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The controller protein of the type II restriction–modification (RM) system

Esp1396I binds to three distinct DNA operator sequences upstream of the

methyltransferase and endonuclease genes in order to regulate their expression.

Previous biophysical and crystallographic studies have shown molecular details

of how the controller protein binds to the operator sites with very different

affinities. Here, two protein–DNA co-crystal structures containing portions of

unbound DNA from native operator sites are reported. The DNA in both

complexes shows significant distortion in the region between the conserved

symmetric sequences, similar to that of a DNA duplex when bound by the

controller protein (C-protein), indicating that the naked DNA has an intrinsic

tendency to bend when not bound to the C-protein. Moreover, the width of the

major groove of the DNA adjacent to a bound C-protein dimer is observed to be

significantly increased, supporting the idea that this DNA distortion contributes

to the substantial cooperativity found when a second C-protein dimer binds to

the operator to form the tetrameric repression complex.

1. Introduction

Bacterial restriction–modification (RM) systems act as a form of

primitive immune system and prevent the establishment of foreign

DNA (such as bacteriophages and plasmids) within bacteria (Wilson

& Murray, 1991). It has been proposed that RM systems play a key

role during the process of horizontal gene transfer between bacteria

(Akiba et al., 1960). An RM system is comprised of two comple-

mentary enzymes: a methyltransferase (M) to label ‘self’ DNA and an

endonuclease (R) to cleave unlabelled (‘non-self’) DNA (Wilson &

Murray, 1991). The plasmid-borne type II RM system Esp1396I has

been well studied both in vitro and in vivo and reveals a temporal

control mechanism that employs a controller protein (C-protein)

encoded within the RM operon (Cesnaviciene et al., 2003; Bogdanova

et al., 2008, 2009). This temporal control is necessary for the correct

function of RM systems and to prevent auto-restriction (i.e. endo-

nucleolytic cleavage of the bacterial chromosome and pEsp1396I

plasmid).

The controller protein C.Esp1396I, and indeed all other C-proteins

studied to date, have been shown to be homodimeric helix–turn–helix

proteins that bind to pseudo-symmetrical DNA operator sequences

(Ball et al., 2009; McGeehan et al., 2005; Streeter et al., 2004; Kita

et al., 2002; Sawaya et al., 2005). In C.Esp1396I and similar systems,

it has been proposed that each DNA operator site comprises

two ‘C-boxes’ having pseudo-dyad symmetry with the consensus

sequence GACT and a short spacer sequence in between them that

is generally comprised of alternating purine–pryrimidine sequences

(Streeter et al., 2004; Knowle et al., 2005; Sorokin et al., 2009).

Subsequently, it was found that the only specific contacts between

C.Esp1396I and the C-boxes are to the GAC bases, so the C-box

is perhaps better described as the trinucleotide GAC (and its

symmetry-related sequence GTC) with the two C-boxes being sepa-

rated by the spacer TATA, at least in the optimal binding site (Ball

et al., 2012). In addition, there are sequence-specific contacts to a

conserved TG motif outside the C-boxes.

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kw5075&bbid=BB7
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C.Esp1396I binds to three subtly different DNA sequences with

vastly different affinities (Kd between 1 and 230 nM) that are located

upstream of the C/R and M genes: OM (which regulates the expres-

sion of the M gene), and OL and OR (which together control the

expression of both the C and R genes) (Bogdanova et al., 2009; Fig. 1).

The X-ray crystal structure of C.Esp1396I has been determined to

high resolution as the free protein (Ball et al., 2009) and as various

protein–DNA complexes (McGeehan et al., 2008, 2012; Ball et al.,

2012). All of the C-protein–DNA complex structures reveal distor-

tion of the DNA helix owing to compression of the minor groove,

which is either induced or stabilized by the bound C-protein. Owing

to symmetry-related averaging of the tetrameric C-protein–DNA

complex in the crystal structure (McGeehan et al., 2008) further

studies employed just single operator sites, to which a single

C-protein dimer bound (Ball et al., 2012; McGeehan et al., 2012). The

OL sequence yielded the highest resolution C-protein–DNA complex

structure to date and showed the binding interface in great detail

(McGeehan et al., 2012). The subsequent OM C-protein–DNA

complex (Ball et al., 2012) revealed conformational flexibility within

the protein structure, enabling the protein to recognize different

sequences but with quite different affinities. In contrast, the DNA was

shown to have an almost identical structure in each case, with the

overall bend angle being very similar to that of OL and closely

resembling that observed in the C/R tetrameric complex.

Here, we present two novel crystal structures that show the

operator DNA structure corresponding to the OR binding site, the

lowest affinity of the three for C.Esp1396I. Each of these two

structures, termed 19OR and 25OL, are nucleoprotein complexes

comprising a C-protein dimer and a DNA duplex. The 19OR structure

includes the entire OR C-protein binding site. The 25OL DNA

sequence includes the OL sequence plus half of the OR C-protein

binding site. The 25OL complex allows the observation of part of the

free (unbound) OR sequence, unlike the previously published 35OL+R

complex that has the complete OR sequence. In the latter complex,

owing to the high cooperativity between sites, the C-protein forms

a tetramer (i.e. two dimers) on the 35OL+R DNA (McGeehan et al.,

2008).

2. Materials and methods

2.1. Crystallization

Expression and purification of native C.Esp1396I was carried out

as described previously (McGeehan et al., 2008). In brief, C.Esp1396I

was overexpressed in Escherichia coli strain BL21 (DE3) pLysS using

the pET-28b vector to introduce an N-terminal six-histidine sequence.

C.Esp1396I was purified using nickel-affinity chromatography and

size-exclusion chromatography. Prior to the crystallization trials,

the six-histidine tag was removed using thrombin. The DNA oligo-

nucleotides for crystallization of the 19OR complex (50-TGTGT-

GATTATAGTCAACA-30 and its complementary strand) and the

25OL complex (50-ATGTGACTTATAGTCGTGTGATTA-30 and its

complementary strand) were synthesized by ATDBio and Euro-

gentec, respectively, and were purified by RP-HPLC. The comple-

mentary oligonucleotides were annealed by heating to 353 K

followed by cooling and the duplexes were further purified using

gel electrophoresis. Initial cocrystallization was carried out using

a HoneyBee X8 crystallization robot (Cronus Technologies) and

sparse-matrix screening using the PACT Premier and JCSG+ screens

(Molecular Dimensions Ltd) at varying molar ratios of C.Esp1396I

to DNA duplex. Crystals of the 19OR complex formed by vapour

diffusion in 0.1 M propionic acid, sodium cacodylate and bis-tris

propane (PCB) buffer pH 4.0 with 25%(w/v) PEG 3350 at a molar

protein:DNA ratio of 1:1. However, these crystals were of insufficient

size for diffraction experiments, so a microseeding approach was

employed (D’Arcy et al., 2007). This produced much larger crystals in

0.1 M PCB buffer pH 5.0, 25%(w/v) PEG 3350, 10 mM spermidine.

The crystals were confirmed to contain both protein and DNA by

washing them and subsequently dissolving them in dH2O before

taking a UV absorbance spectrum. Crystals of the 25OL complex

formed in 0.1 M PCB buffer pH 4.0, 20%(w/v) PEG 1500, 10 mM

spermidine at a molar protein:DNA ratio of 2:1.
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Figure 1
Organization of genes in the Esp1396I RM system. (a) The C-protein binding sites
are coloured orange. The C-protein gene (C) is coloured green, the endonuclease
gene (R) is coloured red and the methyltransferase gene (M) is coloured blue
(adapted from Bogdanova et al., 2009). (b) The OL+R C-protein binding sites. The
conserved GAC binding sites are underlined and the central TATA sequences are
shown in bold. The TATA of the OR binding site forms part of the ‘�35 box’ for the
C/R genes

Figure 2
C-protein–DNA complexes. (a) C.Esp1396I dimer bound to a 25 bp DNA duplex
containing the native operator OL and half of the OR sequence (PDB entry 4iwr).
(b) C.Esp1369I dimer interacting with a 19 bp DNA duplex containing the native
operator OR (PDB entry 4i8t).



2.2. X-ray diffraction data collection and refinement

The 19OR and 25OL crystals were transferred to a cryoprotectant

containing 25%(v/v) glycerol or 20%(v/v) PEG 400, respectively, and

flash-cooled in liquid nitrogen. For the 19OR crystal, 180 images of

1� oscillation were collected on beamline I02 at the Diamond Light

Source (DLS), Oxfordshire at a wavelength of 0.98 Å using an ADSC

Quantum 315r CCD detector at 100 K. For the 25OL crystal, 120

images of 1� oscillation were collected using an ADSC Q4R CCD

detector at 100 K on beamline ID14-4 at the ESRF, Grenoble.

The data were processed using either MOSFLM (Leslie, 1992)

and AIMLESS (Winn et al., 2011; Evans, 2006, 2011) or XDS and

XSCALE (Kabsch, 2010) and a molecular-replacement solution was

found by Phaser (McCoy et al., 2007) using the native free protein

structure as a search model (Ball et al., 2009; PDB entry 3g5g). The

DNA was built by hand in Coot (Emsley & Cowtan, 2004) and was

subsequently refined using REFMAC5 (Murshudov et al., 2011) and

phenix.refine (Afonine et al., 2005). Data-processing and refinement

statistics are summarized in Table 1. The completed models were

deposited in the PDB with accession codes 4i8t (19OR) and 4iwr

(25OL).

3. Results

3.1. X-ray diffraction and structure solution

The 19OR crystals showed weak isotropic diffraction extending to

3 Å resolution. The scaling program AIMLESS (Evans, 2006, 2011;

Winn et al., 2011) gave a high Rmerge for the outer shell, but inspection

of the electron-density maps and use of the CC1/2 metric (Karplus &

Diederichs, 2012) gave a clear indication that the data were accep-

table to 3 Å resolution, with a final Rwork and Rfree of 0.28 and 0.36 for

the outer shell. The structure was refined in space group C2 with one

copy of the complex per asymmetric unit (Fig. 2). The resulting

2Fo � Fc maps were of good quality for the resolution (Fig. 3).

The best crystals of the 25OL complex diffracted to �2.3 Å reso-

lution. The structure was refined in space group P32 with two copies

of the complex per asymmetric unit. The DNA was easily modelled

into the electron density for the section that was bound to C.Esp1396I

(McGeehan et al., 2012). However, owing to the high degree of

flexibility of the additional six base pairs, these were more difficult to

model and were primarily based on the positions of the backbone

phosphate groups since these gave much higher peaks in the electron

density relative to the bases. This flexibility resulted in B factors of

approximately 130 Å2 in this unbound section of the DNA compared

with an average B factor of approximately 15 Å2 in the protein-bound

portion of the DNA (Supplementary Fig. S11). DNA groove-width

analysis (Fig. 4) was performed using the Curves+ server (Lavery et

al., 2009).

3.2. The 19OR structure

The overall fold of C.Esp1396I in the 19OR structure closely

matches that of the free protein structure (PDB entry 3g5g; Ball et al.,

2009), with an overall r.m.s.d. of 0.65 Å over all observable main-

chain atoms. The flexible loop regions are found in the major loop

conformation observed in the free protein structure (Ball et al., 2009).
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Figure 3
Representative 2Fo � Fc electron-density maps. (a) Base pairs of T14 and C15 of
chain C with G6 and A7 of chain D from the 19OR DNA. (b) Base pairs between
chain G (C7 and T8) and chain H (A18 and G19) from the 25OL DNA. Hydrogen
bonds are shown as dashed lines. 2Fo � Fc electron-density maps are contoured at
0.16 and 0.32 e Å�3 for 19OR and 25OL, respectively. The images were generated
using PyMOL.

Table 1
X-ray crystal data, refinement and model statistics.

Values in parentheses are for the highest resolution shell.

Complex 19OR 25OL

PDB code 4i8t 4iwr
Space group C2 P32

Unit-cell parameters (Å, �) a = 75.51, b = 60.86,
c = 80.35,
� = � = 90,
� = 113.47

a = b = 48.02,
c = 218.35,
� = � = 90,
� = 120

Solvent content (%) 50 44
Complexes in asymmetric unit 1 2
R.m.s. distance between complexes (Å) N/A 0.25
Data collection

Beamline I02, DLS ID14-4, ESRF
Detector ADSC Q315r ADSC Q4R
Wavelength (Å) 0.979 0.933
Resolution (Å) 3.0 2.4
No. of measured reflections 22560 56668
No. of unique reflections 6809 11658
Completeness (%) 99.9 (100) 97.8 (94.6)
hI/�(I)i 5.9 (0.9) 10.2 (2.0)
Multiplicity 3.3 (3.3) 4.9 (4.3)
Rmerge† 0.158 (1.07) 0.048 (0.542)
CC1/2‡ 0.988 (0.652) N/A
Wilson B factor (Å2) 58 59

Refinement parameters
Rwork/Rfree 0.235/0.300 0.197/0.259
No. of atoms

Protein 1253 2463
DNA 776 2050

Average B factor (Å2)
Protein 83 14
DNA 93 30

R.m.s. deviations from ideal geometry§
Bond lengths (Å) 0.002 0.011
Bond angles (�) 0.675 1.52

Ramachandran outliers (%) 3.6 2.7
MolProbity} score 2.8 2.5
Clashscore 11 6

† Rmerge =
P

hkl

P
i jIiðhklÞ � hIðhklÞij=

P
hkl

P
i IiðhklÞ, where hI(hkl)i is the average of

Friedel-related observations of a unique reflection. ‡ CC* = [2CC1/2/(1 + CC1/2)]1/2,
where CC* is as estimate of CCtrue based on a finite sample size. § Engh & Huber
(2001). } Chen et al. (2010).

1 Supplementary material has been deposited in the IUCr electronic archive
(Reference: KW5075).



However, owing to the limited resolution, not all side chains could be

placed with high confidence other than those that are highly ordered

and binding to symmetry-related protein chains or to the DNA.

Surprisingly, the protein dimer does not bind to the DNA in

the usual manner via the helix–turn–helix (HTH) motif; instead, it

binds ‘end-on’ to the DNA helix, resulting in very few protein–DNA

interactions (Fig. 2b). This non-biological complex reflects the low

intrinsic binding affinity at a single OR site. It is only when a C-protein

dimer is bound to the adjacent OL site that the protein binds in the

expected manner (as observed in the complex with the 35 bp OL + OR

operator DNA). This arises from the high degree of cooperativity

that increases the affinity for the OR site by two orders of magnitude

when a C-protein dimer is bound at the OL site.

In the 19OR crystal structure, each protein dimer contacts four

DNA duplexes and two protein subunits belonging to adjacent

asymmetric units. The protein–protein contacts involve two tyrosines

(Tyr29 from each subunit) stacking against each other in a manner

similar to that previously observed, but with the addition of hydrogen

bonds between Tyr29 and Glu25 and Asp26 (Ball et al., 2009, 2012;

McGeehan et al., 2012). The only clear contacts between the

C-protein and the DNA occur between the protein side chains and

the phosphate groups in the DNA backbone.

The overall conformation of the DNA duplex in the 19OR struc-

ture does not conform to the canonical B-form; it is significantly

distorted and resembles the biologically bound conformation

previously observed in the 19OL structure (Figs. 4 and 5). The overall

bend of 42� is a little less than that observed in the biologically bound

OL complex (54�), but the DNA retains the reduced minor groove

in the central spacer between the two C-boxes, despite the lack of

significant interactions with the HTH motif. The bend in the DNA

is centred at the TATA sequence between the C-boxes (Fig. 1), as

observed in other C-protein complexes. The bent DNA structure that

we observe here is most likely to reflect a natural propensity to bend

at this sequence, and in biologically relevant complexes is enhanced

and stabilized by interactions with the HTH motif, as observed in the

tetrameric complex and in the higher affinity OL and OM complexes

(McGeehan et al., 2008, 2012; Ball et al., 2012).

3.3. The 25OL structure

There were no significant differences between the conformations

of the two complexes in the asymmetric unit. The 25OL protein

structure (Fig. 2a) closely resembles that of the previously published

19OL protein–DNA complex structure, with an overall r.m.s.d. of

0.48 Å for the main-chain atoms of the protein monomers and 0.92 Å

for the corresponding 18 bp of the DNA (Fig. 5). The same specific

and nonspecific protein–DNA contacts were visible in the structure.

However, owing to the longer DNA component of the complex,

the crystal-packing interactions between the proteins are markedly

different.

The only observable protein–protein contacts between crystallo-

graphic symmetry-related dimers again involve the stacking of Tyr29

side chains, together with a hydrogen bond between Tyr29 and Asp26

of the symmetry-related subunit. There are very few protein–DNA

interactions between chains that are not within the biological

complex and all involve interactions between protein side chains

and phosphate groups on the DNA backbone. The crystallographic

DNA–DNA interactions between symmetry-related molecules are

limited to stacking between the terminal base pair A1–T25 (chains C

and D) and the corresponding A–T base pair of chains G and H. This

causes the DNA to form a pseudo-continuous double helix.

The width of the major groove in the 25OL DNA varies from 10 to

15 Å in a sequence-dependent manner (Fig. 4). Likewise, the minor-

groove width varies from 2 to 9 Å. The portion of the 25OL structure

that contains the first C-box (OL) overlays very closely with the

relevant sequence in the 35OL+R tetramer structure, with an r.m.s.d.

of 0.92 Å (Fig. 4). The remainder of the DNA that is not bound by

the protein also follows a similar path to that of the DNA in the

tetrameric complex. It is noteworthy that the major groove that is

significantly widened in the centre of the tetrameric 35 bp complex is

also widened in the equivalent region of the 25OL complex, even

though this region of the DNA is unbound (Figs. 4 and 5).

4. Discussion

These novel protein–DNA complexes enable comparison of the

conformation of the DNA sequence before and after C-protein

binding. C-proteins, in common with many helix–turn–helix DNA-

binding proteins, bend and distort their DNA-binding sites in order to

access the bases for sequence recognition (Kita et al., 2002; Papa-

panagiotou et al., 2007; McGeehan et al., 2008, 2012; Ball et al., 2012).

The 19OR structure presented here shows that even in the absence
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Figure 5
DNA structural comparisons. The 25OL DNA (cyan) and the 19OR DNA (yellow)
are aligned against the 35OL+R DNA (magenta). The protein dimers in the latter
complex are displayed in grey.

Figure 4
DNA groove-width analysis of the 25OL DNA. Groove-width analysis of the 25OL

DNA (cyan) compared with the published 35OL+R complex (PDB entry 3clc;
magenta; McGeehan et al., 2008). Upper curve, major groove; lower curve, minor
groove. The DNA sequence of the 25OL sequence is shown below. The TATA
sequences are shown in bold and the DNA recognition bases are underlined.



of specific protein–DNA contacts the DNA sequence at the OR

operator is compressed at the minor groove, greatly reducing the

energy penalty of DNA distortion following C-protein binding. Using

circular dichroism, it has been shown that significant structural

deformation of the DNA occurs when the controller protein C.AhdI

binds its operator sequence in solution (Papapanagiotou et al., 2007).

Presumably, the same will apply to the OL and OM operators of the

Esp1396I RM system, which all contain the central TATA sequence.

The observed path of the DNA within the 25OL complex supports

the proposal that the binding of the first C-protein to the OL site

assists in opening up the major groove of the OR site in preparation

for binding the second C-protein dimer, thus compensating for

the weaker intrinsic binding affinity of the OR site. This provides

a significant component of the observed cooperativity of binding

between the two adjacent operator sites, in addition to specific

protein–protein contacts between adjacent dimers (McGeehan et al.,

2008). A similar mechanism based on DNA distortion has been

proposed for the cooperative binding of the QacR transcriptional

regulator to its operator site (Schumacher et al., 2002), but in this case

there were no additional protein–protein interactions contributing

to the cooperativity. The downstream effects of binding one protein

dimer on the structure of the adjacent DNA, thereby enhancing its

DNA-binding affinity for a second protein dimer, could represent a

more general mechanism of transcriptional control.
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