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Abstract

In type 1 diabetes, insulin remains the mature therapeutic cornerstone; yet, the increasing number of individuals developing type
1 diabetes (predominantly children and adolescents) still face severe complications. Fortunately, our understanding of type 1
diabetes is continuously being refined, allowing for refocused development of novel prevention and management strategies.
Hitherto, attempts based on immune suppression and modulation have been only partly successful in preventing the key
pathophysiological feature in type 1 diabetes: the immune-mediated derangement or destruction of beta cells in the pancreatic
islets of Langerhans, leading to low or absent insulin secretion and chronic hyperglycaemia. Evidence now warrants a focus on
the beta cell itself and how to avoid its dysfunction, which is putatively caused by cytokine-driven inflammation and other stress
factors, leading to low insulin-secretory capacity, autoantigen presentation and immune-mediated destruction. Correspondingly,
beta cell rescue strategies are being pursued, which include antigen vaccination using, for example, oral insulin or peptides, as
well as agents with suggested benefits on beta cell stress, such as verapamil and glucagon-like peptide-1 receptor agonists. Whilst
autoimmune-focused prevention approaches are central in type 1 diabetes and will be a requirement in the advent of stem cell-
based replacement therapies, managing the primarily cardiometabolic complications of established type 1 diabetes is equally
essential. In this review, we outline selected recent and suggested future attempts to address the evolving profile of the person
with type 1 diabetes.
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Abbreviations disease. Today, type 1 diabetes is the most common type of

ATG  Anti-thymocyte globulin diabetes in children, and estimates suggest that around
GCSF  Granulocyte colony stimulating factor 100,000 children develop the disecase every year [1].
GLP-1  Glucagon-like peptide-1 Unfortunately, despite the availability of advanced insulins,

affected individuals remain at high risk of serious complica-
tions, including cardiovascular mortality [2—4]. New interven-
tions are, therefore, urgently required to improve the progno-
sis for the increasing number of people who are diagnosed
with type 1 diabetes each year.

The profile of the person with type 1 diabetes is evolving
and, with that, our understanding of the disease. The overall
pathophysiological feature is loss of functional beta cell mass

RA Receptor agonist
SGLT  Sodium-glucose cotransporter
Th T helper

Introduction

In addition to prolonging the life expectancy of people living
with type 1 diabetes, the discovery of insulin a century ago
revolutionised the management of this chronic autoimmune
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in the pancreatic islets of Langerhans (Fig. 1) [5]. Hypotheses
suggest that the loss of functional beta cell mass occurs in a
chain of events analogous to an ‘assisted suicide’ [6, 7], where
the demise of the beta cell is likely due to a combination of a
dysfunctional beta cell that becomes more visible to the
immune system, which, in turn, overreacts and destroys the
beta cell.

In its early stage (Stage 1), type 1 diabetes is usually
asymptomatic; however, the development of autoimmunity
is often detectable in early life, with circulating autoantibodies
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Fig. 1 Hallmarks of the evolving profile of the individual with type 1 diabetes, and current and future options for the prevention of this disease and for the
management of its associated complications. *According to some recent evidence [124—130]. This figure is available as a downloadable slide

targeting insulin or other proteins, such as GADG6S5,
insulinoma-associated protein 2 (IA2) or zinc transporter 8
(ZNT8) [5]. When a large portion of the beta cell mass has
become dysfunctional or lost, asymptomatic dysglycaemia
(Stage 2) and, later, symptoms of hyperglycaemia (Stage 3)
ensue due to insufficient or absent insulin secretion.

Type 1 diabetes is a polygenic disorder, in which suscepti-
bility loci or genetic variation contributes to disease risk. The
HLA region on chromosome 6 is the main susceptibility locus
and, in recent years, many other loci across the genome have
been associated with an increasing risk of the disease [8].
However, from studies in monozygotic twins, for whom the
onset of type 1 diabetes can vary considerably [9], it has
become evident that non-genetic factors play a major role in
triggering or perpetuating overt type 1 diabetes. A multitude
of efforts have failed at robustly identifying such factors,
strongly indicating that no single pathogen is responsible.
Viral infections have been suggested, including enteroviruses
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and human herpesvirus-6 [10—13]. Of note, however, studies
(mainly in animals) have also suggested that several viral
infections may prevent the development of type 1 diabetes
[14, 15], in line with the ‘hygiene hypothesis’ [16, 17].
People living with type 1 diabetes remain dependent on
exogenous insulins as the cornerstone therapeutic option
[18]. Since the isolation of insulin in 1921, novel and versatile
formulations, analogues and delivery vehicles have been
introduced [19, 20]. Together with much improved glucose
monitoring, these advances have contributed to the increases
in the survival and life expectancy of individuals with type 1
diabetes [21]. Still, only a minority of people with type 1
diabetes achieve recommended glycaemic and time-in-range
targets [22], and hyperglycaemia continues to be a risk factor
for short-term metabolic and long-term macro- and microvas-
cular complications [2, 23-25]. Further, the use of exogenous
insulins requires unremitting glycaemic monitoring and dose
titration to mitigate the risk of hypoglycaemia. The all-cause
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mortality risk is around threefold higher for the individual
with type 1 diabetes than for the general population [2-4,
26], and type 1 diabetes has been shown to be linked to cardio-
vascular outcomes more than any other disease, including type
2 diabetes [2].

As mentioned earlier, novel interventions are needed for
the prevention and management of type 1 diabetes. Whilst
progress has been limited, the evolving profile of a person
with type 1 diabetes suggests that beyond ensuring accurate
titration of exogenous insulin, efficient management of the
disease should rely on other additional principles. First, there
is an obvious need to act early to prevent or delay the destruc-
tion of functional beta cell mass by immunomodulatory inter-
vention or other disease-modifying means. Second, stimulat-
ing or reprogramming the remaining beta cell mass to secrete
insulin in a balanced way is required to avoid major blood
glucose excursions with the lowest possible exogenous insulin
dose. Third, reducing the risk of long-term complications,
such as cardiovascular and renal outcomes, seems increasing-
ly important (Fig. 1). Below we review selected current and
in-development interventions meeting these three criteria
(Table 1).

Table 1

Immune-focused therapies

The overarching goal of immune-focused therapies in type 1
diabetes is to prevent or delay the loss of functional beta cell
mass. The traditional understanding of autoimmunity in type 1
diabetes has focused on systemic immune dysregulation and
on autoreactive T cells that have evaded thymic selection and
migrated to the periphery, where they destroy islets. This view
on the pathogenesis of type 1 diabetes has been referred to as
T cell-mediated ‘homicide’ [6]. Thus, recent efforts have
concentrated on cell- or cytokine-directed interventions,
which have been successful in other autoimmune diseases.
Targeting T cells or proinflammatory cytokines remain valid
efforts and many agents are in active development; so far,
however, these approaches have been only partly successful.
This arguably indicates a need to refocus hypotheses, as
discussed later in this review (see ‘Future perspectives’
section), where we outline how the beta cell itself contributes
to its own demise (the ‘assisted suicide’ hypothesis).

Cell-directed interventions In line with the traditional
immune-centric view on the pathogenesis of type 1 diabetes,

Non-insulin agents for the prevention and management of type 1 diabetes

Mechanism of action/target Agent

Reference of selected main studies
or ClinicalTrials.gov registration no.

Systemic approaches
T effector cells Teplizumab (anti-CD3)
Otelixizumab (anti-CD3)

ATG

Abatacept (anti-CD80 and anti-CD86)

Alefacept

Anti-IL-21 antibody
Rituximab (anti-CD20)
Low-dose 1L-2

B cells
T regulatory cell expansion
Anti-inflammation
Tocilizumab (anti-IL-6R)
GLP-1 RAs
Islet/beta cell-specific approaches
Oral insulin
GAD65
Peptides
GLP-1 RAs
Verapamil

Islet-antigen tolerisation/immunisation

Beta cell stress relief and stimulation

Cardiometabolic improvements®
SGLT inhibition
GLP-1 agonism
Other/unspecific Amylin (pramlintide)

Metformin

Infliximab, adalimumab, etanercept, golimumab (anti-TNF-x)

Dapagliflozin, empagliflozin, sotagliflozin

Exenatide, liraglutide, dulaglutide, semaglutide

27-29, 31]; NCT03875729
30]

36]
42, 43]

39]

55,56, 59, 61]

34, 35]

44-48]

49-51]

53, 54]; NCT02293837
[120-123]

=)

il e e B

[63-66]
[67]

(68, 69]

[91, 92, 113-117, 135-138]
[102, 103]

78-83, 88, 89]
90-92, 135-138]
145, 146]

[
[
[
[73-76]

 Including blood glucose levels, body weight, blood lipids, blood pressure and cardiorenal risk
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many immunomodulatory strategies have focused on antibod-
ies targeting T effector cells. The anti-CD3 antibodies
teplizumab and otelixizumab have shown some attenuation
of loss of beta cell function [27-30]. A Phase II trial with
relatives with a high risk of developing type 1 diabetes indi-
cated a more than 50% risk reduction with teplizumab (HR
0.41 vs placebo) and clinical type 1 diabetes diagnosis was
delayed by 1.5-2 years [31]. Accordingly, teplizumab has
recently been granted a breakthrough therapy status by the
US Food and Drug Administration. An ongoing Phase III trial
(PROTECT; ClinicalTrials.gov registration no.
NCTO03875729) aims to evaluate the benefits and safety of
teplizumab in children and adolescents with recently
diagnosed type 1 diabetes.

The presence of autoantibodies against beta cell antigens,
such as GADG65 and insulin, has spurred attempts targeting B
cell-related molecules. These efforts have been somewhat
successful in animal models [32, 33], as well as clinically,
most prominently with the B cell-depleting anti-CD20 anti-
body rituximab. Although rituximab led to detectable protrac-
tion of beta cell function [34], the effect was transient [35],
exemplifying the fact that B cell-directed therapy alone does
not appear to sustainably prevent or ameliorate beta cell auto-
immunity. So far, however, B cell-directed agents have not
been tested in the early disease stage, precluding conclusions
regarding the usefulness of such interventions in delaying or
even preventing progression to later stages.

In clinical investigations, low-dose anti-thymocyte globulin
(ATG) treatment significantly (vs placebo) preserved C-peptide
secretion and improved glycaemic control in children, as well
as adults, with new-onset type 1 diabetes [36—38]. The potential
benefits of ATG appear to depend on the dose level and the age
of the recipients, and the clinical utility of the approach remains
to be established. ATG in combination with granulocyte colony
stimulating factor (GCSF) was also explored based on the
hypothesis of a synergistic benefit of the combination of tran-
sient T cell depletion via low-dose ATG with the upregulation
of activated T regulatory cells and tolerogenic dendritic cells
induced by GCSF. However, the combination did not appear to
offer a synergistic effect; in contrast to the use of ATG alone,
ATG plus GCSF did not appear to be better than placebo in
preserving C-peptide secretion [37].

Tissue-resident memory T effector cells, which likely play
a role in many organ-specific autoimmune diseases, such as
type 1 diabetes, are very difficult to eliminate. Alefacept, a T
cell-depleting fusion protein that targets CD2 and, therefore,
memory T effector cells, was tested in adolescents and young
adults with Stage 3 type 1 diabetes in the TIDAL trial [39].
Although the trial did not complete enrolment as planned, it
reported a trend for benefits with regard to beta cell preserva-
tion, reduced insulin requirements and low risk of
hypoglycaemia that persisted throughout the follow-up of
15 months after treatment.
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Importantly, whether considering the targeting of the T or
B cell in type 1 diabetes, sufficient long-term benefits via
systemic cell pool depletion comes with an inherent risk of
introducing equally long-term or even irreversible changes to
the immune system. Such changes may predispose the patient
to a less favourable prognosis for chronic viral infections. For
example, reactivation of Epstein-Barr virus (EBV) has been
observed after anti-CD3 therapies [40, 41]. Mitigating such
risks may be achieved using carefully tailored dosing regi-
mens and monitoring; still, the seriousness of the risks may
indicate an unfavourable benefit:risks balance. Therefore,
non-depleting immunomodulation has been explored. For
example, 24-month blockade of CD80 and CD86 via the cyto-
toxic T-lymphocyte-associated protein 4 (CTLA-4)-immuno-
globulin fusion molecule abatacept markedly prolonged beta
cell function in new-onset type 1 diabetes and was accompa-
nied by increased numbers of naive T cells [42, 43].

Cytokine-directed interventions Anti-inflammatory cytokine-
specific compounds, which are successfully used, for exam-
ple, in theumatic diseases, have been tested as alternatives to
directly targeting the T or B cell in type 1 diabetes, as briefly
summarised below. In addition, to stimulate an increase in T
regulatory cells, low-dose IL-2 treatment has also been tested
and the results have been somewhat promising [44—48], with
recent developments mitigating earlier caveats, which includ-
ed an arguably narrow dose range and lack of full specificity
for T regulatory cells.

Blockade or antagonism of the central proinflammatory
cytokine TNF-« using infliximab, adalimumab or the receptor
fusion protein etanercept have shown some potential in type 1
diabetes, with indications of improved glycaemic control and
C-peptide secretion [49, 50]. More recently, a C-peptide-
sparing effect of TNF-« blockade was reported with
golimumab use, after 1 year in children and young adults with
type 1 diabetes [51].

IL-6 is another proinflammatory cytokine that has been
targeted with success in multiple other autoimmune diseases
[52]. Although its role in type 1 diabetes is not established, IL-
6 has been suggested as a target [53]. Of note, IL-6 has been
shown to protect the beta cell from oxidative stress and is
constitutively expressed by pancreatic alpha and beta cells,
indicating important physiological roles [54]. In type 1 diabe-
tes, the EXTEND Phase II trial of tocilizumab, a monoclonal
antibody against the IL-6 receptor, was recently completed
(ClinicalTrials.gov registration no. NCT02293837).

IL-21 has been proposed as an attractive target in type 1
diabetes [55, 56]. Physiologically, IL-21 is important not only
for the function of T helper (Th) cells (Th17 and T follicular
helper cells) but also for the generation and migration of CD8*
T cells. CD8" T cells are now considered the chief T cell type
accumulating in and around islets [57, 58] with pre-proinsulin
emerging as a pivotal autoantigen driving their infiltration in
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type 1 diabetes [59]. IL-21 neutralisation has been shown to
prevent diabetes in mice [60], and a C-peptide-sparing benefit
of anti-IL-21 alone or in combination with the glucagon-like
peptide-1 (GLP-1) receptor agonist (RA) liraglutide has been
observed in a clinical proof-of-concept study [61], as
described further below. Reassuringly, non-clinical models,
including a viral type 1 diabetes model, showed a minor
impact of IL-21 blockade on the immune repertoire [55].

Antigen vaccination With the appeal of having no expected
effect on acquired immunity, the overall aim of beta cell anti-
gen vaccination is to induce tolerance by balancing the T cell
population between auto-aggressive T effector cells and
autoantigen-specific T regulatory cells. Induction of T regula-
tory cells carries the potential benefit of also downregulating
the activity of proinflammatory antigen-presenting cells. The
topic has been extensively reviewed in the past [62]. Briefly,
inspired by successes with vaccination against, for example,
peanut allergy, tolerisation of T effector cells has been
attempted using administration of whole antigens, such as oral
insulin, or of peptides. Whilst the concepts are promising and
under active investigation, their effectiveness in humans is yet
to be proven. For example, in at-risk children, oral insulin
administration has previously failed to prevent type 1 diabetes
[63, 64], speculatively due to a suboptimal dose level or
unclear effects across risk-specific subgroups [65, 66], includ-
ing those defined by insulin gene polymorphisms. Similar
results and considerations have been reported for
immunisation with GAD65 [67] and for peptide-based thera-
pies [68, 69]. Further, the lack of full clarity regarding the
mechanisms at play with antigen-based therapies outlines a
number of shortcomings, including the fact that no biomarker
is currently available to assist in establishing the optimal dose
regimen.

Non-immunomodulatory adjunctives

We next focus on selected compounds that have gained atten-
tion due to their potential benefits as adjuncts to insulin in type
1 diabetes.

Amylin Amylin deficiency is a recognised feature of type 1
diabetes [70]. As a neuroendocrine hormone, amylin inhibits
glucagon secretion and contributes to reducing postprandial
glucose variability. As an adjunct to meal-time insulin, the
injectable amylin analogue pramlintide is approved only in
the USA for the treatment of type 1 and type 2 diabetes alike
[71]. In type 1 diabetes, pramlintide has been shown to
improve postprandial glucose levels to some extent [72]. Its
clinical use has been limited, arguably because of the modest
efficacy alongside the occurrence of side effects, such as
nausea and, most importantly, postprandial hypoglycaemia.

Metformin Metformin is a low-cost agent with glucose-
lowering effects that mainly occur via decreased hepatic
glucose production. It is not a guideline-recommended option
in type 1 diabetes. However, partly because of its ameliorating
effect on insulin resistance, metformin has been somewhat
promising in managing the disease, especially in children
and adolescents, as well as in obese people with type 1 diabe-
tes, with studies indicating reduced insulin requirements and
body weight reduction [73—75]. In the large REducing With
MetfOrmin Vascular Adverse Lesions (REMOVAL) trial,
however, metformin did not reduce the long-term insulin
needs or improve glycaemic control in people with long-
standing type 1 diabetes and multiple cardiovascular risk
factors [76].

Sodium-glucose cotransporter inhibitors Sodium-glucose
cotransporter (SGLT) inhibitors lower blood glucose levels
by restraining the absorption of glucose in the small intestine
and promoting the renal excretion of glucose [77]. Results
with dapagliflozin, empagliflozin and sotagliflozin have indi-
cated benefits of SGLT inhibition in managing type 1 diabetes
when added to insulin [78—83]. Significant benefits included
reduced insulin dose requirements, improved glycaemic
control and reduced body weight [84]. So far, sotagliflozin
and dapagliflozin are approved in Europe and Japan (but not
the USA) as adjuncts to insulin for the management of over-
weight or obese people with type 1 diabetes when optimally
titrated insulin alone does not provide adequate glycaemic
control. Importantly, however, data suggest that the use of
SGLT inhibitors in type 1 diabetes is associated with marked-
ly increased risk of diabetic ketoacidosis [85-87]; for
sotagliflozin, a 5—17-fold risk increase was noted [88].
These observations prompted the formation of an international
consensus on recommendations for the use of SGLT inhibi-
tion in type 1 diabetes [89] as well as a suggestion that treat-
ment should be overseen by specialists [88].

GLP-1 RAs GLP-1 is a hormone of the incretin system that is
secreted upon food intake. A marked uptake has been seen in
the use of GLP-1 RAs in type 2 diabetes due to their pleiotro-
pic glucose-dependent effects that improve glycaemic control
and reduce body weight [90]. In contrast, GLP-1 agonism for
the treatment of type 1 diabetes remains unproven, with initial
results from smaller investigator-conceived studies being
inconclusive. Recently, Phase II findings with the short-
acting GLP-1 RA exenatide in adults with type 1 diabetes
were negative. In two larger Phase III trials (ADJUNCT
ONE and ADJUNCT TWO), the GLP-1 analogue liraglutide
used as an adjunct to insulin appeared well-tolerated and
improved HbA . and reduced body weight [91, 92]. Both
ADJUNCT trials indicated a minor increase in the risk of
hypoglycaemia and hyperglycaemia with ketosis with
liraglutide use, whereas the risk of diabetic ketoacidosis was
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negligible. Subsequently, a plethora of investigations have
reached similar conclusions [93—101]. Nonetheless, the use
of GLP-1 RAs in type 1 diabetes remains potentially useful,
as discussed below.

Verapamil Verapamil is a common calcium-channel blocker
used for decades as an anti-hypertensive agent. In mouse
models of type 1 diabetes, verapamil promoted survival of
functional beta cells via a mechanism that involves reduced
expression of the cellular redox regulator thioredoxin-
interacting protein [102]. In a smaller Phase II trial, verapamil
was better than placebo for preserving meal-stimulated C-
peptide secretion in adults with type 1 diabetes and no safety
concerns were identified [103]. Despite these findings,
however, the place for verapamil as a disease-modifying agent
in type 1 diabetes remains to be fully established.

Future perspectives

Although research into type 1 diabetes prevention and disease
modification continues to produce encouraging data, none of
the approaches discussed above appears sufficiently effective
alone in preventing or managing type 1 diabetes. Future
endeavours will, therefore, require a novel focus, leveraging
prior experience with regard to the immunopathophysiology
of type 1 diabetes, whilst also exploring the promise of combi-
nation therapies that integrate tried or new treatment modali-
ties. In addition, lessons learned from type 2 diabetes with
regard to the beneficial effects of certain agents on, for exam-
ple, body weight and cardiorenal risk may also prove relevant
in type 1 diabetes. We review selected future prospects
addressing these aspects below.

Of further note, the lack of sufficient efficacy of previously
tested therapies may also be related to the fact that type 1
diabetes is a heterogenous disease with diverse disease stages
(Stages 1 to 3) and modifiers, such as age of onset or clinical
diagnosis. Identifying the optimal timing of each type of inter-
vention relative to the disease stages and the age of the patient
is, therefore, important. For example, initiating an immuno-
modulatory intervention at Stage 1 (i.e. prior to clinical diag-
nosis) is not a straightforward decision and may be associated
with clinical inertia. Moreover, an increased focus on disease
endotypes (i.e. different biological processes under the type 1
diabetes umbrella) was recently suggested to ensure a
precision-medicine approach to type 1 diabetes research and
management [104].

Immune interventions It is becoming increasingly clear that
autoreactivity to islet antigens is also present in healthy indi-
viduals [59] and autoimmunity recurs after autologous
nonmyeloablative haematopoietic stem cell transplantation
[105, 106]. Thus, in line with the ‘assisted suicide’ theory
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introduced earlier [6, 7], it is also increasingly apparent that
the development of type 1 diabetes does not only involve
dysfunctional islets, but also beta cells that ‘unmask’ them-
selves to immune recognition and destruction. This notion
supports two central realisations; first, it might explain why,
in previous studies, immune therapy alone has failed to protect
beta cell function over longer periods of time after onset of
diabetes. Second, looking forward, novel type 1 diabetes ther-
apies should pursue the holy grail of type 1 diabetes immune
therapy: essentially agents that act locally in the islets, within
the pancreas, either targeting the immune cells destroying the
beta cell or the beta cell itself. Knowledge gained over the
years regarding the beta cell has suggested multiple, yet puta-
tive reasons for the ‘unmasking’ of these cells. Potential
reasons include the facts that beta cells are especially biosyn-
thetically active and systemically exposed [107] and, there-
fore, susceptible to stress-induced production of autoantigenic
proteins during, for example, infections [108—110]. Moreover,
the beta cell might be vulnerable to both cytokine-mediated
destruction [111] and various types of endoplasmic reticulum
stress [112]. Relieving the beta cell of these burdens may
provide an opportunity to save the beta cell without resorting
to aggressive immune suppression.

With this in mind, we see the following two promising
avenues as deserving increased focus going forward: (1) ther-
apies aimed at inducing tolerance to beta cell antigens; and (2)
the use of GLP-1 RAs that directly target the beta cells to
enhance their function whilst also protecting them from
immune-mediated inflammatory stress.

As discussed above, achieving antigenic tolerance has, so
far, proven elusive but carries the crucial potential of leaving
the overall capacity of the immune system intact whilst
suppressing only the diabetogenic cell populations. Future
studies need to establish whether inducing tolerance in
humans can be achieved by clonal anergy or clonal deletion
of effector cells, or whether antigen-specific regulatory cells
may be able to suppress autoreactivity locally. Moreover, it
needs to be clarified to what extent tissue-resident memory
effector cells can be eliminated.

Recent evidence from rodent models indicates a role for
GLP-1 RAs in protecting beta cells from apoptosis and in
promoting beta cell replication and mass [113—117]. As such,
although this remains to be confirmed, it is conceivable that
GLP-1 RAs may offer a way to prevent the ‘unmasking’ of the
beta cell to immune effector cells, for example, by downreg-
ulating expression of MHC class I proteins. Intriguingly,
unpublished non-clinical evidence shows that liraglutide also
limits immune cell infiltration into pseudo-islets (M. von
Herrath, unpublished results). In addition, studies in NOD
mice have shown that GLP-1 RAs administered in combina-
tion with various immunomodulatory agents, including anti-
CD3 compounds [118], were more efficient in inducing diabe-
tes remission than when given as monotherapy [119].
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Furthermore, the anti-inflammatory effects of GLP-1 RAs are
well-documented, with liraglutide being associated with
reduced systemic levels of C-reactive protein and of proin-
flammatory cytokines, such as TNF-«, IL-13 and IL-6
[120-123]. Whilst these findings have mainly been observed
in animal models or in type 2 diabetes, their relevance to
(clinical) type 1 diabetes is conceivable but, so far, largely
unexplored.

Management of cardiometabolic complications A person
diagnosed with type 1 diabetes faces a high risk of serious
complications and of premature death, primarily for cardio-
vascular causes. This warrants a therapeutic focus on the
broad pathophysiology of the disease.

Further, whilst the exact connections between excess
body weight and type 1 diabetes remain debatable [124],
the increased incidence of type 1 diabetes seems to coincide
with the rapid rise in the prevalence of obesity [125, 126].
Recent evidence suggests that a high BMI may exacerbate
the early-stage immune-mediated beta cell destruction in
type 1 diabetes, especially in children and adolescents
[127]. Evidence also points to an impact of rapid growth
in early childhood [128], and a positive correlation between
the age of type 1 diabetes onset and BMI has been observed
[129]. The ‘accelerator hypothesis’ views high BMI and
low insulin sensitivity as triggers for type 1 diabetes onset
[130] and the term ‘double diabetes’ has been suggested to
describe an amalgam of type 1 diabetes with parallel and
separate pathophysiological processes typically associated
with type 2 diabetes, such as obesity and insulin resistance
[131].

Use of SGLT inhibitors or GLP-1 RAs as adjuncts to insu-
lin admittedly holds promise in ameliorating multiple type 1
diabetes complications. For example, evidence suggests that
SGLT inhibitors offer cardiorenal protection [132, 133], at
least in type 2 diabetes, putatively owing to clinically unprov-
en mechanisms of action beyond improved glucose homeo-
stasis [134]. Moreover, a few GLP-1 RAs (dulaglutide,
liraglutide and semaglutide) are now indicated to reduce
cardiovascular risk in people with type 2 diabetes and
established cardiovascular disease, and a protective effect of
GLP-1 RAs on the kidneys is suggested from a range of
cardiovascular outcome trials (CVOTs) in type 2 diabetes
[135-138]. In addition, both SGLT inhibitors and GLP-1
RAs, especially second-generation GLP-1 RAs (e.g.,
semaglutide), are associated with a meaningful reducing effect
on body weight.

Combination therapies Combination therapies that work via
two mechanistically distinct targets to integrate immune
modulation with a beta cell-specific component have been
suggested [139—-141] and encouraged [142]. Truly advanta-
geous combination therapies are arguably those in which the

components target different pathogenic pathways (for exam-
ple, systemic vs beta cell-specific pathways), thereby
synergising in terms of the beneficial effects. These combina-
tion therapies should also be safe and well-tolerated alone and
in combination.

Known ongoing efforts are sparse but include the combi-
nation of ATG and GCSF (as discussed above) and the
combination of targeted immune modulation via an anti-
IL-21 antibody in combination with a GLP-1 analogue
(liraglutide). In addition to the potential of preserving func-
tional beta cell mass by leveraging the immunomodulatory
and anti-inflammatory properties of both the anti-IL-21
antibody and liraglutide, their combination addresses the
need to manage the symptoms and complications of
established type 1 diabetes, as discussed earlier. As previ-
ously mentioned, results from a clinical proof-of-concept
trial recently found that anti-IL-21 plus liraglutide was
significantly better than placebo in preserving C-peptide
secretion over a period of 54 weeks [61]. The benefits
diminished after treatment cessation; however, the treat-
ment appeared safe and well-tolerated.

Stem cell replacement therapy On the horizon, we approach
the promise of stem cell-based therapies [143], offering a
potential cure by replacing or supplementing beta cells that
have been lost or have become dysfunctional. Stem cell-
derived beta cells, however, also need to be rescued from
immune-mediated destruction, suggesting that some degree
of immunomodulation will be needed, even in the advent of
viable stem cell therapy in type 1 diabetes, unless a fully
effective immune-defying capsule is available [144]. In this
context, better prevention or treatment regimens will also be
useful for enabling longer-term beta cell graft acceptance.

Closing thoughts

Whilst many intriguing non-insulin therapies have failed to
fully meet their potential in the past few decades, hope remains
that the knowledge gained has carved out paths towards better
options for the prevention and management of type 1 diabetes.
Taken together, in our view, stem cell replacement therapies
and a refocused development of safe and well-tolerated combi-
nation therapies are the most promising emerging preventive or
therapeutic avenues. In parallel, reinforced efforts to predict or
diagnose type 1 diabetes as soon as possible are equally impor-
tant in light of the fact that even the best interventions need to be
introduced as early as possible to effectively preserve or rescue
beta cells in individuals with this condition.
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