
 International Journal of 

Molecular Sciences

Review

Clinical Applications of Autophagy Proteins in
Cancer: From Potential Targets to Biomarkers

Svetlana Bortnik 1,2 and Sharon M. Gorski 1,2,3,4,*
1 Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada;

sbortnik@bcgsc.ca
2 Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC V5Z 1L3, Canada
3 Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
4 Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
* Correspondence: sgorski@bcgsc.ca; Tel.: +1-604-675-8113

Received: 3 June 2017; Accepted: 7 July 2017; Published: 11 July 2017

Abstract: Autophagy, a lysosome-mediated intracellular degradation and recycling pathway, plays
multiple context-dependent roles in tumorigenesis and treatment resistance. Encouraging results
from various preclinical studies have led to the initiation of numerous clinical trials with the intention
of targeting autophagy in various cancers. Accumulating knowledge of the particular mechanisms
and players involved in different steps of autophagy regulation led to the ongoing discovery of small
molecule inhibitors designed to disrupt this highly orchestrated process. However, the development
of validated autophagy-related biomarkers, essential for rational selection of patients entering clinical
trials involving autophagy inhibitors, is lagging behind. One possible source of biomarkers for this
purpose is the autophagy machinery itself. In this review, we address the recent trends, challenges
and advances in the assessment of the biomarker potential of clinically relevant autophagy proteins
in human cancers.
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1. Introduction

Macroautophagy (herein referred to as autophagy) is a lysosome-mediated degradation and
recycling process that functions in both tumor suppression and tumor progression, depending on
the stage of tumorigenesis. In advanced malignancies, autophagy promotes cancer cell survival and
contributes to cancer progression and drug resistance [1], hence becoming a promising target for
anticancer therapy.

Numerous clinical trials investigating the pharmacologic autophagy inhibitors chloroquine (CQ)
and hydroxychloroquine (HCQ) in various cancers are underway [2]. These lysosome-targeting
inhibitors were previously approved by the Food and Drug Administration (FDA) for the treatment
of malaria and later were repurposed for autophagy inhibition [3]. The first published results [4–6]
demonstrate only a moderate effectiveness of HCQ in combination with chemotherapy, indicating the
need for the development of more potent and selective autophagy inhibitors as well as reliable criteria
for better selection of patients entering clinical trials. While autophagy inhibitors that target specific
proteins involved in different steps of the autophagy process are under development [7–14], it is
crucial to determine cancer types suitable for each of these autophagy inhibition strategies. Therefore,
the search for markers of autophagy, or response to autophagy modulation, in cancer patients is a
research area of relevance to both clinicians and scientists.

Due to the dynamic nature of autophagy and complexity of its regulation, simultaneous
assessment of several autophagy markers will likely be required to assess autophagy status. However,
many autophagy proteins have been shown to function in other cellular processes, including cell
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survival and apoptosis, modulation of cellular trafficking, protein secretion, cell signaling, transcription,
translation and membrane reorganization [15]. Each protein known to be involved in the autophagy
machinery, when evaluated separately from other autophagy proteins, could have an independent
biomarker potential in cancer patients, which is not necessarily related to autophagy. Caution has
to be taken, therefore, when interpreting the results from studies that report association of tumoral
expression of autophagy-related proteins with clinicopathological characteristics and/or patient
outcomes. Two distinct goals—evaluation of autophagy status versus assessment of biomarker
potential—need to be clearly separated.

Biomarkers are typically classified as “prognostic” or “predictive”. A prognostic biomarker
provides information on the likely outcome of the disease in an untreated individual and is helpful in
identifying patients for adjuvant systemic therapies. A predictive biomarker helps select patients who
will likely benefit from a given treatment [16–18]. In practice, the distinction between these categories
is not straightforward, and many biomarkers have both prognostic and predictive values, and also
serve as therapeutic targets [17,19]. Following the definitions above, all the markers reviewed here
(Table 1) fall currently into the category of “prognostic” markers, and future studies are required to
establish whether they may also have predictive values for specific treatment strategies.

Numerous technologies are used to analyze biomarker values of different types of biomolecules
such as DNA, RNA, proteins, and peptides [20,21]. Here, we will focus on the autophagy-related
protein biomarkers, although validated autophagy-related protein biomarkers and protocols have
not yet been approved for use in a clinical setting. Indeed, scoring systems for the evaluation
of autophagy-related protein markers in tissues can differ dramatically between researchers.
While manual scoring appears to be prevalent in the literature, some authors [22] take an automated
approach, especially for large-scale studies. While acknowledging the variability of staining techniques
and antibodies used, a lack of a uniform scoring system, as well as context-dependent roles of
autophagy in cancers, below we summarize the recent trends in evaluating the biomarker potential of
key autophagy-related proteins in various human cancers. We first provide a brief overview of the
autophagy machinery itself to place the various protein biomarkers described into the context of the
autophagy pathway.

2. Autophagy Machinery

Autophagy is a tightly-regulated multi-step process that involves more than 30 core
autophagy-related (ATG) proteins [23,24]. The ATG proteins act to initiate, promote and complete the
formation of double-membrane autophagosomes that fuse with lysosomes to form autolysosomes
where the contents are degraded and recycled by the cell. A detailed overview of autophagic machinery
has been described in several excellent reviews [1,25,26], and we include only a brief summary here.

One of the main autophagy regulators is the mechanistic target of rapamycin (mTOR) protein
kinase [27]; however, mTOR-independent autophagy [28] has also been described. As shown in
Figure 1, autophagy is initiated by the activation of the serine/threonine Unc-51-like kinases 1
and 2 (ULK1 and ULK2), that receive signals from the master nutrient sensors mTOR and
AMP-activated protein kinase (AMPK) [29]. ULK1/2 then forms a complex with ATG13, ATG101,
and FIP200 [30]. This complex regulates the induction of autophagosome formation. The activity of
the ULK1 kinase is required for the recruitment of the phosphatidylinositol 3-kinase catalytic subunit
type 3 (PIK3C3/VPS34) to the phagophore—the cup-shaped double-membrane precursor of the
autophagosome. Along with VPS15 (the PI3K regulatory subunit 4), ATG14, and the scaffold protein
Beclin 1, VPS34 forms the class III PI3K complex I, which produces phosphatidylinositol 3-phosphate
(PI(3)P) at the sites of phagophore nucleation. When clustered, PI(3)Ps create a cytosol-facing platform
for the binding of proteins (such as WIPI/II) required for the recruitment of machineries, involved in
the so-called “elongation reaction” [30,31]. This next stage in autophagosome formation requires two
ubiquitin-like conjugation systems: the conjugation of ATG12 to ATG5 and ATG16L1 and, downstream
to it, conjugation of Atg8 (in yeast)/microtubule-associated protein 1 light chain 3 (MAP1LC3, or
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LC3, in mammals) to phosphatidylethanolamine (PE). The E1-like enzyme ATG7 is involved in both
conjugation processes; E2-like enzymes ATG10 and ATG3 function in ATG12-ATG5-ATG16L1 and
LC3-PE conjugation systems, respectively [25,30,32,33]. In addition, the ATG12-ATG5 conjugate may
act as an E3-like enzyme for the conjugation of LC3 to PE and, together with ATG16L1, is responsible
for the recruitment of LC3-PE to the phagophore [34–36]. Prior to conjugation, LC3 is processed
by the autophagy related 4B cysteine peptidase (ATG4B). ATG4B is responsible for the cleavage of
the carboxyl terminus of newly synthesized pro-LC3 to provide LC3-I [37], a reaction essential for
further LC3-I conjugation to PE to form a membrane-bound LC3-II during autophagosome formation.
That is required for elongation of the autophagosome. ATG4B also functions in de-conjugation of
LC3 from the autophagosome membrane to ensure recycling of LC3 in the cell [38]. ATG9 and its
cycling system (ATG2, ATG9 and ATG18) play a role in lipid delivery to the expanding autophagosome
membrane [25,30,32]. LC3 further interacts with various adaptor proteins such as p62/Sequestosome
1 (SQSTM1) that function to recruit cargo from the cytoplasm.
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The process of phagophore closure is poorly understood and possibly regulated by ATG2A
and ATG2B which are recruited to early autophagosomal membranes enriched in PI(3)P, where they
associate with WIPI1 (WD-repeat protein interacting with phosphoinositides 1) [39]. GABA Type
A Receptor-Associated Protein Like 2 (GABARAPL2/GATE-16), one of the LC3/GABARAP family
members, has also been shown to mediate closure of the vesicle [35]. After closure, autophagosomes
fuse with lysosomes to form autolysosomes, where the contents are degraded by hydrolases.
The degradation products (e.g., amino acids) are released to the cytosol in a process involving soluble
NSF-attachment protein receptors (SNAREs) and recycled by the cell [2,40].

Some mammalian orthologs of yeast ATG genes are represented by families of paralogous genes.
For instance, mentioned above ATG4B belongs to the ATG4 family of cysteine proteases, which
in mammals also includes ATG4A, ATG4C, and ATG4D proteins [41]. MAP1LC3 is a member of
the ATG8 family, represented by three subfamilies in mammals: LC3 (LC3A, LC3B, LC3B2, LC3C),
GABARAP (GABARAP, GABARAPL1), and GATE-16/GABARAPL2 [42]. Each family member, while
demonstrating some functional redundancy with other members, plays distinct roles in the autophagy
process [35,43]. For example, LC3s are required for the elongation step [35,44], whereas the proteins
from GABARAP/GATE-16 subfamilies are thought to play important roles in autophagy initiation [44],
as well as autophagosome closure [35]. A recent study by Nguyen et al. [42] provided deeper insights
into the functions of different LC3/GABARAP family proteins during PINK1/Parkin mitophagy and
starvation. They showed that, while these proteins are crucial for autophagosome–lysosome fusion and
are likely to be important for regulating autophagosome size, they are dispensable for autophagosome
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formation. In spite of these new findings, LC3 remains a prominent autophagy protein and one of the
main autophagosomal markers, used in a number of standard autophagy assays [45].

3. Candidate Autophagy-Related Biomarkers

In this review, we focus on the potential targets for autophagy modulation in cancer patients
and summarize the recent reports on biomarker potential of these targets in different cancers
(Table 1). Currently, the development of drugs for autophagy modulation follows two major directions:
(1) lysosomal inhibitors and their derivatives; and (2) small molecule inhibitors targeting autophagy
proteins. Examples of the first approach include CQ and HCQ, the main players in today’s clinical trials,
as well a novel dimeric derivative of chloroquine Lys05 [46,47] which is currently being optimized for
clinical trials [2]. Common autophagy markers, such as LC3B and p62, utilized in a variety of standard
assays to measure autophagy turnover (also known as flux) in vitro and in vivo, may serve as useful
readouts for the effects of lysosomal inhibitors on autophagy status in tumors. The potential targets
from the second group include Beclin-1, ULK1, ATG4, ATG7, and VPS34.

Table 1. Prognostic values of autophagy-related proteins in cancers.

Candidate Marker *
Prognostic Value **

Poor Favorable

LC3B
BC [22,48,49], GC [50–52], CRC [53–56],

melanoma [22], astrocytoma [57], esophageal
cancer [58], oral SCC [59], and HCC [60]

NSCLC [61], BC [62]

LC3A CRC [63], BC [64], GC [65], NSCLCs [66], HCC [67]
and clear cell OC [68] (stone-like structures)

CRC [63] and BC [64]
(juxtanuclear accumulation)

GABARAP CRC patients [69]

p62 endometrial cancer, [70], oral SCC [59], epithelial
OC [71], and NSCLC [72,73], BC [74,75]

ULK1 CRC [76], esophageal SCC [77], HCC [78], and
nasopharygeal carcinoma [79] BC [80], GC [51]

Beclin1 CRC [48,81] ***; [56,82,83] GC, BC, NSCLC, CRC,
lymphoma [48] ***

ATG3 GC [51]

ATG10 CRC [84] GC [51]

FIP200 BC [85]

Autophagy “signature”: ULK1,
Beclin 1, ATG3, and ATG10 GC [51]

Autophagy “signature”: LC3B,
ATG5, Beclin 1, Ambra1 and Bif-1 PDAC [86]

* Protein expression was evaluated by immunohistochemistry; ** Prognostic value was based on the association
of high protein expression with patient outcomes. BC, breast cancer; GC, gastric cancer; CRC, colorectal cancer;
HCC, hepatocellular carcinoma; NSCLC, non-small cell lung cancer; PDAC, pancreatic ductal adenocarcinoma;
OC, ovarian cancer; SCC, squamous cell carcinoma; *** based on meta-analysis of multiple publications.

3.1. LC3B

One of the best studied autophagy-related proteins, the microtubule-associated protein 1 light
chain 3B (MAP1LC3B, or LC3B), has long served as an autophagy marker in multiple in vitro assays.
The expression levels of LC3B protein have also been examined by immunohistochemistry (IHC)
in many cancers. However, only a few recent studies (see below) differentiated among the various
forms of LC3B, particularly the cytosolic (LC3B-I) and membrane-bound (LC3B-II, or LC3B “puncta”)
forms [87,88].

Taking into consideration that treatment with lysosomal inhibitors results in accumulation of
LC3B-II due to blockade of autophagosome-lysosome fusion, which leads to inhibition of LC3B
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degradation, establishing the biomarker potential of LC3B in different cancers might be useful for the
selection of patients for treatment with CQ and its derivatives.

Recent systematic review and analysis by He et al. [48] showed that high protein expression of
LC3B predicted adverse overall survival in breast cancer (HR = 1.98, 95% CI = 1.25–3.13), however,
none of the studies included in this meta-analysis specified the pattern of LC3B staining in tumor
samples. Lazova et al. [22] specifically addressed detection of LC3B puncta, rather than diffuse staining,
in specimens from a relatively large cohort of breast cancer patients (n = 640). In this study, increased
LC3B puncta expression also significantly correlated with poor prognosis. As breast cancer is a highly
heterogeneous group of diseases, several authors attempted to look at LC3B expression depending
on breast cancer subtype. Choi et al. [89] reported the highest LC3B expression in triple-negative
breast cancers, and Zhao et al. [49] observed the association of high LC3B expression with poor
overall survival and disease progression in patients with this cancer subtype. In these two studies
the staining pattern (puncta vs. diffuse) was not specified. In the study by Lazova et al. [22], LC3B
puncta expression was highest in the HER2/neu-positive subtype, followed by the triple-negative,
luminal B, and luminal A subtypes. Interestingly, association of LC3B expression with poor outcomes
reached significance only in luminal A tumors; the prognostic associations in the other 3 subtypes
(luminal B, HER2/neu positive, and triple negative) did not reach statistical significance, possibly due
to the limited number of patient samples [22]. Another study by Cha et al. [90] compared expression
of LC3B along with other autophagy-related proteins, including Beclin-1 and p62, in invasive lobular
carcinoma (ILC) versus invasive ductal carcinoma (IDC), and found that the expression of all these
proteins was significantly higher in IDC. These results indicate a clear need for additional studies in
large patient cohorts to determine LC3B prognostic values in different breast cancer histological and
molecular subtypes.

The association of high LC3B expression with aggressive disease and poor outcomes was
repeatedly reported in other cancer types, including gastric adenocarcinoma [50–52], colorectal
cancers [53–56], melanoma [22], astrocytoma [57], esophageal cancer [58], oral squamous cell
carcinoma [59] and hepatocellular carcinoma [60]. Interestingly, high expression of LC3B was
associated with decreased overall survival in the KRAS-mutated subgroup of colorectal cancers,
but not in the KRAS-wildtype [53]. This finding together with the previous functional studies that
showed “addiction” of KRAS-mutated cancers to autophagy [91–93] suggests that further patient
stratification based on molecular alterations is required to fully evaluate the biomarker potential of
LC3B in different cancers. For instance, a recent study in non-small cell lung cancer [61] evaluated
the punctated pattern of LC3B together with p62 expression levels and pointed to the possibility of
improved prognosis in the high-LC3B puncta expression group. It may be informative to further
subgroup the patients based on mutation status, including alterations in KRAS.

3.2. Other LC3/GABARAP Family Members

Although less studied than LC3B, microtubule-associated protein 1 light chain 3A (LC3A) has
also been investigated as an autophagy marker. Earlier studies defined three distinct patterns of IHC
staining of LC3A in solid tumors: diffuse cytoplasmic staining, juxtanuclear staining, and staining of
“stone-like” structures (SLS) [64]. Each of these patterns appears to bear different prognostic value.
For instance, juxtanuclear accumulation of LC3A in tumor cells correlated with good prognosis in
colorectal [63] and breast cancers [64], whereas increased numbers of SLS were linked to poor prognosis
in colorectal [63], breast [64], gastric [65] and non-small cell lung cancers [66], as well as hepatocellular
carcinoma [67] and clear cell ovarian carcinoma [68].

To the best of our knowledge, only one study explored the prognostic significance of another
mammalian homolog of yeast Atg8, gamma-aminobutyric acid type A (GABAA) receptor-associated
protein (GABARAP), in human cancer. High expression of GABARAP was associated with poor
differentiation and shortened overall survival in colorectal cancer patients [69].
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3.3. p62/SQSTM1

Initially identified as a mediator of NFκB signaling, p62/SQSTM1 is now known as a “signaling
hub” for diverse cellular events including amino acid sensing and the oxidative stress response [94].
p62 also functions as a molecular adaptor between the autophagic machinery and its substrates [95].
Due to its degradation during the autophagic process, p62 was proposed to serve as a marker of
autophagic flux. For instance, accumulation of p62 protein by Western blot is usually considered
indicative of autophagy inhibition [45]. However, caution should be taken when interpreting the
results of p62-related assays, as they might be affected by complex regulation of p62 at both the
transcriptional and post-translational levels [95]. Despite these known caveats, many authors still use
p62 as an indicator of autophagic flux both in vitro and in vivo, and there are numerous publications
related to p62 as an autophagy biomarker in human cancer specimens.

With or without a connection to autophagy, the vast majority of reports show an association of
high p62 expression with poor prognosis. The examples include, but are not limited to, endometrial
cancer, [70], oral squamous cell carcinoma [59], epithelial ovarian cancer [71], and non-small cell lung
cancer [72,73], where high expression of cytoplasmic p62 but low expression of nuclear p62 significantly
correlated with aggressive tumors and adverse prognosis. In breast cancer, an earlier publication by
Rolland et al. [74] showed that p62 cytoplasmic expression correlated with grade, distant metastasis,
and reduced five-year survival; in addition, there was a significant association with EGF receptor
(EGFR), HER2, HER3, and HER4 expression. High expression of p62 in triple-negative breast cancers
was also shown to be prognostic of poor outcome [75]. It would be useful to know whether p62 (both
cytoplasmic and nuclear-localized) is differentially expressed and/or has different prognostic values
across various molecular subtypes in breast cancer and other cancers. Overall, published data to date
indicate that p62 expression is a poor prognostic marker in various cancer types.

3.4. ULK-1/2

Being the only serine/threonine kinases in the core autophagy machinery and possibly the
most upstream components of the canonical autophagy pathway [7,96,97], ULK-1 and ULK-2
became attractive drug targets [7,8]. While the development of ULK-1/2 small molecule inhibitors
is underway [7,8,98], the data on the prognostic value of ULK-1/2 in different cancers is scarce
and contradictory.

Tang et al. [80] reported an association of low expression of ULK-1 with adverse patient prognosis
in breast cancer. Similarly, ULK-1 was shown to be a favorable prognostic marker in gastric cancer [51].
On the contrary, in colorectal cancer patients, high ULK-1 expression was found to be a predictor of
poor prognosis [76]. Another study in colorectal cancer patients [53] did not show any correlation
with survival, even after stratification according to KRAS status, but linked ULK-1 high expression
to the presence of lymph node metastasis. Poor prognostic value of high ULK-1 expression was also
shown in esophageal squamous cell carcinoma [77], hepatocellular carcinoma [78], and nasopharygeal
carcinoma [79]. The expression level of ULK-2 was reported to be significantly higher in prostate
cancer tissue than in the adjacent normal prostate tissue [99], however no association with prognosis
was available from this or other studies. Additional studies in larger patient cohorts are required to
better define the prognostic values of ULK1 and ULK2 in different cancer types.

3.5. Beclin-1 and VPS34

The Beclin 1-VPS34 complex is one of the central coordinators of autophagy downstream of
ULK1 [96]. Several groups reported development of potent VPS34 inhibitors [11–14,100], but it
remains unclear which cancer patients will most likely benefit from these inhibitors.

As Beclin 1 interacts with members of the anti-apoptotic Bcl-2 protein family [101], loss of
Beclin 1 expression (allelic loss or suppression by microRNAs) defines poor prognosis presumably
by enhancing anti-apoptotic pathways. Overexpression of Beclin 1, linked with tumor hypoxia
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and acidity, also defines subgroups of tumors with aggressive clinical behavior [82], presumably by
promoting autophagy.

Systematic review and meta-analysis by He et al. [48] identified Beclin-1 as a favorable prognostic
marker in gastric cancer, breast cancer, lung cancer, and lymphoma, whereas in colorectal cancer
the results were split between favorable and poor prognostic values. Another meta-analysis by
Han et al. [81] showed that high Beclin-1 expression in patients with colorectal cancer was associated
with poor prognosis in terms of tumor distant metastasis and overall survival. Additional studies in
colorectal cancer further supported the poor prognostic value of Beclin1 in colorectal cancers [56,82,83].
To address seemingly contradictory reports in colorectal cancer, Han et al. [81] stratified patients
according to treatment status and found that high Beclin-1 expression was associated with reduced
survival in the patients who received chemotherapy, while among the patients without chemotherapy,
high Beclin-1 levels were associated with longer overall survival. Knowing that the majority of
chemotherapeutic drugs induce autophagy [40,102], which often plays stress-adaptive roles, we
can hypothesize that high Beclin-1 expression in chemotherapy-treated patients indicated increased
autophagy levels which promoted resistance to the chemotherapy treatment.

As with other biomarkers in breast cancer, it will be important to examine the expression of
Beclin-1 in different histologic and molecular subtypes as was done in a study by Cha et al. [90],
who showed that ILC had lower expression of Beclin-1 compared to IDC; in ILC, Beclin-1 expression
correlated significantly with ER negativity and was variably expressed according to molecular subtypes,
with the highest expression in triple-negative breast cancer.

3.6. ATG4B

Due to its central enzymatic roles in the autophagy process, the cysteine protease ATG4B became
one of the autophagy proteins being pursued as a potential therapeutic target [9,10], but little is known
about its prognostic value in different cancers. Previous reports showed elevated ATG4B expression
in colorectal tumor cells [103], chronic myeloid leukemia [104], and lung cancer cells [105]. However,
there are no reports in the literature on the prognostic value of ATG4B, or any of the other ATG4 family
members, in cancers.

3.7. Additional Autophagy-Related Biomarkers

Although not widely pursued or reported in the literature as potential targets, other
autophagy-related proteins have been studied in terms of their biomarker potential. The results
of these studies are inconsistent and suggest context-dependency. In gastric cancer, low expression
of ATG10 and ATG3 were associated with lymph node metastasis and advanced TNM stage; both
ATG10 and ATG3 were found to be favorable independent prognostic factors for overall survival [51].
In contrast, the opposite trend was reported in colorectal cancer patients: high ATG10 expression
correlated with tumor lymph node metastasis, invasion, and adverse prognosis [84].

Although examined in multiple functional studies involving various in vivo models for autophagy
modulation, ATG7 expression did not correlate with survival in lung [106] and gastric [51] cancers.
Additional studies are required before eliminating ATG7 as a potential prognostic biomarker.

Similar uncertainty applies to another autophagy-related protein, ATG5. While several studies
explored ATG5 expression in different cancers [107,108] only a few reported prognostic values. In breast
cancer patients, ATG5, along with FIP200, was shown to be a favorable prognostic marker [85].
In contrast, in oral squamous cell carcinoma, ATG5 expression was associated with high tumor
grade, advanced clinical stage, large tumor size, and lymph node metastasis; however, there was no
statistically significant correlation with prognosis [109]. Additional studies are also needed to provide
a better understanding of biomarker potential of ATG5.
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3.8. Evaluation of an “Autophagy Signature” in Cancer

Several groups [51,53] have recently attempted to evaluate the expression of multiple
autophagy-related proteins simultaneously to determine the prognostic value of a so-called
“autophagy signature” in cancer. The idea behind this strategy was that the specific combination of
autophagy-related markers evaluated concurrently might reflect the dynamic nature of the autophagy
process and its role in tumorigenesis.

Cao et al. [51] assessed prognostic values of 10 markers (ULK1, Beclin 1, ATG3, ATG5, ATG7,
ATG9, ATG10, ATG12, LC3B and p62/SQSTM1) in a relatively large cohort of 352 gastric cancer
patients. Out of 10 markers, only four (ULK1, Beclin 1, ATG3, and ATG10) demonstrated correlation
with prognosis, each being an independent favorable prognostic factor. In the combination analysis,
patients with positive expression of all four markers had superior survival compared with those having
less than four positive markers [51]. However, no correlation between the markers was reported,
which makes the interpretation of these findings difficult. Another study by Ko et al. [86] presented an
evaluation of the expression of five autophagy-related proteins—LC3B, ATG5, Beclin 1 and its two
cofactors, AMBRA1 (activating molecule in beclin-1-regulated autophagy) and Bif-1 (Bax-interacting
factor 1)—in the resected pancreatic ductal adenocarcinoma tissues from a relatively small cohort of
73 patients. The correlation between the expression of autophagy-related proteins was significant for
all protein pairs. Multivariate analysis revealed that high beclin-1 expression and high expression of
all autophagy-related proteins were independently associated with poor prognosis [86]. The whole
cohort was split into “high” and “low” autophagy types according to the number of highly expressed
markers (4–5 vs. 0–3, respectively). Although not statistically significant (probably due to the small
cohort size), there was a trend towards decreased overall survival in the “high autophagy type”
group [86]. In most other studies, though, the so-called “autophagy signature” included 2–4 markers
only [50,53,56,85,89,109], often making the results difficult to interpret.

3.9. Secreted Factors as Potential Predictive Biomarkers

In addition to lysosomal degradation of autophagosomal contents, a novel role for autophagy
that involves unconventional protein secretion was described [110]. Another recent study by
Kraya et al. [111], which utilized quantitative proteomics to identify secreted factors characteristic of
tumor cells with high autophagy levels compared to low-autophagy tumor cells, opened up an exciting
possibility of indirect measurement of tumoral autophagy dynamics in plasma. Unique secreted factors
may serve as predictive biomarkers and aid in patient selection for treatment involving autophagy
inhibition, and might also be useful for patient follow-up to evaluate the subsequent response to
a given treatment. These factors included LIF (leukemia inhibitory factor), IL1B (interleukin 1, β),
CXCL8 (chemokine (C-X-C motif) ligand 8), FAM3C (family with sequence similarity 3, member C),
and DKK3 (dickkopf WNT signaling pathway inhibitor 3)—factors implicated in immunity and
inflammation [111]. The authors chose melanoma as a model, and although this particular set of
markers validated well in both in vitro and in vivo (patient specimens), further studies are needed
to show whether these candidate biomarkers are relevant for other cancer subtypes or whether
the autophagy-dependent secretome signatures are context (i.e., cancer type)-specific. Nonetheless,
with growing evidence for the role of autophagy in immunity, inflammation, and the tumor
microenvironment [112–114], as well as the promises of “liquid biopsies”, great attention should
be given to the development in this direction.

4. Discussion and Future Directions

In our previous review in 2012 [32] we summarized the literature regarding expression levels of
autophagy proteins in various cancer tissues. At that time, no clear picture could be drawn from the
published data, and there existed many examples of inconsistent and conflicting reports on autophagy
protein expression patterns. The reasons for these discrepancies included small patient cohorts, absence
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of standard techniques to process the tissues and analyze the results, lack of independent validation
cohorts, and a limited number of autophagy-related markers (LC3, p62, and Beclin-1) available for
assessment in patient samples.

In this review, we highlight the more recent advances in the evaluation of the biomarker potential
of autophagy proteins in various cancers. Over the past five years, multiple groups accumulated data
regarding IHC assessment of additional autophagy-related biomarkers in human cancer specimens
(Table 1). While patterns have emerged (Table 1), these studies also showed that prognostic values
of specific autophagy-related proteins, some of which are currently pursued as therapeutic targets,
vary from one tumor type to another, from one disease stage to another, and between untreated
and treated patients. These findings further support the context-dependent roles of autophagy in
cancer, and also emphasize the need to interpret biomarker data in a corresponding context-dependent
manner. Appreciation of the complexity and dynamic nature of the autophagy process has translated
to increased interest in the evaluation of so-called “autophagy signatures” in different malignancies.
This approach, focused on simultaneous assessment of multiple proteins in the autophagy pathway,
deserves further attention along with the investigation of autophagy associated secreted factors.

Across the large and growing number of autophagy-related biomarker studies, the main
challenges encountered previously still remain for the most part unresolved. These challenges include
differences in staining techniques, scoring systems and cut-off points, limited sample sizes, and absence
of independent validation processes. In addition, it is important to emphasize that knowing the
prognostic relevance of autophagy-related proteins does not necessarily translate into their predictive
value for the associated targeted therapeutics. New information regarding autophagy-related
predictive biomarkers from the ongoing or future clinical trials is highly anticipated.

The question of how to track response to autophagy inhibitors in cancer patients remains one of
the most outstanding in the field. An increase or decrease in the expression level of autophagosomal
markers (such as LC3B) may not directly correlate with changes in autophagic activity, and is difficult to
interpret, as well as monitor over time, especially in tissues. A recent attempt by Mahalingam et al. [115]
to analyze peripheral blood mononuclear cells (PBMCs) from patients treated with HCQ and vorinostat
suggested that tumor samples, although not readily accessible, are far more informative for the
assessment of autophagy inhibition in vivo compared to PBMCs. In this study, in addition to LC3B and
p62 levels, the authors evaluated the levels of the lysosomal protease cathepsin D (CTSD), which they
previously showed to be a key mediator of CQ/HCQ and HCQ plus vorinostat-induced apoptosis.
In this context, novel biomarkers indirectly related to autophagic activity and its modulation, such as
autophagy products rather than autophagy machinery, should also be explored.

Autophagy is a highly regulated process, and autophagy proteins are subject to regulatory
post-translational modifications, including phosphorylation, ubiquitination, and acetylation [116].
It is possible, although technically challenging, that the evaluation of the expression of modified (e.g.,
phosphorylated) forms of autophagy-related proteins in tumor tissues, which might be feasible via
mass spectrometry-based approaches [117], will provide useful information regarding the biomarker
potential of these proteins in cancers, and this is an important area for future development.

Although this review focuses on IHC evaluation of autophagy-related protein levels in
cancer tissues, it should be noted that additional techniques have been considered for the
discovery and monitoring of autophagy-related alterations and their biomarker potential in various
cancers. For instance, Rothe et al. [104] examined transcript levels of several key autophagy and
autophagy-related genes in chronic myeloid leukemia (CML) stem cells, and showed that ATG4B
and ATG5 were differentially expressed in imatinib-nonresponders vs. responders. The authors of
this study suggested that the unique autophagy gene expression signature may serve as a novel,
clinically useful biomarker for predicting response to tyrosine kinase inhibitor therapy. Eissa et al. [118]
identified and validated a novel autophagy transcript signature for the diagnosis of human bladder
cancer. In this study, the expression levels of a number of autophagy genes, including ATG12 and
ULK1, in paired bladder tissue and urine samples were significantly lower in bladder cancer than in
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the control group. A large-scale analysis of the mutational status of the genes encoding the entire core
autophagy machinery, published by Lebovitz et al. [119], indicated that the core autophagy machinery
largely escapes genomic alterations in human cancers. However, those tumors in which mutations
were found, should be given further attention [93].

Overall, significant progress has been made over the last several years, and the development of
new strategies and standardized approaches for the comprehensive evaluation of the multiplayer and
multistep autophagy process in human tissues is underway.
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