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Special CollectionTNBC in 2019: Promising Signals for the  
Treatment of a Formidable Disease

Background
Accumulating data demonstrate the association 
of the elevated numbers of tumor infiltrating lym-
phocytes (TILs) with improved clinical outcomes 
in breast cancer.1–3 Among TILs, cytotoxic 
T-lymphocytes (CTLs) play a crucial role in 

anti-cancer immunity. Cancer cell recognition by 
the CTLs is driven by neoantigens which mainly 
reflect tumor mutational burden (TMB).4,5 
Triple-negative breast cancer (TNBC) has a 
higher TMB and accumulates more CTLs as 
compared with other breast cancer subtypes.5 

Cytotoxic T-lymphocyte infiltration and 
chemokine predict long-term patient 
survival independently of tumor mutational 
burden in triple-negative breast cancer
Eriko Katsuta, Li Yan, Mateusz Opyrchal, Pawel Kalinski and Kazuaki Takabe

Abstract
Background: Cytotoxic T-lymphocyte (CTL) infiltration into tumor is a positive prognostic 
factor in breast cancer. High tumor mutational burden (TMB) is also considered as a predictor 
of tumor immunogenicity and response to immunotherapy. However, it is unclear whether the 
infiltration of functional CTL simply reflects the TMB or represents an independent prognostic 
value.
Methods: Utilizing The Cancer Genome Atlas (TCGA) breast cancer cohort, we established the 
Functional Hotness Score (FHS). The associations of FHS and breast cancer patient prognosis 
as well as distinct immunity markers were analyzed in a total of 3011 breast cancer patients 
using TCGA, METABRIC and metastatic breast cancer (MBC) cohort GSE110590.
Results: We established FHS, based on CD8A, GZMB and CXCL10 gene expression levels of bulk 
tumors, which delivered the best prognostic value among some gene combinations. Breast 
cancer patients with the high-FHS tumors showed significantly better survival. FHS was lower 
in the MBCs. Triple-negative breast cancer (TNBC) showed the highest FHS among subtypes. 
FHS predicted patient survival in hormone receptor (HR)-negative, especially in TNBC, but not 
in HR-positive breast cancer. FHS predicted patient prognosis independently in TNBC. The 
high-FHS TNBCs showed not only higher CD8+ T cell infiltration, but also enhanced broader 
type-1 anti-cancer immunity. The patients with the high-FHS tumors showed better prognosis 
not only in high-TMB tumors but also in low-TMB TNBCs. The combination of high-TMB with 
high-FHS identified a unique subset of patients who do not recur over time in TNBC.
Conclusion: TNBCs with high FHS based on the expression levels of CD8A, GZMB and CXCL10 
showed improved prognosis with enhanced anti-cancer immunity regardless of TMB. 
FHS constitutes an independent prognostic marker of survival, particularly robustly when 
combined with TMB in TNBC.
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As a result, TNBC is more sensitive to immune 
checkpoint inhibitors (ICIs), such as PD1/PD-L1 
blockade, which enhance CTL survival and cytol-
ytic activity,6,7 resulting in their Food and Drug 
Administration approval in TNBC.8 However, 
PD-L1 blockade is effective in only a small portion 
of TNBC patients, and the predictive value of 
PD-L1 immunohistochemistry (IHC) is very lim-
ited, with some of the PD-L1 negative patients still 
responding to PD-L1 blockade.9 Similarly, the pre-
dictive value of individual CTL markers of IHC is 
not reliable and limited by their variation and spa-
tial heterogeneity within individual tumors.10 These 
considerations highlight the importance of identifi-
cation of the improved markers predicting the abil-
ity of the immune system to control breast cancer 
progression and responsiveness to treatments.

CTLs are identified by CD8 surface marker, which 
is encoded by CD8A gene.11 Granzyme B (GZMB) 
is a serine protease that is secreted by activated 
CTLs and natural killer (NK) cells to induce apop-
tosis of the target cells.12,13 Chemokines, such as 
CXCL10 and CCL5, are key to the selective 
attraction of activated (effector, effector–memory 
and memory) CTLs into tumors, as shown in mul-
tiple cancers.12,13 In addition to mutation-depend-
ent neoantigens, CTLs can also recognize elevated 
levels of self-antigens,14–16 raising the possibility 
that their influx may be also important in the con-
trol of weakly immunogenic cancers with limited 
TMB. However, it remains unknown whether 
tumor infiltrating functional CTL levels correlate 
with improved patient survival and are independ-
ent of TMB. In order to investigate it, we devel-
oped the Functional Hotness Score (FHS), 
combining gene expressions of markers and 
attractants of activated CTL.

Methods

Study design and patient cohorts
A total of 3011 breast cancer patients were ana-
lyzed. We used the breast cancer cohort from The 
Cancer Genome Atlas (TCGA)17 as a testing 
cohort to establish FHS and to characterize the 
high-FHS cohort. As a validation cohort, we used 
the Molecular Taxonomy of Breast Cancer Inter-
national Consortium (METABRIC) cohort.18,19 
There are 1091 and 1904 primary breast cancer 
tissues with gene expression, in TCGA and 
METABRIC, respectively, and patient demo-
graphics are shown in Table 1. TCGA provisional 

Table 1. Patient demographics.

TCGA (n = 1091) METABRIC (n = 1904)

Age (years)

 Mean ± SD 58.5 ± 13.2 61.1 ± 13.0

Menopause

 Post 703 1493

 Pre 226 411

 Indeterminate 73 0

 Unknown 89 0

ER

 ER+ 805 1459

 ER− 237 445

 Indeterminate 2 0

 Unknown 47 0

PR

 PR+ 697 1009

 PR− 342 895

 Indeterminate 4 0

 Unknown 48 0

HER2

 HER2+ 185 236

 HER2− 767 1668

 Indeterminate 25 0

 Unknown 114 0

Histology

 IDC 781 1500

 ILC 203 142

 Others 107 262

Stage

 Stage 0 0 4

 Stage I 180 475

 Stage II 618 800

 Stage III 249 115

 Stage IV 20 9

 Stage X 24 501

IDC, infiltrating ductal carcinoma; ILC, infiltrating lobular carcinoma; METABRIC, 
Molecular Taxonomy of Breast Cancer International Consortium; TCGA, The Cancer 
Genome Atlas.
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and METABRIC datasets were downloaded 
through cBioportal.20,21 Mutation count data was 
from comprehensive DNA sequence in TCGA 
and from 40 targeted DNA sequences in 
METABRIC. The patients with a mutation count 
of more than or equal to 50 were classified as high-
TMB group in TCGA, and more than or equal to 
20 in METABRIC. Metastatic breast cancer 
(MBC) cohort GSE11059022 (n = 16) was down-
loaded through the Gene Expression Omnibus 
repository. Since all the patients analyzed in this 
study were from de-identified publicly available 
cohorts, institutional review board approval was 
waived, and informed consents were obtained by 
the researchers of the original publication (TCGA,17 
METABRIC,18,19 GSE11059022), which was the 
case in our previous publications.23,24

CIBERSORT
The infiltrating immune cell fractions into tumors 
were estimated by the CIBERSORT algorithm.25 
The calculated data was downloaded through 
the TCIA website (https://tcia.at/home).26 The 
TNBC patients were divided into high and low 
CD8+ T cell groups using same percentage of 
high and low FHS groups.

Gene set enrichment analysis
Gene set enrichment analysis (GSEA) was con-
ducted comparing high and low FHS TNBCs 
among 50 hallmark gene sets27 using software 
provided by the Broad Institute (http://software.
broadinstitute.org/gsea/index.jsp) as previously 
described.23,28,29 False discovery rate <0.01 was 
considered as significant.

Statistical analysis
Score and TMB differences between two groups 
were analyzed using Student’s t-test, and one-way 
analysis of variance was used for the comparison 
of more than two groups. Pearson correlations 
were calculated based on the expression levels of 
the genes and plotted. The survival analyses were 
conducted by Kaplan–Meier curve with log-rank 
test, and univariate and multivariate analyses were 
conducted by Cox regression model. The data of 
infiltrating immune cell fractions was compared 
by Wilcoxon test. All statistical analyses were  
performed using R software (http:///www. 
r-project.org/) and Bioconductor (http://biocond 
uctor.org/).

Results

Development of the FHS
The FHS was developed using the combination 
of CD8A, GZMB and chemokine gene expres-
sion that deliver the best hazard ratio of overall 
survival (OS) in TCGA. Hazard ratio of CCL5 
is 0.677, which was much lower than that of 
CXCL10 (0.890). However, CCL5 expression 
was highly correlated with CD8A and GZMB 
(R2 = 0.840 and R2 = 0.787, respectively) [Figure 
1(a) and (b)] and combination of CCL5 together 
with CD8A and GZMB did not improve the pre-
diction of prognosis (hazard ratio 0.681) com-
pared with CXCL10 (hazard ratio 0.632) 
[Figure 1(c)]. Therefore, we established FHS 
combining CD8A, GZMB and CXCL10 expres-
sion (hazard ratio 0.632) [Figure 1(c)]. FHS 
predicted breast cancer patient prognosis better 
than each single gene expression [Figure 1(c)]. 
Further, adding CCL5 did not enhance the 
prognostic power (hazard ratio 0.720) [Figure 
1(c)]. FHS was calculated using the log hazard 
ratio of OS in each gene, using the following 
formula [Figure 1(d)]:

FHS
298 3 3

117
= −

−( ) + −( )
+ −( )










CD8A GZMB

CXCL10

* . * .

* .

0 0 0

0

Following the previous reports,30,31 we defined 
the top 15% of FHS tumors in the whole cohort 
as the “high-FHS” tumors. As we expected, the 
patients with the high-FHS tumors showed sig-
nificantly better OS in the testing cohort, TCGA 
(p = 0.006) [Figure 2(a)]. This finding was also 
confirmed in the validation cohort, METABRIC, 
in which the breast cancer patients with the high-
FHS tumors showed significantly better progno-
sis (p = 0.034) [Figure 2(b)].

Decreased FHS in MBC
Since MBC is known to be particularly immuno-
suppressed, we investigated the association of 
FHS with MBC. Among the primary tumors, the 
stage IV tumors that have metastasis showed 
trend towards lower FHS than stage I/II/III 
tumors in TCGA, although it did not reach sta-
tistical significance (p = 0.082) [Figure 3(a)]. In 
the MBC cohort (GSE110590), which contains 
16 primary breast cancers and 67 metastatic tis-
sues from the same patients, the metastatic 
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tumors showed significantly lower FHS than the 
primary tumors (p = 0.018) [Figure 3(b)]. Most 
of the metastatic tumors showed lower FHS as 
compared with its matched primary tumors, par-
ticularly in the liver (p = 0.003) and the lung 
(p = 0.031) [Figure 3(b) and (c)]. On the other 
hand, many of the brain metastases showed simi-
lar levels of FHS compared with their matched 
primary tumors (p = 0.068) [Figure 3(b) and (c)].

Highest FHS in TNBC among breast cancer 
subtype
Since TNBC is the most immunogenic subtype, 
we hypothesized that FHS is higher in TNBC than 
in other subtypes. As expected, TNBC showed the 
highest FHS among all subtypes in TCGA 
(p < 0.001) [Figure 4(a)]. Consistently, TNBC 
accounted for the largest portion of the high-FHS 
tumors in TCGA (39.6%) [Figure 4(b)]. These 

Figure 1. Establishment of Functional Hotness Score (FHS). (a) Correlation plots of CXCL10 and CCL5 to CD8A 
as well as granzyme B (GZMB) in The Cancer Genome Atlas (TCGA). (b) Correlation matrix of CD8A, GZMB, 
CXCL10 and CCL5 in TCGA. (c) Forest plot of multiple gene combination to estimate patient overall survival (OS) 
in TCGA. (d) Formula of FHS calculation.
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findings were validated in the METABRIC cohort, 
where the highest FHS was seen in TNBC among 
subtypes; TNBC was the most dominant in the 
high-FHS tumors [Figure 4(c) and (d)].

TNBC patients with high-FHS tumors 
demonstrate prolonged survival
We further investigated the impact of FHS on 
patient survival in each subtype. In the hormone 
receptor (HR)-positive patients, there was no 
statistical difference in OS between the high- 
and the low-FHS tumors in TCGA (p = 0.106) 
[Figure 5(a)]. Further, HR-positive/HER2-
negative (p = 0.250) and HR-positive/HER2-
positive (p = 0.117) cohort did not show 
significant difference in OS by FHS in TCGA 
(Supplemental material Figure S1A online). On 
the other hand, the high-FHS tumor showed 
significantly better OS in the HR-negative 
patients in TCGA (p = 0.002) [Figure 5(a)]. 
When we focused on only TNBC, the patients 
with high-FHS tumor also showed significantly 
better prognosis (p = 0.001) [Figure 5(a)], but 
not in the HR-negative/HER2-positive cohort 
(p = 0.279) (Supplemental Figure S1a). These 
findings were validated in the METABRIC 
cohort, in which FHS did not predict patient 
survival in the HR-positive patients (p = 0.428) 
[Figure 5(b)], as well as HR-positive/HER2-
negative (p = 0.309) or HR-positive/HER2-
positive patients (p = 0.654) (Supplemental 
Figure S1b), but did in the HR-negative 
(p < 0.001) as well as TNBC patients (p = 0.007) 
[Figure 5(b)]. In the METABRIC cohort, the 
HR-negative/HER2-positive cohort also showed 
significant difference in survival by FHS 
(p = 0.049) (Supplemental Figure S1b), thus, 
the impact of FHS on patient survival in 
HR-negative/HER2-positive cohort is inconclu-
sive. In the univariate analysis, invasive lobular 
carcinoma in histological subtype, advanced 
stage (stage III/IV) and low-FHS were signifi-
cant risk factors for OS in TNBCs of TCGA 
cohort [Figure 5(c)]. Further, multivariate anal-
ysis demonstrated that only advanced stage 
(stage III/IV) and lower FHS were independent 
prognostic factors [Figure 5(d)]. FHS showed 
clinical significance in TNBC, thus, we further 
focused on TNBCs.

Anti-cancer immune signature in high-FHS TNBC
Cell composition fraction estimation analysis 
revealed that the high-FHS TNBCs were 

significantly associated with higher infiltration of 
anti-cancer immune cells, such as CD8+ T cells 
(p < 0.001), activated memory CD4+ T cells 

Figure 2. The association of Functional Hotness Score (FHS) and breast 
cancer patient prognosis. (a) Overall survival by FHS in The Cancer Genome 
Atlas (TCGA). (b) Disease-specific survival by FHS in Molecular Taxonomy of 
Breast Cancer International Consortium (METABRIC).

Figure 3. The association of Functional Hotness Score (FHS) and 
metastatic (Met) breast cancer (MBC). (a) FHS comparison between stage 
I/II/III and stage IV primary breast tumors in The Cancer Genome Atlas. 
(b) FHS comparison between primary and metastatic tumors in MBC cohort, 
GSE110590. (c) Matched pair comparison between primary and metastatic 
tumors in GSE110590.
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(p < 0.001), γδ T cells (p < 0.001) and M1 mac-
rophages (p < 0.001) [Figure 6(a)], and with 
lower infiltration of suppressive immune cells, 
such as regulatory T cells (p = 0.003), and M2 
macrophages (p < 0.001) in TCGA [Figure 6(b)]. 
Further, GSEA demonstrated that the high- 
FHS TNBCs were significantly associated with 
immune response-related gene sets, including 
allograft rejection, complement, interferon 
(IFN)-γ response, IL2/STAT5 signaling, inflam-
matory response, IL6/JAK/STAT3 signaling, 
and IFN-α response in TCGA [Figure 6(c)]. 
These findings indicate that FHS reflects not only 
CD8+ T cell infiltration, but also a broader type-1 
anti-cancer immunity.

High FHS predicts improved survival of TNBC 
patients regardless of TMB
Last, we investigated FHS in the association with 
TMB. Unexpectedly, there was no significant dif-
ference in TMB level between the low- and the 

high-FHS TNBCs (p = 0.276) [Figure 7(a)]. 
When we stratified patients into high- (⩾50) and 
low-TMB (<50), the proportions of the high- 
and the low-TMB tumors were also not signifi-
cantly different between the high- and the 
low-FHS TNBCs [Figure 7(b)]. To investigate 
whether the prognostic value of FHS depends on 
TMB, we analyzed the significance of FHS in the 
high- and the low-TMB TNBCs. Interestingly, 
the patients with high-FHS TNBC showed better 
OS not only in the high-TMB group (p = 0.019), 
but also in the low-TMB group (p = 0.049) in 
TCGA [Figure 7(c) and (d). Strikingly, when 
both FHS and TMB were considered, TNBCs 
with the high FHS and the high TMB demon-
strated a particularly long OS compared with the 
others (p = 0.008), highly unusual for the aggres-
sive characteristics of TNBC [Figure 7(e)]. 
Contrary, when we used CD8+ T cell count 
instead FHS, there was no difference in patient 
survival between the high CD8+ T cell with high 
TMB tumor and the other tumors (p = 0.452) 

Figure 4. Functional Hotness Score (FHS) by subtype. (a) FHS comparison among breast cancer subtypes 
in The Cancer Genome Atlas (TCGA). (b) Distribution of each subtype in the high- and the low-FHS breast 
cancers in TCGA. (c) FHS comparison among breast cancer subtypes in Molecular Taxonomy of Breast Cancer 
International Consortium (METABRIC). (d) Distribution of each subtype in the high- and the low-FHS breast 
cancers in METABRIC.
HR, hormone receptor; NA, not available; TNBC, triple-negative breast cancer.
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[Figure 7(f)]. Similar findings were shown in the 
METABRIC cohort; however, this is limited by 
mutation data with only representative genes 
rather than the whole genome (Figure S2). The 
high-FHS group showed better survival only in 
the low-TMB group (p = 0.003) and not in the 
high-TMB group, most likely because it has only 
40 targeted DNA mutation data, thus, there were 
only 30 patients in total in the high-TMB group 
(Figure S2). These findings suggest that high 
FHS associates with better prognosis in TNBC 
regardless of TMB.

Discussion
In this study, we established FHS combining 
CD8A, GZMB and CXCL10 gene expression lev-
els of a bulk tumor of TNBC to identify “hot 
tumors” with improved prognosis despite high 
risk subtype. The FHS has a stronger prognostic 
value than each individual gene. The FHS is 
lower in stage IV than earlier stage tumors, and 
lower in metastatic tumors than primary tumors 
from the same patients. TNBC has the highest 
FHS among breast cancer subtypes, and high 
FHS predicted prolonged survival in TNBCs. 

Figure 5. The association of Functional Hotness Score (FHS) and breast cancer patient prognosis by subtype. 
(a) Overall survival (OS) by FHS in hormone receptor (HR)-positive, HR-negative, and triple-negative breast 
cancer (TNBC) in The Cancer Genome Atlas (TCGA). (b) Disease-specific survival by FHS in HR-positive, HR-
negative, and TNBC in Molecular Taxonomy of Breast Cancer International Consortium (METABRIC). (c) Forest 
plot of hazard ratio for OS in the univariate analysis of TCGA TNBC patients. (d) Forest plot of hazard ratio for 
OS in the multivariate analysis of TCGA TNBC patients.
IDC, infiltrating ductal carcinoma; ILC, infiltrating lobular carcinoma.
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The high FHS is associated with not only CD8+ 
T cell infiltration, but also a broader type-1 anti-
cancer immunity in TNBCs. Importantly, the 
prognostic value of the FHS is independent of the 
TMB. In fact, FHS used jointly with the TMB 
index allowed us to identify the unique subset of 
TNBC patients with particularly good prognosis.

FHS combines the expression levels of CTL line-
age marker CD8A,12 and GZMB, an enzyme 
secreted by CTLs and NK cells to induce apopto-
sis target cells.12,13 In addition, it includes 
CXCL10. CXCL10 is a chemokine which attracts 
not only activated CTLs (effector, effector-mem-
ory and central memory, but not naïve or sup-
pressed cells), but also multiple immune cells, 
including NK cells, dendritic cells, and mac-
rophages towards cancer lesions.32 Consequently, 
CXCL10 is involved in modulating both innate 
and adaptive immunity, but selectively their desir-
able effector, rather than suppressive, compo-
nents.33 Indeed, our results demonstrated that 
high-FHS tumors showed not only enhanced 
markers of cellular immunity, such as higher 

CD8+ T cell infiltration, but also indications of 
enhanced humoral immunity, judging by acti-
vated memory CD4+ T cells. Further, high-FHS 
tumors are associated with M1 macrophages, 
which can produce CXCL10 and attract Th1 
CD4+ helper T cells. This is in agreement with 
the commonly accepted notion that tumor infil-
trating immune cells are highly correlated with 
each other.11 CCL5 is also a chemokine which 
attracts effector T cells,34 but it is also produced 
by CTLs themselves in tumor tissues.12 
Accordingly, CCL5 alone predicts patient prog-
nosis better than CXCL10 alone, but, since its 
expression is tightly correlated with CD8A and 
GZMB, it does not provide additional prognostic 
value as a part of composite FHS.

Calculation of FHS requires only three genes in a 
bulk unseparated tumor tissue, which can be 
measured by quantitative polymerase chain reac-
tion (qPCR). It is more time, cost and labor effi-
cient than IHC and minimizes the evaluation 
bias. It addresses complementary aspects of CTL 
(numbers/expansion, effector function and 

Figure 6. The association of Functional Hotness Score (FHS) and cancer immunity in triple-negative breast 
cancers (TNBCs). (a) Comparison of anti-cancer immune cell infiltration between the low- and the high-FHS 
TNBCs in The Cancer Genome Atlas (TCGA). (b) Comparison of suppressive immune cell infiltration between 
the low- and the high-FHS TNBCs in TCGA. (c) Gene sets enriched in the high-FHS TNBCs in TCGA [false 
discovery rate (FDR) q <0.01].
NES, normalized enrichment score
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migratory function) and differentiates between 
patients with good and poor prognosis within the 
same histological tumor cohorts. The prognostic 
value of FHS will be confirmed by qPCR in our 
upcoming prospective study.

The number of TILs is a known prognostic bio-
marker in some cancers, including breast cancer 
and melanoma.1–3,35 The relationship between 
TILs and PD-1/PD-L1 expression has been 
reported in multiple types of cancer. PD-1 expres-
sion in lymphocytes correlates with PD-L1 expres-
sion in cancer cells in breast cancer and 
melanoma.36,37 The number of TILs correlates 
with PD-1 expression in lymphocyte and PD-L1 
expression in cancer cells in breast cancer and mel-
anoma,36,37 whereas it also inversely correlates with 
plasma PD-1 levels in melanoma.35 Combination 
of PD-L1 expression in cancer cells and the num-
ber of infiltrating CTLs predicts patient prognosis 
in gastric cancer.38 PD-1 positive T cell character-
istics, including cytokine and chemokine produc-
tions, are different in the tumor (TIL) and in the 
peripheral blood in lung cancer.39 Positive stain-
ings of PD-L1 in cancer cells and PD-1 in lympho-
cytes are associated with aggressive cancer biology, 
on the other hand, they are also associated with 
increased pathological complete response to the 
neoadjuvant chemotherapy in breast cancer.36

ICI is only effective in a small portion of TNBC 
patients. Although PD-1/PD-L1 expressions can 
be utilized as a prognostic biomarker and predict 
cancer aggressiveness in association with TIL 
levels as mentioned above, the predictive value of 
PD-L1 expression by IHC is limited because 
some PD-L1 negative patients still respond to 
PD-1 blockade.9 Similarly, the predictive value 
of individual CTL markers is not reliable, par-
tially due to a huge variation and spatial hetero-
geneity within individual tumors.10 We believe 
that FHS may provide a way to overcome these 
challenges, to identify patients who respond to 
ICI treatment. Therefore, our follow-up study 
will evaluate the association of FHS with the 
response to immunotherapy.

TMB has been proposed as a key factor in the 
generation of immunogenic tumor-associated 
antigenic epitopes, acting as primary targets for 
CTLs in many types of tumors.40 Indeed, it has 
been shown that TMB and CD8+ T cell infiltra-
tion are correlated with each other in several types 
of cancers, including renal cell carcinoma, pan-
creatic, thyroid, skin and uterine cancers.41 TMB 

is also known to be associated with higher sensi-
tivity of ICIs in breast cancer, which is thought to 
be due to enhanced anti-cancer immune 
response.42 Thus, it was of interest to investigate 
the relationship of our FHS with TMB. 
Unexpectedly, we found that the TMB, although 
it is a prognostic biomarker by itself, does not 
determine the FHS, which can be used indepen-
dently in a complementary fashion to predict 
prognosis in both the high- and low-TMB patient 

Figure 7. Functional Hotness Score (FHS) and tumor mutational burden 
(TMB) in triple-negative breast cancers (TNBCs). (a) Comparison of TMB 
between the low- and the high-FHS TNBCs in The Cancer Genome Atlas 
(TCGA). (b) Patients distribution in association with FHS and TMB in TCGA 
TNBCs. (c) and (d) Overall survival (OS) estimation by FHS in the high- and 
the low-TMB TNBC patients in TCGA with full DNA sequence data. (e) OS 
estimation comparing the high-FHS–high-TMB and the others and (f) high-
CD8+ T cell–high-TMB and the others in TCGA TNBCs.
HiFHS, high Functional Hotness Score; LoFHS, low Functional Hotness Score.
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cohorts. What was particularly striking was that 
even the low-TMB tumors showed improved 
prognosis, and with the combination of high FHS 
with high TMB showed an optimal prognostic 
value to identify a unique subset of TNBC 
patients with uniformly long survival.

This study has limitations. Since publicly availa-
ble cohorts were analyzed using a bioinformatical 
approach alone, this is a retrospective study with 
its known biases. Future prospective studies to 
investigate the utility of qPCR to easily measure 
FHS and to investigate the association between 
FHS and outcome of immunotherapy are neces-
sary to confirm the findings.

In summary, we demonstrated that high FHS 
based on the gene expression levels of CD8A, 
GZMB and CXCL10 predicts excellent long-term 
TNBC patient survival with enhanced anti-can-
cer immunity regardless of TMB. FHS consti-
tutes an independent prognostic marker of 
survival that is particularly robust when combined 
with TMB in TNBCs.
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