Male 65 (68.4) 27 (64.3) 0.63

Female 88 (18.8) 36 (58.2) Female 30 (31.6) 15 (35.7)

Age (years) Age (years)

<40 88 (18.8) 35 (174) 0.89 <40 21 (22.1) 5 (11.9) 0.27

40–60 280 (60.0) 124 (61.7) 40–60 59 (62.1) 27 (64.3)

>60 99 (21.2) 42 (20.9) >60 15 (15.8) 10 (23.8)

Tumor size (cm) Tumor size (cm)

≤5 246 (52.7) 115 (57.2) 0.28 ≤5 40 (42.1) 15 (35.7) 0.48

>5 221 (47.3) 86 (42.8) >5 55 (57.9) 27 (64.3)

Hepatitis Hepatitis

Yes 364 (80.2) 159 (79.9) 0.15 Yes 58 (61.1) 23 (54.8) 0.09

No 103 (19.8) 59 (20.1) No 37 (38.9) 19 (45.2)

Cirrhosis Cirrhosis

Yes 218 (46.7) 108 (53.7) 0.09 Yes 36 (37.9) 14 (33.3) 0.61

No 249 (53.3) 93 (46.3) No 59 (62.1) 28 (66.7)

AFP (µ g/ml) AFP (µ g/ml)

≤400 344 (73.7) 139 (69.2) 0.23 ≤400 76 (80.0) 38 (90.5) 0.13

>400 123 (26.3) 62 (30.8) >400 19 (20.0) 4 (9.5)

CA19-9 (U/ml) CA19-9 (U/ml)

≤37 389 (83.3) 158 (78.6) 0.15 ≤37 62 (65.3) 23 (54.8) 0.24

>37 78 (16.7) 43 (21.4) >37 33 (34.7) 19 (45.2)

CEA (µ g/ml) CEA (µ g/ml)

≤5 411 (88.0) 179 (89.1) 0.70 ≤5 75 (78.9) 33 (78.6) 0.96

>5 56 (12.0) 22 (10.9) >5 20 (21.1) 9 (21.4)

Histological type Histological type

HCC 371 (79.4) 160 (79.6) 0.96 cHCC-ICC 33 (34.7) 15 (35.7) 0.91

Non-HCC 96 (20.6) 41 (20.4) ICC 62 (65.3) 27 (64.3)

Differentiation Differentiation

Well 21 (4.5) 5 (2.5) 0.61 Well 1 (1.0) 0 (0) 0.87

Moderate 331 (70.9) 149 (74.1) Moderate 60 (63.2) 25 (59.5)

Poor 83 (17.8) 33 (16.4) Poor 23 (24.2) 11 (26.2)

No data 32 (6.8) 14 (7.0) No data 11 (11.6) 6 (14.3)

Immunohistochemistry, Positive/Negative Immunohistochemistry, Positive/Negative

Ki67, >10%/≤10% 286/181
(61.2/38.8)

129/72
(64.2/35.8)

0.47 Ki67, >10%/≤10% 46/14
(48.4/51.6)

32/10
(76.2/23.8)

0.96

P53 254/213
(54.4/45.6)

122/79
(60.7/39.3)

0.13 P53 63/32
(66.3/33.7)

28/14
(66.7/33.3)

0.96

VEGF 219/248
(46.9/53.1)

102/99
(50.7/49.3)

0.36 VEGF 40/55
(42.1/57.9)

20/22
(47.6/52.3)

0.55

Microvascular invasion 132/335
(28.3/71.7)

62/139
(30.8/69.2)

0.50 Microvascular invasion 33/62
(34.7/65.3)

11/31
(26.2/73.8)

0.32

(Continued)
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TABLE 1 | Continued

HCC vs. non-HCC Model ICC vs. cHCC-ICC Model

Variables Training cohort
(n = 467)

Test cohort
(n = 201)

P-value Variables Training
cohort (n = 95)

Test cohort
(n = 42)

P-value

Depth of invasion Depth of invasion

T1 255 (54.6) 111 (55.2) 0.53 T1 35 (36.8) 24 (57.2) 0.15

T2 111 (23.8) 55 (27.4) T2 30 (31.6) 8 (19.0)

T3 6 (1.3) 3 (1.5) T3 1 (1.1) 0 (0)

T4 95 (20.3) 32 (15.9) T4 29 (30.5) 10 (23.8)

Lymph node metastasis Lymph node metastasis

N0 450 (96.4) 194 (96.5) 0.92 N0 81 (85.3) 38 (90.5) 0.40

N1 17 (3.6) 7 (3.5) N1 14 (14.7) 4 (9.5)

Distant metastasis Distant metastasis

M0 451 (96.6) 198 (98.5) 0.17 M0 87 (91.6) 40 (95.2) 0.45

M1 16 (3.4) 3 (1.5) M1 8 (8.4) 2 (4.8)

Stage Stage

I 251 (53.7) 107 (53.2) 0.38 I 30 (31.6) 23 (54.8) 0.08

II 107 (22.9) 54 (26.9) II 27 (28.4) 7 (16.7)

III 89 (19.1) 36 (17.9) III 30 (31.6) 10 (23.8)

IV 20 (4.3) 4 (2.0) IV 8 (8.4) 2 (4.7)

Radiomics score 1.58 (0.97–2.04) 1.58
(0.95–2.10)

0.74 Radiomics score 0.91
(−0.31−2.39)

0.85
(−0.40−1.76)

0.29

Values were shown as the number of patients (percentage) unless otherwise explained. Radiomics score data were shown as median (Q1 – Q3). AFP, alpha fetoprotein;
CA19-9, carbohydrate antigen 19-9; CEA, carcino-embryonic antigen; VEGF, vascular endothelial growth factor.

Another highlight of this study is that we constructed the
optimal model through a variety of combinations of dimension-
reduction technologies and classifiers. Shiri et al. found that the
performance of machine learning models depends on the type
of data or application and that there was no general algorithm
or single model (29). Different combinations of feature selection
methods and classifiers can provide different results (30–32). In
the current study, we performed different dimension-reducing
technologies and machine learning approaches to find the
optimal models to predict HCC vs. non-HCC and ICC vs. cHCC-
ICC. Therefore, the models that we obtained comprehensively
captured the potential of radiomics-based differential diagnosis
of PLC in the current clinical medical environment.

In the current clinical practice, physicians preoperatively rely
on clinical symptoms, tumor serum markers, and imaging tests to
determine the type of PLC patient, but these data can sometimes
lead to false diagnoses because they may overlap. In addition,
due to high heterogeneity in the proportion and existing forms of
the two tumor components, the imaging findings of mixed HCC
currently lack performance, and most cases are misdiagnosed
as simple HCC or ICC. Preoperative differentiation of PLC
subtypes has important clinical significance, as different types
are associated with different treatment options and prognosis.
Improving the accuracy of initial diagnosis can provide more
optimized and active treatment for cHCC-ICC patients (16). In
addition, clinical medicine is currently moving toward a trend

of precision and personalized medicine. In the precise medical
environment, medical imaging as an important diagnostic tool
is also rapidly evolving and gradually playing an important role
(33). Radiomics, which provides a non-invasive method to assess
lesions and performs well in the diagnosis and prediction of
tumors, is widely considered to be a step in the evolution of
imaging toward a concept of personalized cancer management
(34, 35).

So far, only a few studies have attempted to identify three
different tissue types of PLC by imaging methods, and most
previous studies have been based on CT and MR images. Wang
et al. previously attempted to use preoperative CT and MR
imaging to identify cHCC-ICC with HCC and ICC. The study
found that compared with ICC and cHCC-ICC, the incidence
of HCC pseudocapsule was significantly higher. Compared with
their occurrence in HCC and cHCC-ICC, rim enhancement,
abnormal perfusion, capsular retraction, and biliary dilatation
were more common in ICC. However, in that study, the number
of features obtained from images was small, and imaging features,
such as tumor size, were all visible to the naked eye; the approach
failed to identify and analyze microscopic image features with
potential value for clinical diagnosis (36). Lewis et al. used MR
images of 65 liver cancer patients. The tumor characteristics
and LI-RADS classification were evaluated by two independent
observers. Among the two independent observers, the combined
AUC of sex and LI-RADS and apparent diffusion coefficient
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TABLE 2 | Features and corresponding coefficients of HCC vs. non-HCC radiomics model and ICC vs. cHCC-ICC radiomics model.

HCC vs. non-HCC Model ICC vs. cHCC-ICC Model

Radiomics features Coefficient Radiomics features Coefficient

Roughness index of boundary −0.034 Ipris_shell0_id_mean 0.019

Textural_phenotype_level_20–30% −0.423 Ipris_shell1_gd_mean 0.026

Wavelet-LHL_lbp-3D-m1_firstorder_InterquartileRange −0.068 CoLIAGe2D_WindowSize9_Sum Entropy_firstorder_RobustMean Absolute Deviation 0.021

Shearlet2didxs[1 2 -2]_glszm_Small Area Emphasis −0.020 Wavelet-LLH_lbp-3D-k_firstorder_Minimum 0.019

Shearlet2didxs[1 2 -2]_glszm_Small Area High GrayLevel Emphasis −0.006 Wavelet-HHL_lbp-3D-m1_firstorder_MeanAbsoluteDeviation 0.026

Shearlet2didxs[1 2 -1]_glszm_Small Area High GrayLevel Emphasis −0.053 Wavelet-LLL_lbp-3D-m1_firstorder_Mean 0.029
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Shearlet2didxs[2 3 -2]_firstorder_Minimum 0.017 Shearlet2didxs[1 2 2]_glszm_Size Zone NonUniformity Normalized 0.028
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Shearlet2didxs[2 3 2]_firstorder_Minimum 0.023 Shearlet2didxs[1 3 −1]_glszm_GrayLevel Non-Uniformity Normalized 0.025

Shearlet2didxs[2 3 3]_firstorder_Maximum −0.165 Shearlet2didxs[2 2 −1]_glrlm_Low GrayLevel Run Emphasis 0.024

glbp_hist_kernel1_2 −0.323 Shearlet2didxs[2 3 0]_glrlm_GrayLevel Non-Uniformity Normalized 0.023

glbp_hist_kernel4_3 −0.008 Shearlet2didxs[2 3 1]_firstorder_Median 0.022

gLTCoPs1_hist_kernel6_1 0.056 Shearlet2didxs[2 3 1]_glszm_GrayLevel Non-Uniformity Normalized 0.022

gLTCoPs1_hist_kernel6_2 0.061 gldp_hist_45_kernel7_0 0.019

gldp_hist_90_kernel9_0 0.031
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FIGURE 4 | Heat maps of the final features of radiomics models. A total of 16 features were used to build the HCC-vs-non-HCC model, and 19 features were used
to build the ICC-vs-cHCC-ICC model. The radiomics features were normalized by Z-score. (A) Training cohort in the HCC-vs-non-HCC model. (B) Test cohort in the
HCC-vs-non-HCC model. (C) Training cohort in the ICC-vs-cHCC-ICC model. (D) Test cohort in the ICC-vs-cHCC-ICC model.

(ADC) at the fifth percentile for the diagnosis of liver cancer
were 0.90 and 0.89, respectively. This result showed that HCC can
be better distinguished from ICC and cHCC-ICC by combining

the ADC histogram parameters and LI-RADS categorization.
However, the number of samples included in that study and
the number of extracted features were small, and the study did

Frontiers in Oncology | www.frontiersin.org 10 September 2020 | Volume 10 | Article 1646

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


fonc-10-01646 September 24, 2020 Time: 16:50 # 11

Peng et al. Radiomics of Histopathological Subtypes Differentiation

FIGURE 5 | Evaluation of the predictive performance of the radiomics models. (A) ROC curve of the HCC-vs-non-HCC model in the training cohort and test cohort.
(B) ROC curve of the ICC-vs-cHCC-ICC model in the training cohort and test cohort. (C) Confusion matrix of the HCC-vs-non-HCC model in the test cohort. The
non-HCC label was “0,” and the HCC label was “1.” (D) Confusion matrix of the ICC-vs-cHCC-ICC model in the test cohort. The cHCC-ICC label was “0,” and the
ICC label was “1.” The abscissa represents the predicted label, and the ordinate represents the actual label.

not distinguish between ICC and cHCC-ICC (37). Compared
with CT/MRI, ultrasound examination has the advantages of
simplicity and real-time observation, and it plays a vital role in the
diagnosis and treatment of liver tumors. However, no radiomics
study has sought to identify HCC, cHCC-ICC, and ICC. In view
of this knowledge gap, we used ultrasound images to establish
radiomics models to distinguish three different pathological
classifications of PLC, and we obtained promising results.

Our results showed that the radiomics models we built have a
good overall AUC and could well to accurately predict pure HCC,
while obtaining lower accuracy in cHCC-ICC. Our findings are
roughly consistent with the results of some previous studies
that suggest that identifying cHCC-ICC from PLC remains

challenging, possibly due to the greater histological heterogeneity
of cHCC-ICC. Wang et al. studied the CT and MR images of
136 patients with PLC and found that the features of capsular
retraction, abnormal perfusion, and rim enhancement showed
better performance in the identification of HCC and ICC, while
the ability to distinguish cHCC-ICC from the other two types
of PLC was not significant (36). Many image features such as
shape, size, edge, position, and enhancement mode in cHCC-ICC
mostly behave like ICC or HCC, creating some difficulties in its
diagnosis (38).

We finally used the LASSO and random forest methods
for feature selection. LASSO regression is also called L1
regularization of linear regression, which is a popular method
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TABLE 3 | Results of the univariate and multivariate analyses in HCC-vs-non-HCC Model.

Factors (reference) Univariate analysis Multivariate analysis

OR (95% CI) p value OR (95% CI) p value

Gender (female) 0.357 (0.233–0.549) 0.000* 0.379 (0.190–0.758) 0.006

Age (years)

<40 Reference − −

40–60 0.804 (0.436–1.482) 0.485 − −

>60 0.797 (0.487–1.305) 0.367 − −

Tumor size (>5 cm) 0.508 (0.347–0.745) 0.001 1.618 (0.855–3.061) 0.139

Hepatitis (yes) 3.433 (2.279–5.172) 0.000* 2.642 (1.360–5.133) 0.004

Cirrhosis (yes) 1.883 (1.279–2.774) 0.001 1.436 (0.775–2.661) 0.250

AFP (µg/ml)

≤400 Reference Reference

>400 2.176 (1.340–3.533) 0.002 3.533 (1.702–7.335) 0.001

CA19-9 (U/ml)

≤37 Reference Reference

>37 0.244 (0.159–0.374) 0.000* 0.232 (0.118–0.456) 0.000*

CEA (µg/ml)

≤5 Reference Reference

>5 0.379 (0.229–0.627) 0.000* 0.427 (0.189–0.965) 0.041

Differentiation

Well Reference Reference

Moderate 10.366 (1.350–79.590) 0.025 4.266 (0.361–50.333) 0.249

Poor 1.927 (1.212–3.063) 0.006 1.681 (0.867–3.258) 0.124

Immunohistochemistry, Negative/Positive

Ki67, ≤10%/>10% 0.407 (0.263–0.629) 0.000* 0.632 (0.306–1.303) 0.214

P53 0.586 (0.395–0.868) 0.008 0.531 (0.275–1.025) 0.059

VEGF 1.241 (0.850–1.810) 0.264 − −

Microvascular invasion 0.832 (0.555–1.248) 0.374 − −

Stage

I Reference Reference

II 4.111 (1.735–9.736) 0.001 4.077 (1.152–14.425) 0.029

III 2.668 (1.090–6.532) 0.032 5.245 (1.410–19.504) 0.013

IV 1.518 (0.621–3.712) 0.360 2.267 (0.616–8.342) 0.218

Radiomics score 3.555 (2.789–4.532) 0.000* 4.295 (3.098–5.953) 0.000*

In univariate analysis, variables with P < 0.1 were included in multivariate logistic regression analysis. In multivariate analysis, P < 0.05 was considered significant. AFP,
alpha fetoprotein; CA19-9, carbohydrate antigen 19-9; CEA, carcino-embryonic antigen; VEGF, vascular endothelial growth factor. * represents P < 0.0001.

used in radiomics researches. The basic idea of LASSO is to
minimize the residual sum of squares under the constraint that
the sum of the absolute values of the regression coefficients is less
than a constant, so as to produce some regression coefficients
strictly equal to 0 to get an interpretable model. Essentially,
it is a process of seeking a sparse expression of the model
(39, 40). Random forest is an ensemble learning algorithm
based on decision tree analysis and has a good performance in
classification and regression. Random forest can also be used as
a feature selection technology, and it has been widely used in
machine learning, determining the importance of features during
model training (28, 41, 42).

The texture features showed high importance in our
prediction model. Image texture is a visual feature that reflects
homogeneous phenomena in the image, and it reflects the surface
structure organization and arrangement properties of the object
with slow or periodic changes. The texture can be layered by the

statistical order of the information encoded in the image, which
can be divided into first-order texture features, second-order
texture features, and high-order texture features (43). Texture
features are widely recognized as quantitative biomarkers of
tumor heterogeneity (44, 45).

The large sample size of our study helped to improve the
generality and stability of our results. However, our research
also has certain limitations. First, all ultrasound imaging data
were from a unitary center, and the study was retrospective
in nature. The grayscale ultrasound images used in our study
were collected by different commercial ultrasound systems.
Although the data extracted from the images were preprocessed,
the imaging of different instruments may still have some
influence on the results of feature extraction, so whether the
model can play a prospective role remains an open question.
Therefore, it is necessary to conduct a multicenter prospective
study with a rigorous control of ultrasound machines to
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TABLE 4 | Results of the univariate and multivariate analyses in ICC-vs-cHCC-ICC Model.

Factors (reference) Univariate analysis Multivariate analysis

OR (95% CI) p value OR (95% CI) p value

Gender (female) 2.943 (1.272–6.814) 0.012 1.924 (0.638–5.806) 0.245

Age (years)

<40 Reference − −

40–60 0.431 (0.129–1.434) 0.170 − −

>60 0.560 (0.202–1.551) 0.265 − −

Tumor size (>5 cm) 1.781 (0.874–3.632) 0.112 − −

Hepatitis (yes) 0.246 (0.109–0.554) 0.001 0.572 (0.178–1.832) 0.347

Cirrhosis (yes) 0.413 (0.199–0.854) 0.017 0.700 (0.232–2.112) 0.527

AFP (µg/ml)

≤400 Reference Reference

>400 0.198 (0.077–0.507) 0.001 0.205 (0.057–0.735) 0.015

CA19-9 (U/ml)

≤37 Reference Reference

>37 2.449 (1.128–5.318) 0.024 1.222 (0.400–3.740) 0.725

CEA (µg/ml)

≤5 Reference Reference

>5 6.190 (1.765–21.711) 0.004 4.554 (0.919–22.571) 0.063

Differentiation

Well/Moderate Reference − −

Poor 2.174 (0.849–5.569) 0.106 − −

Immunohistochemistry, Negative/Positive

Ki67, ≤ 10%/> 10% 0.703 (0.294–1.678) 0.427 − −

P53 0.733 (0.344–1.565) 0.423 − −

VEGF 0.523 (0.257–1.065) 0.074 0.570 (0.211–1.540) 0.267

Microvascular invasion 0.596 (0.284–1.250) 0.171 − −

Stage

I Reference − −

II 0.302 (0.059–1.559) 0.153 − −

III 0.281 (0.052–1.523) 0.141 − −

IV 1.417 (0.240–8.367) 0.701 − −

Radiomics score 2.292 (1.662–3.160) 0.000* 2.395 (1.636–3.506) 0.000*

In univariate analysis, variables with P < 0.1 were included in multivariate logistic regression analysis. In multivariate analysis, P < 0.05 was considered significant. AFP,
alpha fetoprotein; CA19-9, carbohydrate antigen 19-9; CEA, carcino-embryonic antigen; VEGF, vascular endothelial growth factor. * represents P < 0.0001.

further explore the diagnostic potential of radiomics-based
modeling. Second, our study included only PLC and did
not include benign and metastatic tumors of the liver. The
identification of more types of tumors is more challenging.
We will add data for other types of liver tumors in future
studies to optimize the universality and clinical value of
the model. Third, we took into account the characteristics
of general clinical applications of ultrasound, and this is a
retrospective study, so we finally adopted two-dimensional
ultrasound images. However, the quantitative features extracted
based on two-dimensional ultrasound images cannot stand for
the overall lesion, and a more precise radiomics analysis depends
on the acquisition of 3D images. Further research on three-
dimensional ultrasound radiomics is necessary in the future.
Fourth, our study focused on the relationship between high-
throughput imaging features extracted from tumor ROI and
pathological typing. In order to quantify the heterogeneity of
tumors more comprehensively, it is necessary to pay more

attention to the peritumoral information and combine more
clinicopathological information to establish a more accurate
individualized disease assessment model. Therefore, in the
future, we need to optimize our model based on the above
limitations and carry out prospective studies, which may
be helpful to improve the discrimination performance of
radiomics model for PLC.

In summary, we developed and validated the ultrasound-
based radiomics models to distinguish different histopathological
types of PLC, thus providing a new approach for doctors to
non-invasively identify HCC, cHCC-ICC, and ICC.
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