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Abstract: Obesity and accompanying type 2 diabetes are among major and increasing world-
wide problems that occur fundamentally due to excessive energy intake during its expenditure.
Endotherms continuously consume a certain amount of energy to maintain core body temperature
via thermogenic processes, mainly in brown adipose tissue and skeletal muscle. Skeletal muscle glu-
cose utilization and heat production are significant and directly linked to body glucose homeostasis
at rest, and especially during physical activity. However, this glucose balance is impaired in diabetic
and obese states in humans and mice, and manifests as glucose resistance and altered muscle cell
metabolism. Uncoupling proteins have a significant role in converting electrochemical energy into
thermal energy without ATP generation. Different homologs of uncoupling proteins were identified,
and their roles were linked to antioxidative activity and boosting glucose and lipid metabolism.
From this perspective, uncoupling proteins were studied in correlation to the pathogenesis of dia-
betes and obesity and their possible treatments. Mice were extensively used as model organisms to
study the physiology and pathophysiology of energy homeostasis. However, we should be aware of
interstrain differences in mice models of obesity regarding thermogenesis and insulin resistance in
skeletal muscles. Therefore, in this review, we gathered up-to-date knowledge on skeletal muscle
uncoupling proteins and their effect on insulin sensitivity in mouse models of obesity and diabetes.
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1. Introduction

Thermogenesis is of utmost importance for maintaining a stable body temperature
of around 36–37 ◦C in humans [1] and around 36–38 ◦C in different strains of mice [2,3].
This temperature homeostasis is ensured by shivering and nonshivering thermogenesis,
mainly in the brown adipose tissue (BAT) and skeletal muscle. In healthy adult humans,
BAT is scarce and becomes dysfunctional or even proinflammatory in obese individuals
favoring the development of type 2 diabetes [4]. In contrast, skeletal muscle shivering
and nonshivering thermogenesis remain active throughout adult life. However, BAT and
skeletal muscle thermogenesis remain substantial throughout their lives in mice.

Parallel to its role in heat production, the skeletal muscle, being the largest glucose sink
in the body, largely contributes to glucose homeostasis. Glucose enters skeletal muscle cells
through type 4 glucose transporters (GLUT4), which translocate to the plasma membrane
in response to increased blood glucose and insulin levels, thus allowing massive entry of
glucose into cells. These processes are enhanced under increased energy demands such
as physical activity or cold exposure. Since glucose is also a fuel for heat production,
it is of paramount importance that its transport into cells is adequate, and that skeletal
muscle cells respond properly to insulin signaling. In diabetes, however, skeletal muscle
cells are resistant to insulin signaling, and glucose entry into the cytoplasm is impaired.
Consequently, less glucose is available for cellular metabolism, thus affecting thermogenic
processes [5]. Furthermore, the derailed glucose metabolism also results in impaired lipid
and protein metabolism and their regulation.
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This review first briefly describes the metabolic and physiological mechanisms of shiv-
ering and nonshivering thermogenesis in skeletal muscle. Then, we focus on mitochondrial
coupling and uncoupling processes and their interaction. We emphasize tissue specificity
in expressing different isoforms of uncoupling proteins (UCPs) and their roles. In the next
section, we focus on insulin secretion from pancreatic beta cells, insulin resistance, and the
functioning of skeletal muscle UCPs in mouse models of obesity and diabetes. We also
discuss gender and age differences in UCP expression and their correlation with adulthood
weight gain. The second part of the article reviews studies of obesity and diabetes mouse
models, as well as transgenic and knockout genetic alterations. Lastly, we give a brief
overview of diet-induced obesity and diabetic mouse models, including the effects of
caloric restriction diets that are very promising in diabetes management.

2. Metabolic and Physiological Mechanisms of Shivering and Nonshivering
Thermogenesis in Skeletal Muscle

In cold exposure, total heat production in the body can increase by up to five times
that of the resting metabolic rate at room temperature. The major source of metabolic heat
production used for conserving body temperature is skeletal muscle tissue. It dissipates
heat in shivering and nonshivering thermogenic processes, which together can contribute
around 40% of heat production in cold exposure [6,7].

2.1. Shivering Thermogenesis

Shivering thermogenesis in skeletal muscle is driven by neural mechanisms involved
in recruiting the muscles into the shivering response and regulating the substrates used to
fuel the metabolic processes. The research shows that the preoptic area of the hypothalamus
is the main thermoregulatory center [8]. It receives sensory input from thermoreceptors
in the skin, thermoreceptors in the vicinity of internal organs [9], and somatosensory
fibers in the dorsal spinal horn [10], as well as from the brain and spinal cord neurons
sensitive to thermal stimuli [7,8]. The central neural network responsible for the recruitment
of shivering integrates the input information. It sends feedback to thermoregulatory
effectors such as skin vasculature, muscle spindles, and BAT to initiate the shivering
response [11,12]. In humans, muscle-shivering thermogenesis was estimated to account for
up to 40% of whole-body energy expenditure during a mild cold exposure [6]. To produce
heat by oxidation, the shivering muscle uses different combinations of carbohydrates, lipids,
and proteins [13]. For sustained shivering for hours, carbohydrate reserves in the form of
glycogen and selective recruitment of type II muscle fibers are vital [14,15]. Haman et al.
reported that in the case of low carbohydrate stores in human muscles, lipids were the
predominant fuel for shivering thermogenesis, with 53% of total heat produced. Of the
remaining total heat production, 28% originated from carbohydrates and 19% from proteins.
Conversely, in the case of high carbohydrate stores, cold-induced muscle shivering used
23% lipids, 65% carbohydrates, and 12% proteins for heat production. Regardless of
glycogen stores, plasma glucose oxidation remained a minor fuel source, accounting for
7–13% of the total heat production [15].

2.2. Nonshivering Thermogenesis

The two greatest nonshivering contributors to heat production in skeletal muscle are
unequivocally the uncoupling of the mitochondrial oxidative phosphorylation by UCPs,
also called the proton leak [7,16], and uncoupling of the sarco-endoplasmic reticulum
Ca2+-ATPase (SERCA) pump, also called futile calcium cycling [17,18]. In addition, energy-
releasing cellular processes involving enzymes such as myosin ATPase and creatine kinase
also dissipate some heat, thus contributing to thermogenesis. Since mitochondrial un-
coupling is extensively described in the following sections, we only briefly present other
nonshivering processes in this section.
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2.2.1. Sarco-Endoplasmic Reticulum Ca2+-ATPase (SERCA) Pump

The proper functioning of muscle cells depends on maintaining ionic gradients across
cell membranes. It is achieved by ATPases pumping ions against their concentration
gradients using energy from the hydrolysis of adenosine triphosphate (ATP). Muscle con-
traction is triggered by an increase in sarcoplasmic Ca2+ concentration due to the opening
of dihydropyridine receptors on the sarcoplasmic reticulum (SR), releasing Ca2+ from the
SR lumen into the sarcoplasm. Calcium ions bind to myofilaments setting into motion
the myosin–actin cross-bridge cycling and mitochondrial oxidative metabolism, which
subsequently activates SERCA and ensures that in optimally coupled conditions, two Ca2+

ions are pumped back into the SR lumen at the expense of hydrolyzing one molecule of
ATP [19,20]. However, in a nonideal live setting, the byproduct of the imperfectly coupled
Ca2+ transport-to-ATP hydrolysis is heat [21], accounting for up to 40–50% of the murine
fast- and slow-twitch muscles’ resting metabolic rate, which is equivalent to 8–10% of the
total body metabolic rate [22]. In skeletal muscle, isoform SERCA 1 is expressed in fast-
twitch muscle fibers. In contrast, slow-twitch muscle fibers express SERCA 1 and SERCA
2a [23], and only SERCA 1 can modulate the amount of heat produced during the ATP
hydrolysis in the range of 7–32 Kcal/mol, depending on the established transmembrane
Ca2+ gradient across the SR membrane [24]. An important regulator of SERCA’s activity
is sarcolipin (SLN) [25]. In Sln −/− knockout mice, hypothermia ensued after exposure
to acute cold (4 ◦C), since these animals could not maintain body temperature. However,
overexpression of Sln in the Sln −/− mice restored muscle thermogenesis, supporting
the idea that Sln is involved in SERCA-based heat production, and that its absence may
result in diet-induced obesity during increased caloric intake [17]. However, SLN is not
just a SERCA uncoupler, but in mice, also regulates temperature homeostasis by affecting
heat production, whole-body metabolism, and weight gain. Its expression is upregulated
in cases of increased metabolic demand such as different muscle diseases, exercise, cold
exposure, and diet-induced obesity [26].

2.2.2. Myosin ATPase

In the resting muscle, a low metabolic rate is a consequence of the transition of the
myosin ATPase into a super-relaxed state, thereby slowing down its metabolism and
decreasing energy consumption. At lower temperatures, the exchange of GTP for ATP on
myosin ATPase and the increase in myosin phosphorylation both decrease the fraction of
myosin ATPases in the super-relaxed state, thus increasing heat production and muscle
energy consumption [27]. In addition, the fraction of super-relaxed myosin ATPases at rest
is lower in type IIa (fast-twitch) muscle fibers, making them greater glucose and energy
consumers compared to type I (slow-twitch) muscle fibers [28]. The transition of only
20% of myosin ATPases from the super-relaxed into a normal-relaxed state approximately
doubles muscle thermogenesis [29]. Targeting the super-relaxed state of myosin ATPases
may provide new approaches to treat obesity, high blood sugar, or type II diabetes by
increasing muscle glucose utilization [30].

2.2.3. Creatine Kinase

Creatine kinase catalyzes the reversible reaction of creatine phosphorylation and exists
in at least four isoforms, two of which are cytosolic and two mitochondrial. Their expression
is tissue-specific and compartmentalized within cells [31,32]. Despite substantial creatine
metabolism in skeletal muscle, its turnover is still higher in adipose tissue [33]; therefore,
it was studied mainly in this context in the past decades. In thermogenic fat (BAT and
beige adipose tissue), creatine enhanced mitochondrial respiration and energy dissipation.
In mice, cold exposure stimulated creatine kinase activity and induced the expression of
genes linked to creatine metabolism. This induction was further enhanced in the case of
absent UCP1-dependent thermogenesis, linking a futile cycle of creatine metabolism to
energy expenditure and thermoregulation [34–36]. Upon ablation of creatine kinase B,
mice showed reduced blood glucose levels, triglycerides, and leptin, as well as disrupted
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thermogenic capacity and glucose homeostasis [37,38]. Recently, a mechanism combining
creatine thermogenesis with futile Ca2+ cycling in the ER has been proposed. Still, this area
needs further research [35].

2.3. Cold Acclimation

The effects of environmental temperature on mitochondrial efficiency and ATP pro-
duction can influence thermal tolerance and performance of the body. Thus, organisms
developed the ability to alter mitochondrial processes through acclimation to mitigate these
effects [39]. Nonshivering thermogenesis, which is used to generate heat and warm up the
body, is a plastic process and is affected by environmental factors such as chronic cold [40].
The capacity for heat production increases with cold acclimation, resulting in successful
coping with chronic cold stress in endothermic mammals. Interestingly, small mammals
acclimate to cold differently than larger mammals.

In small mammals, sustained cold exposure causes an increased nonshivering thermo-
genesis [41–45] based on the activity of UCP1, primarily taking place in the BAT. Nonshiv-
ering BAT thermogenesis is based on norepinephrine acting on BAT adrenergic receptors.
Sympathetic activation of BAT stimulates intracellular lipolysis and the production of UCP1.
A release of free fatty acids (FFAs) fuels the respiratory chain in which UCP1 dissipates the
mitochondrial proton gradient as heat [41,42]. UCP1 uncouples oxidative phosphorylation
from ATP production and permits protons to leak back into the mitochondrial matrix from
the inner-membrane space, resulting in a high rate of substrate oxidation, liberating heat
in the absence of ATP synthesis. Adaptive BAT thermogenesis is sufficient to compensate
for heat loss and maintaining body temperature of mammals below 10 kg. Uncoupled
respiration in BAT, driven by UCP1 in the majority as well as UCP3 [46], is supported by
additional heat production from ATP turnover in BAT and other tissues. Moreover, cold
acclimation has been observed to enlarge BAT mass and increase BAT citrate synthase
activity in mice [43]. BAT mass can be increased by hypertrophy and hyperplasia [47,48],
and it counts as one of the mechanisms to increase the capacity of nonshivering thermogen-
esis in cold-acclimated rodents. In contrast, shivering thermogenesis does not increase in
cold-acclimated small mammals [44].

In larger mammals such as humans, BAT tissue is present in much smaller volumes,
therefore nonshivering BAT thermogenesis is not sufficient for maintaining body tempera-
ture on its own. Skeletal muscle plays an important role as a tissue primarily responsible for
thermogenesis in mammals heavier than 10 kg. UCPs, other than UCP1, have been found
to be important for their activity in skeletal muscle. UCP3 localizes in skeletal muscle and
also in BAT, where its abundance is highly correlated with that of UCP1 in BAT, and plays
a major role in FFA oxidation [46]. UCP4 and UCP5 reside in skeletal muscle and are also
involved in FFA metabolism [49]. Acclimation to cold causes an increased basal metabolic
rate to survive in cold climates. Basal metabolism changes (increase of up to 35%) and
an elevated total energy expenditure have been found in arctic human populations [42].
Adaptive changes in muscle properties in response to thermogenesis occur in cooperation
with BAT activity to successfully maintain metabolic homeostasis. Metabolic changes in
skeletal muscles, such as increased aerobic performance due to sustained cold exposure,
resemble those observed following endurance exercise training [50,51].

3. Coupling, Uncoupling, and Their Interplay in Skeletal Muscle Cells

In 1961, Peter Mitchell proposed the mechanism of ATP production in mitochondria
known as the chemiosmotic mechanism of ATP synthesis [52–54], for which he received
the Nobel Prize for Chemistry in 1978 [55]. According to Mitchell’s chemiosmotic theory,
ATP synthesis exploits the electrochemical gradient across the inner mitochondrial mem-
brane. This gradient arises from passing electrons from NADH and FADH2 formed in the
Krebs cycle during the mitochondrial metabolism of energy-rich molecules through a series
of membrane-bound protein complexes I–IV. At the same time, hydrogen ions (H+) are
pumped from the mitochondrial matrix to the interspace between the mitochondrial inner
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and outer membrane through transmembrane complexes I, III, and IV [56,57]. Accumula-
tion of H+ ions in the intermembrane space results in a powerful proton gradient across
the membrane, driving their diffusion back into the matrix through F1F0 ATP synthase
(Figure 1).
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During this diffusion, the released energy subsequently drives phosphorylation of
ADP to ATP [58,59]. Recently, Nath showed that the molecular mechanism of uncoupling
the proton transport from ATP synthesis by dinitrophenols cannot be explained by sim-
ple proton conduction through uncouplers, as postulated by Mitchell’s theory. Instead,
it requires a two-ion theory of energy coupling/uncoupling in ATP synthase [60]. The en-
zymatic activity of ATP synthase also catalyzes the reverse reaction; namely, the ATP
hydrolysis, thereby influencing the forward reaction equilibrium. The reverse-forward
activity of ATP-synthase is strictly controlled to prevent ATP hydrolysis at the site. This con-
trol is achieved by inhibiting the reversal of ATP synthase. An inhibitor protein named
IF1 has been identified to play a role in this task, but it is insufficient by itself, and other
potential regulating mechanisms are under investigation [61,62]. Due to many unresolved
questions, researchers recently proposed an update of the chemiosmotic theory questioning
the form of proton-motive force across the membrane based on many discoveries with
novel and improved research methods [57,63].

To complicate things further, the coupling of respiration to ATP synthesis is imperfect,
and mitochondrial energy consumption persists even when ATP synthesis is inhibited, con-
firming the presence of uncoupling or leak mechanisms [64–66]. In the light of strict control
over ATP production, specific cellular mechanisms dissociate mitochondrial membrane
potential generation from its usage to generate ATP. These processes might have evolved to
control ATP production and match it to cellular consumption, or to convert electrochemical
energy into thermal energy to regulate body temperature. Such bypassing of the ATP
synthase through specific proteins called UCPs produces thermal energy without ATP
synthesis. One of the first UCPs to be discovered and described was thermogenin, found in
BAT [67,68]. Many different homologs followed in human and other taxonomic species,
which we will briefly summarize in the next section [69].

BioRender.com
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In skeletal muscle, the described proton leaks through UCPs can amount to up to
20–50% of the resting metabolic rate [65], which confirms that skeletal muscle cells have an
enormous potential to elevate oxygen consumption. Furthermore, in diet-induced adap-
tive thermogenesis, the skeletal muscle contributes 35–67% of energy expenditure [70,71].
Taken together, uncoupling of oxidative phosphorylation represents a potential target for
the treatment of hyperglycemia and insulin resistance, and can be of great importance in
obese and diabetic patients.

4. Uncoupling Proteins

Not all UCPs are involved in thermogenesis. Although they are tissue-specific, some
of the homologs colocalize but differ in their role greatly. While UCP1 is involved in
nonshivering thermogenic processes in BAT in many animal taxonomic groups, UCP2
and UCP3, its close relatives, do not directly affect thermoregulation in vertebrates [72].
Both UCP2 and UCP3 can be found in adipose tissue and are linked to insulin secretion,
yet their role is contradictory. Moreover, some UCPs are neuroprotective and reside
in the central nervous system. Interestingly, skeletal muscle mitochondria contain the
most diverse spectrum of UCP homologs—four out of five—making this tissue extremely
important for studying UCPs’ function and pathologies.

4.1. UCP Homologs and Their Roles

The role of UCPs in the pathogenesis of diabetes mellitus has recently become a
popular topic, since five homologs have been found in mammals [73,74]. Their structure
is similar, but their distribution in different tissues varies greatly [75]. The physiological
functions of UCPs have been studied intensively in the last three decades, yet they are still
not completely elucidated. They are known for their antioxidative activity [76,77] and as
glucose and lipid metabolism enhancers or regulators. Several gene polymorphisms of
UCP1, UCP2, and UCP3 have been found in human diabetic and obese individuals, linking
them to the development of glucose metabolism and insulin signaling pathologies [75]
(Figure 2). In contrast to UCP1, which can represent as much as 10% of proteins in the
inner mitochondrial membrane [45], UCP2 and UCP3 usually comprise less than 0.1% of
the membrane protein content. They need specific activation for their proton transporting
function [78].
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4.1.1. UCP1

Studies in rodents have shown that BAT starts to develop in the interscapular region
during embryonic days E15–16, and that UCP1 mRNA expression increases around days
E18–19 just before birth. The BAT continues to develop postnatally until between postnatal
days P15–21 and remains present throughout adult life [79,80]. Recent research revealed
the existence of two subpopulations of brown adipocytes in mice. One subpopulation has
high thermogenic activity and high UCP1 expression, and the other has low thermogenic
activity and low UCP1 expression [81]. At birth, all adipocytes express high levels of UCP1
and have high thermogenic activity to meet newborns’ thermal requirements. Postnatally,
some adipocytes begin to convert to the subpopulation with low UCP1 expression so that
both subpopulations coexist in adult mice and might switch between each other during
normal thermogenesis at room temperature. When exposed to cold, the transcription of
genes in the subpopulation with the low UCP1 expression increases, thereby increasing
the total thermogenic capacity of BAT [82]. During long-term cold exposure, de novo
adipogenesis was observed in BAT [83,84]. In senescence, the capacity of adipocytes to
increase UCP1 expression after cold exposure becomes impaired [82].

UCP1 mainly localizes to the inner mitochondrial membrane of BAT. Its proton con-
ductance increases in elevated concentrations of long-chain free fatty acids (FFAs) [41]
and is controlled by insulin [85,86]. Apart from BAT, recent studies also reported UCP1
expression in white adipose tissue, skeletal muscle, longitudinal smooth muscle layers,
retinal cells, and Langerhans islet cells [75,87].

In skeletal muscle mitochondria, the expression of UCP1 reaches only 13% of the
expression in BAT and increases the GDP-sensitive proton leak [88]. The roles of UCP1
are decreasing membrane potential, reducing reactive oxygen species (ROS) generation,
increasing energy expenditure, and increasing nonshivering thermogenesis [89–91]. Com-
pared to BAT, the ability of UCP1 in skeletal muscle to increase glutathione levels and
reduce ROS production is far greater, suggesting different specific roles and possibly dis-
tinct mechanisms of UCP1 in both tissues [88]. Some research shows that diabetes and
obesity development involves specific polymorphisms of the Ucp1 gene [92]. Mutations in
Ucp1 affect the activity or expression of the UCP1 protein and reduce regulated or basal
energy expenditure, resulting in altered pancreatic function and insulin secretion [93,94].

4.1.2. UCP2

UCP2 mRNA is expressed in many tissues, such as muscle, spleen, pancreas, kidney,
central nervous system, and immune system. The UCP2 gene is already expressed during
fetal life in murine skeletal muscle. Its expression increases immediately after birth, reaching
a maximum on day 2, and steadily declines after that regardless of the lactating mother’s
diet [95].

UCP2 is most widely present and highly expressed among UCPs in diabetic pancreatic
beta-cells [96]; therefore, its involvement in diabetes development has been proposed.
Its role in the pancreas as a negative regulator of insulin secretion has been studied inten-
sively in ob/ob mice. The activation of UCP2 by ROS causes mitochondrial membrane
proton leak, which reduces ATP synthesis in pancreatic β-cells and downregulates glucose-
stimulated insulin secretion [97–99]. The ob/ob mice lacking UCP2 have increased ATP syn-
thesis and glucose-stimulated insulin secretion from beta-cells in Langerhans islets [96,100].
DeSouza et al. (2007) used an antisense oligonucleotide to Ucp2 in ob/ob mice and Swiss
mice with hyperlipidemic diet-induced obesity and diabetes to inhibit UCP2 expression,
resulting in metabolic improvement [99]. Finally, results from a human study on ethnicity
differences in UCP2 polymorphisms demonstrated that in Asians, the UCP2-866G/A poly-
morphism is protective against, while the UCP2 Ala55Val polymorphism is susceptible
to, type 2 diabetes [101]. Similar traits might also exist in mice, but these have not been
thoroughly researched yet.

One of the reported other roles of UCP2 is controlling immune cell activation by
modulating MAPK pathways and mitochondrial ROS production [102,103]. Additionally,
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a neuroprotective role has been proposed. By regulating mitochondrial membrane potential,
production of ROS, and calcium homeostasis, UCP2 modulates neuronal activity and
inhibits cellular damage [104].

4.1.3. UCP3

UCP3 is expressed in skeletal muscle and BAT [105–108]. In BAT, UCP3 is almost
one order of magnitude more abundant than in skeletal muscle or heart, and is directly
correlated with the abundance of UCP1 [46]. The predominant isoform in skeletal muscle
is UCP3, and its expression is highly skeletal-muscle-specific [109]. In mice, UCP3 mRNA
levels were highest in skeletal muscle, followed by heart, white adipose tissue, and spleen,
which was somewhat different than in rats, where the expression in tissues other than
skeletal muscle was negligible [110].

UCP3 expression was almost undetectable in murine muscle tissue during fetal life.
In contrast, its expression became noticeable soon after birth in response to suckling
and lipid intake, and steadily increased for 15 days. Interestingly, after 15 days of life,
the UCP3 mRNA levels became dependent on dietary interventions. If lactating mice were
fed regular high-carbohydrate chow, UCP3 expression levels in pups started to decrease,
whereas if mothers were fed a high-fat diet, the levels of UCP3 expression in pups remained
high [95]. Research shows that nutritional factors regulate UCP3 expression. Specifically,
its expression is induced by elevated circulating FFAs, which is typical for fasting or
starvation [95,111]. Pedraza et al. reported that the UCP3 expression in skeletal muscle is
dramatically downregulated in lactating mice, and this effect is reversed with weaning.
These changes come hand-in-hand with changes in circulating FFAs, which are reduced
during lactation and return to normal after weaning [112].

Pancreatic beta cells also express UCP3 [113], linking its role to energy expenditure,
glucose metabolism, diabetes, and obesity [114,115]. Pancreatic UCP3 also affects insulin
secretion, but acts differently than UCP2 [113]. In humans, the expression of the Ucp3
gene in skeletal muscle and pancreas of diabetic patients is decreased [116], suggesting
Ucp3 involvement in the development of type 2 diabetes. Muscle UCP3 is also important
in FFA metabolism. It protects mitochondria from oxidative stress induced by lipids
and modulates insulin sensitivity [117], making it a potential player in type 2 diabetes
development. UCP3 protein levels are upregulated when FFAs’ supply to the mitochondria
exceeds their oxidative capacity, and downregulated when oxidative capacity is improved.

The degradation of both UCP2 and UCP3 is very rapid [118], making their half-
lives only approximately 30 min [119]. In comparison, the half-life of UCP1 is around
30 h [120]. The short half-lives of UCP2 and UCP3 enable rapid adjustments of their protein
levels, which are needed when facing the rapidly changing metabolic needs and different
rates of ROS production during mitochondrial oxidative processes. Because of this rapid
degradation, the UCP2 protein level can decrease before the level of its mRNA drops [121].
It is crucial to consider this when evaluating data and drawing conclusions solely on
mRNA expression.

4.1.4. Other UCPs

UCP4 and UCP5 are mainly expressed in the central nervous system, where they play
roles in brain metabolism and thermoregulatory heat production and are therefore often
named neuronal UCPs [122,123]. However, their expression has also been determined in
skeletal muscle, controlling energy expenditure and lipid oxidation. UCP5 is expressed in
human skeletal muscle in three different isoforms, with UCP5L being the most abundant
isoform, followed by UCP5S and UCP5SI [49]. UCP4 and UCP5 have a similar role in the
protection against oxidative stress and mitochondrial dysfunction as other homologs [124].
High levels of UCP5 mRNA have been detected in testes, and lower levels in the kidneys
and liver [49].
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4.2. Sex Differences in UCP Expression

Studies with rodents of both genders have shown significant sex-associated differences
in the regulation of UCPs, which occur due to sex hormones and other distinct gender-
based biological functions [125]. Sex hormone receptors are localized in the mitochondria
of specific cells and can affect mitochondrial physiology [126]. In rodents, sex hormones
influence different features of skeletal muscle, such as fiber diameter and myosin heavy-
chain expression [127]. They also regulate UCP1 expression in brown adipocytes [128,129].

Age plays a vital role in the sex dimorphism of UCP expression. In prepubertal age
in mice, UCPs are expressed at similar levels in both sexes, with significant differences,
especially in UCP1 and UCP3 expression, being observed only later in adulthood. Expres-
sion of these proteins decreased with time in adult males, while in females, UCP1 and
UCP3 expression decreased during young adulthood and increased later [130]. This age-
dependent UCPs expression pattern correlates with weight gain. In several studies, weight
gain with aging was more significant in males than in female mice, which showed only a
slight increase in body weight with senescence. This finding suggests that upregulation
of UCP1 and UCP3 in BAT helps female mice avoid triglyceride accumulation in skeletal
muscle and prevents obesity development [114,130,131].

Caloric diet feeding causes different overweight-induced expression of UCP3 in muscle
and UCP1 in BAT in males than in females. Females tend to have a higher capacity to store
fat when food is in excess than males, resulting in weight gain [125]. On the other hand,
experiments with fasting showed interesting sex-dependent differences in UCP expression.
Bazhan et al. (2019) studied sex asymmetry in the fasting effects on the transcription of the
Ucp3 gene in muscle. A significant upregulation of muscle Ucp3 occurred in females after
fasting for 24 h, while these changes were much less evident in males [132].

5. UCP2 and Insulin Secretion in Pancreatic Beta-Cells

The mitochondria were estimated to produce 98% of the cell’s ATP in oxidative
metabolism [133]. Glucose influx into pancreatic beta-cells followed by an increase in
glucose metabolism elevates cytosolic adenosine triphosphate (ATP) concentration, clos-
ing ATP-dependent K+ (KATP) channels and decreasing K+ efflux. Consequent cell mem-
brane depolarization opens voltage-dependent Ca2+ (VDCC) channels and Ca2+ ions
influx, which triggers insulin secretion [134–136]. The predominant UCP in beta-cells is
UCP2, which regulates cellular oxidative stress, ROS production, and energy metabolism,
and protects mice from aging [137,138].

Recently, a new role of UCP2 was revealed, linking its expression to the regulation
of embryonic development of the pancreas. Broche et al. showed that UCP2 regulates
embryonic development of the pancreas through the ROS-AKT signaling pathway by
decreasing ROS production. Their study confirmed an increased pancreas size with a
higher number of α- and β-cells in Ucp2−/− fetuses, a faster perinatal proliferation of
endocrine cells, and increased ROS production [137].

Increased UCP2 expression can cause a lack of glucose effect on insulin secretion in
type 2 diabetes [139]. UCP2 allows H+ ions to bypass ATP synthase, reducing cellular ATP
content [140]. Subsequently, beta-cell membrane depolarization and glucose-stimulated in-
sulin secretion (GSIS) decrease. A high-fat diet (HFD) or long-term exposure of beta-cells to
elevated concentrations of FFAs creates glucolipotoxic conditions, which upregulate UCP2
mRNA levels and protein content up to twofold [141]. Consistent with the proposed mecha-
nism of UCPs action, the decreased cellular ATP-to-ADP ratio suppressed glucose-induced
depolarization of the plasma membrane. Furthermore, the GSIS decrease was inversely
proportional to UCP2 expression [142,143]. UCP2 mRNA content increased following
exposure to palmitate or its nonoxidizable derivative bromopalmitate. This observation
suggests that FFAs can directly upregulate UCP2 gene expression without their preceding
metabolism [141]. In contrast, UCP2 knockout (UCP2−/−) mice on a control diet have
similar fasting blood glucose, fed plasma-free FFAs, and triglyceride (TG) levels as their
wild-type (WT) littermates. On the other hand, their fasting blood insulin concentration
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was significantly higher, responding differently to the HFD [144]. In UCP2−/− mice,
fasting FFA concentration following the HFD was not elevated. In addition, the fed plasma
TG increase was nearly twofold less than WT control, suggesting that faster mitochondrial
FFA oxidation in UCP2−/− islets prevents lipotoxicity-associated TG accumulation. Fur-
thermore, fasting and fed plasma insulin levels following the HFD rose significantly in
UCP−/− and control mice, but the increase was much higher in the UCP2−/− group.
Pancreatic insulin content increased around fourfold in UCP2−/−mice, while it slightly
decreased in the WT control. Interestingly, in UCP2−/−mice, the fasting blood glucose
concentration was not affected by the HFD, and the fed blood glucose level increase was
significantly lower than in the WT control. Further research on islets from UCP2−/−
mice on a control diet showed increased insulin content per islet, relative beta-cell area per
pancreas, and average islet size, but a comparable number of islets per mm2 of pancreas
compared to the WT islets [144]. Following the HFD, the islet size and beta-cell area increase
in UCP−/−mice were significantly larger than in WT islets. In addition, the number of
islets per mm2 of the pancreas increased significantly, which was not evident in control
islets [144].

When researching mitochondrial metabolism, Joseph et al. showed that basal insulin
secretion in WT and UCP−/−mice on the HFD was elevated; however, GSIS was attenu-
ated in WT mice, while UCP−/− mice showed significantly increased GSIS. The beta-cells
from UCP−/− islets had no alterations in mitochondrial membrane potential, ATP/ADP
ratio, and cytosolic Ca2+ responses to high glucose concentration after palmitate treatment
compared to the dysfunctional responses of WT cells. The HFD neither resulted in glucose
sensitivity loss nor elevated TG concentration as it did in the WT control, because the
palmitate oxidation was faster in the UCP2−/− islets [145]. These data suggest that
UCP2−/− beta-cells can resist the toxic effects of a high-lipid environment by preventing
TG accumulation due to faster FFA oxidation rates and maintaining highly functional
glucose-dependent metabolism–secretion coupling [145].

The most studied obesity mouse models, the ob/ob mice, have elevated UCP2 expres-
sion and impaired insulin secretion [96,99,144]. While in lean mice, GSIS improved after a
short-term knockdown of islet UCP2, it remained unaffected in ob/ob mice, confirming the
dysfunctionality of glucose homeostasis in the ob/ob diabetes model. In addition, this loss
of glucose homeostasis and insulin secretion impairment were preceded by an increase in
UCP2 expression [146].

6. UCPs in Mouse Models of Diabetes and Obesity
6.1. Obesity and Diabetic Models

Obesity is an important factor affecting UCP expression in skeletal muscle. For this
reason, there are many UCP expression studies using mouse models of obesity and diabetes
(Figure 3). Masaki et al. studied the thermogenic roles of UCPs in different tissues in a
cold-exposed db/db mouse model [147]. Cold is known to increase energy expenditure and
thermogenesis [148]. Db/db mice resulted in impaired body temperature maintenance that
presented as decreased thermogenic capacity. Compared to lean littermates, db/db mice
were incapable of cold acclimation and had a diminished increase in UCP expression in
skeletal muscle and brown and white adipose tissue. While cold exposure downregulated
lipoprotein lipase mRNA and increased serum levels of FFAs in lean mice, these effects
were not seen in db/db mice. These results suggest that in db/db mice, the reduced
lipolysis may impair UCPs’ function [147].
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In skeletal muscle, exposure to cold caused a reduction in UCP3 mRNA expression.
The cause for the disruption of temperature maintenance in db/db mice is most likely a
leptin-signaling malfunction, as db/db mice are leptin-receptor-mutated [149], thus con-
firming the vital role of leptin in regulating UCP expression. Further studies supported this
idea by confirming increased UCP2 and UCP3 mRNA expression in pancreatic islets and
muscle, respectively, in ob/ob mice with adenoviral-mediated leptin expression [150]. Lep-
tin induces skeletal muscle UCP expression and sympathetic innervation [151], significantly
contributing to thermogenesis.

Apart from impaired leptin action in db/db mice, poor responsiveness of UCPs to
regulation with serum FFAs has been suggested as a possible cause of thermogenesis
impairment. FFAs are modulators of UCP regulation [152], and during cold exposure,
their concentration in serum increases. Typically, this would trigger an increase in mi-
tochondrial UCP3 expression in skeletal muscle as a mechanism to dispose of excess
FFAs [153]. However, in db/db mice, acute elevation of FFAs in the serum after cold
exposure failed to upregulate UCP3 mRNA expression in skeletal muscle [147].

In the last few decades, many studies searched for possible treatments to increase
the amount of UCPs in skeletal muscle to achieve an antiobesity effect. Sympathetic
nerves directly control skeletal muscle and adipose tissue thermogenesis through the
β-adrenergic action of norepinephrine [154]. Nagase et al. (1996) used a β3-adrenergic
agonist to increase UCP expression in muscles and BAT, which resulted in increased energy
expenditure, enhanced oxygen consumption, improved glucose tolerance, and reduced
body fat in obese yellow KK mice [155,156].

6.2. Transgenic and Knockout Mice

Besides the obesity and diabetic mouse models, knockout and transgenic mouse
models enabled targeted studies of UCP roles [157] (Figure 3). UCP1 knockout mice
can maintain their energy balance despite the absence of UCP1-mediated thermogenesis
via higher proton-leak-dependent oxygen consumption in muscles [158]. In the adipose
tissue–UCP1 knockout mice, the ectopic expression of UCP1 in skeletal muscle revealed an
essential role of skeletal muscle respiratory uncoupling in preventing diet-induced obesity,
insulin resistance, and cholesterolemia [159]. Accelerated metabolism in skeletal muscle by
uncoupling activity due to UCP1 expression may also delay age-related diseases such as
diabetes, hypertension, atherosclerosis, and cancer [160].
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Furthermore, the roles of UCP1 in skeletal muscle and BAT are different. The impact of
UCP1 on glutathione and ROS levels has been studied using a transgenic mouse model with
selective expression of UCP1 in skeletal muscle. Even though UCP1 expression in skeletal
muscle reached only up to 13% of levels compared to BAT, the increased GDP-sensitive
proton leak through UCP1 in muscle cells increased total mitochondrial glutathione levels
more than sevenfold compared to BAT [88]. However, unlike in BAT, the leak through
UCP1 affected the mitochondrial ROS emission. Upon subsequent inhibition of UCP1 with
GDP, ROS production in transgenic mice increased 2.8-fold relative to WT littermates [88],
confirming the involvement of UCP1 in the mitochondrial oxidative state.

UCP2 affects glucose homeostasis by controlling insulin secretion, food intake behav-
ior, and adiponectin secretion in the pancreas, brain, and adipose tissue [161]. The role of
UCP2 in β-cell glucose sensing was revealed in a study using ob/ob UCP2 knockout mice,
as they expressed higher ATP levels and increased insulin secretion than the control group
of ob/ob mice with an active UCP2 gene [96]. Like UCP1 knockout mice, UCP2 knockout
mice do not become obese when fed a HFD. Moreover, they have increased ROS production
and a normal response to cold exposure [162]. Therefore, the negative regulation of insulin
secretion by UCP2 represents a strong link between obesity, β-cell dysfunction, and the
development of type 2 diabetes. On the other hand, overexpression of UCP2 proteins in
mice decreases obesity and improves insulin sensitivity [163].

Furthermore, UCP3 promotes FFA oxidation in muscle, thereby indirectly influencing
glucose metabolism [161]. Knockout mice lacking UCP3 have been created for physiological
studies, and their phenotype was also confirmed to be nonobese. An increased ROS pro-
duction and no significant thermoregulatory function of UCP3 were determined [108,164].
Transgenic mice expressing human ortholog of UCP3 at high levels in skeletal muscle were
used in several studies and resulted in leanness. Their mitochondrial thioesterase-1 (MTE-1)
and lipoprotein lipase expression were increased [153]. Adipose tissue mass decreased,
and glucose clearance rate increased, making them resistant to obesity and diabetes de-
velopment [163,165]. Within the mitochondria, MTE-1 cleaves acyl-CoA long-chain FFAs
to FFA anions and CoASH. Further on, UCP3′s role is to export these anions from the
mitochondrial matrix under conditions of increased β-oxidation [166,167]. Thus, UCP3 and
MTE-1 have been implicated in FFA metabolism, and correlate with situations and tissues
in which FFA β-oxidation is increased, such as skeletal muscle and BAT.

6.3. Diet-Induced Obesity and Diabetic Models

Studies in various mouse models revealed expression and function changes of different
UCPs in various tissues in response to specific diets (Figure 3). The Western diet, which
is high in sugar, protein, and fat, and the HFD are often used to trigger the development
of systemic insulin resistance, type 2 diabetes, and obesity. A study in UCP1 knockout
mice showed that loss of UCP1 increased susceptibility to Western-diet-induced insulin
resistance and glucose intolerance [168].

As the loci of UCP2 and UCP3 genes on mouse chromosome 7 and human chromosome
11 are close [107], they represent good candidate genes for the quantitative trait locus of
diet-induced obesity and diabetes [169,170]. Research shows that diet can regulate UCP2
and UCP3 expression, and that their levels can increase due to fat consumption or refeeding
after starvation [152,170]. In addition, cold stimulation and the sympathetic nervous system
also regulate UCP3 content.

Feeding C57BL/6 mice with the HFD causes insulin resistance and reduced protein
expression of GLUT4 and phosphorylation of AMPK in skeletal muscle and adipose
tissue [171]. Interestingly, the HFD increases UCP2 expression in adipose tissue in obesity-
resistant A/J mice, but not in obesity- and diabetes-prone mouse strains [170]. Similar
results were obtained by Surwit et al. (1998). They also studied the correlation between the
expression of different UCPs in adipose tissue and skeletal muscle, and the consumption of
the HFD in obesity-prone C57BL/6J mice and obesity-resistant A/J and C57BL/KsJ mice.
Their study indicated that the HFD increases UCP2 expression in white adipose tissue
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in obesity- and diabetes-resistant mouse strains. However, the HFD did not affect UCP2
expression in any tissue in obesity-prone mice. Moreover, the HFD did not affect UCP3
or UCP2 mRNA expression in skeletal muscle in any studied strain. Thus, the induction
of diabetes and obesity by the HFD seems related mainly to UCP1 and UCP2 expression
in adipose tissue, but not to the expression of UCP2 and UCP3 in skeletal muscle [172].
Therefore, uncoupling activity in adipocytes seems to have greater importance in controlling
the effects of fat feeding on the development of obesity and diabetes than uncoupling
activity in skeletal muscles.

In mice with overexpression of a UCP, a more potent uncoupler than UCP2 or UCP3
in skeletal muscle, an enhanced insulin action and resistance to weight gain and insulin
resistance induced by the HFD were determined [159]. Thus, skeletal muscle respiration
uncoupling could contribute to treating obesity and pathologies linked to it.

Many studies of UCP function used food restriction and fasting. A study in WT
mice confirmed that fasting increases UCP2 and UCP3 expression in skeletal muscle while
leaving proton leak unchanged [173]. Differences in respiratory quotients between wild-
type and UCP3 knockout mice were found, and the absence of UCP3 resulted in impaired
FFA oxidation. Altogether, these results suggest that UCP3 and UCP2 are highly linked to
FFA oxidation and are therefore physiologically essential for FFA metabolism.

Moreover, mitochondrial dysfunction and spontaneous skeletal muscle apoptosis
occur in muscle pathology mouse models such as collagen VI-knockout mice, which resem-
ble human myopathy. Starvation and a low-protein diet proved beneficial for dystrophic
muscles, as they protected them from atrophy and mitochondrial defects via induced
autophagy [174] Not long ago, a low-protein/high-carbohydrate diet (LPCD) was shown
to induce UCP1 expression, enhance mitochondrial oxidative metabolism, and recruit
different energy-dissipating routes in murine beige adipocytes in subcutaneous adipose
tissue. The induction of AMPK-dependent thermogenesis by the LPCD thus shows great
potential as a valuable strategy for preventing metabolic diseases [175] The beneficial effects
of caloric restriction have also been confirmed regarding muscle stem cells. The enhanced
myogenic activity of satellite cells’ oxidative metabolism due to increased mitochondrial
mass and function has been observed in mice that underwent short-term and long-term
caloric restriction [176]. Therefore, caloric restriction has tremendous therapeutic potential
in accelerating endogenous repair and improving the capacity of muscle stem cells.

Apart from caloric restriction and fasting, short-term HFD has also been shown to
counteract metabolic alterations in muscle fibers of dystrophic muscles. Fibro/adipogenic
progenitors, which reside in muscle and represent an interstitial stem cell population of
mesenchymal origin, have an important role in muscle regeneration [177]. Dystrophic
progenitors have an impaired mitochondrial metabolism, which reduces their ability to
proliferate and differentiate into adipocytes. Using dystrophic mice, HFD has been shown
to metabolically reprogram these progenitors and modulate their adipogenic potential
by restoring their mitochondrial functionality and UCP activity [178]. Several other stud-
ies confirmed the involvement of UCPs in muscle regeneration. It has been discovered
that muscle fibro/adipogenic progenitors can differentiate into UCP1-expressing beige
adipocytes, resulting in induction of muscle regeneration [179,180]. Moreover, transplan-
tation of BAT into injured skeletal muscle has been shown to increase muscle mass and
contractile force [181], pointing to a significant role of UCP1 in muscle regeneration and a
great potential for therapy development.

The prevention of HFD consequences has been a hot topic in recent mice research.
Polyphenols such as resveratrol, anthocyanin, curcumin, and epigallocatechin gallate have
the potential to alleviate hyperglycemia and insulin sensitivity caused by the HFD. The most
plausible mechanism of action involves stimulation of GLUT4 translocation on the plasma
membrane of skeletal and cardiac muscle cells and adipocytes via an activated AMPK-
dependent signaling pathway [171,182,183]. Besides GLUT4 translocation, the activation
of AMPK regulates the expression of UCP3 in skeletal muscle [184,185]. Furthermore,
polyphenol-rich cacao liquor extract has been successful as a supplement in preventing
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the development of hyperglycemia in the db/db obesity mouse model [186]. In addition,
in C57BL/6 mice, supplementation of the HFD with cacao liquor extract prevented mice
from diet-induced obesity. Polyphenols in cacao increased UCP3 expression in skeletal
muscle and other UCP expressions in different tissues. This triggered the activation of
AMPK, increased energy expenditure and thermogenesis, and prevented diet-induced
hyperglycemia, insulin resistance, and obesity [171]. Metformin, notably an anti-diabetic
drug, also has been extensively studied for its role in improving skeletal muscle metabolic
and regenerative function. Metformin has several beneficial effects on stem cells, as it has
been recently discovered and reported in many papers [187–189]. It is known to reduce
ROS levels and protect mitochondria from oxidative damage, thus enabling an efficient
activity of UCPs. Metformin is therefore developing as a valuable therapeutic for treating
muscle atrophy and dystrophies, as studies by Pavlidou et al. demonstrated that metformin
delayed satellite cell activation and differentiation by favoring a quiescent, low metabolic
state, resulting in alleviated depletion of the stem cell pool and the functional loss of satellite
cells [190].

6.4. Translational Precautions

Lately, the knowledge of mouse thermal physiology has raised questions about the rel-
evance and translation of the results from preclinical studies on mice housed at a standard
temperature to a clinical level due to the environmental temperature effects on energy home-
ostasis and metabolic rates [191]. As the body mass-to-surface ratio in mice is different from
humans, the mouse body uses distinct thermo-biological processes to maintain temperature
homeostasis [192]. In mice, an ambient temperature of about 23 ◦C triggers cold-induced
thermogenesis devoted to maintaining core body temperature, mainly in BAT, representing
more than one-third of the total energy expenditure. The basal metabolic rate, physical
activity, and the thermogenic effect of food account for the remaining energy expenditure.
To circumvent this energy-consuming process, mice can enter regulated hypothermia [193],
which does not even closely resemble human sedentary processes at this temperature [194].
This fact has led scientists to conclude that thermoneutral points for humans and mice are
far from similar and must be considered when conducting studies of obesity and diabetes
mechanisms and treatment in mouse models. In further studies, researchers determined
that the thermoneutral point for mice is around 30 ◦C, with energy expenditure consisting
of approximately 70% basal metabolic rate, 20% physical activity energy expenditure, and
10% thermic effect of food [195]. Therefore, this environmental temperature should be used
to better model human energy homeostasis in mouse models [196].

7. Conclusions

Maintaining temperature homeostasis is mainly achieved through thermogenic pro-
cesses involving UCPs in BAT and skeletal muscle. The same proteins are involved in glu-
cose homeostasis, thus linking high-energy dissipation and body weight control, a promis-
ing research topic for treating obesity and type 2 diabetes. Research in obesity and diabetic
mouse models has demonstrated that leptin and serum levels of FFAs play an essential
role in regulating UCP3 expression in skeletal muscle, and that muscle thermogenesis in
these models is impaired. To elucidate the specific roles of different UCPs, knockout and
transgenic mouse models have been created. Experimental data revealed that overexpress-
ing UCP1 in skeletal muscle can accelerate metabolic energy consumption and prevent
diet-induced obesity and insulin resistance. On the other hand, UCP2 overexpression
decreases insulin secretion in beta-cells, leading to obesity, β-cell dysfunction, and type
2 diabetes. Changes in UCP expression in different tissues can also result from high-fat
and/or high-carbohydrate diets such as the Western diet. However, such diets mainly affect
UCP expression in adipose tissue, but have an insignificant impact on the skeletal muscle.

Harnessing the processes of thermogenic systems based on the UCPs offers a great
potential to reduce obesity and diabetes. As many UCPs homologs are expressed in a broad
range of tissues, many targets exist to induce mitochondrial uncoupling to stimulate energy
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expenditure. In future research, attention should be paid to the thermoneutral point and
environmental temperature when conducting studies in mice for a better translation of
findings from mouse models to humans.
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