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Abstract

Honest advertisement models posit that only individuals in good health can produce and/or maintain ornamental traits.
Even though disease has profound effects on condition, few studies have experimentally tested its effects on trait
expression and even fewer have identified a mechanistic basis for these effects. Recent evidence suggests that black and
white, but not grey, plumage colors of black-capped chickadees (Poecile atricapillus) are sexually selected. We therefore
hypothesized that birds afflicted with avian keratin disorder, a condition that affects the beak and other keratinized tissues,
would show reduced expression of black and white, but not grey, color. UV-vis spectrometry of black-capped chickadees
affected and unaffected by avian keratin disorder revealed spectral differences between them consistent with this
hypothesis. To elucidate the mechanistic bases of these differences, we used scanning electron microscopy (SEM), electron-
dispersive x-ray spectroscopy (EDX) and a feather cleaning experiment. SEM showed extreme feather soiling in affected
birds, and EDX revealed that this was most likely from external sources. Experimentally cleaning the feathers increased color
expression of ornamental feathers of affected, but not unaffected, birds. These data provide strong evidence that black and
white color is an honest indicator in chickadees, and that variation in feather dirtiness, likely due to differences in preening
behavior is a mechanism for this association.
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Introduction

Honest advertisement models posit that expression of orna-

mental traits should be linked to the overall quality of an organism

[1–3]. If expression of a trait is condition-dependent, then high-

quality individuals should suffer a lower fitness cost than low-

quality individuals for the same expression of the trait [3,4].

Numerous studies have demonstrated associations between

plumage color and various aspects of quality, including nutritional

condition [5–9], parasite resistance [10], territory quality [11,12],

parental effort [13], and social status (reviewed in [14]). However,

only a few studies [15–18] have examined the effects of disease on

plumage color. Such research is important because disease state

can serve as a reliable metric of overall physiological condition.

Furthermore, when the physiological effects of the disease are

known, it may be possible to establish a mechanistic link between

expression of color and disease state, increasing certainty of cause-

and-effect relationships [16].

Outbreaks of disease thus provide natural experiments that can

be exploited to address the hypotheses of honest advertisement

models. An epizootic termed avian keratin disorder has recently

been documented among black-capped chickadees (Poecile atrica-

pillus), northwestern crows (Corvus caurinus), and other avian species

in Alaska and the Pacific Northwest region of North America

[19,20]. This condition results in deformation of the beak (figure 1),

and may be accompanied by lesions in other keratinized tissues of

the skin, legs, feet, claws, and feathers [19,20]. Affected birds have

difficulty feeding and preening, have dirty and matted plumage,

and suffer elevated incidence of parasitic feather mites [19], all of

which likely have detrimental effects on individual health and

fitness.

Recent evidence suggests that the contrasting black and white

color patches of black-capped chickadees are sexually selected.

Males with darker and more UV-reflective black plumage are

more dominant [21,22] and those with brighter white plumage

and more UV-reflective black plumage have higher reproductive

success [23]. By contrast, grey feathers are not associated with

either parameter [21], suggesting that they are not sexually

selected.

A population of black-capped chickadees affected by avian

keratin disorder provides an opportunity to directly assess the

reliability of achromatic plumage as a health indicator. Here we

use ultraviolet-visible spectrometry to examine achromatic plum-

age reflectance in this population, predicting that affected birds

would have reduced black and white color, but similar grey color,

to unaffected birds. The difficulties that affected birds have in
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preening [19] led us to further hypothesize that this difference

would be caused by increased dirtiness of affected birds’ feathers.

We tested this hypothesis using scanning electron microscopy

(SEM), energy-dispersive x-ray spectroscopy (EDX) and a washing

experiment. Dirt can dramatically alter reflectance, particularly in

the UV spectrum [24], so this could represent a mechanistic link

between the expression of plumage reflectance and individual

condition in chickadees.

Results

(a) Feather appearance
Feathers of affected birds had a matted appearance that was

evident to the naked eye. SEM revealed clear differences in

appearance of feathers from affected and unaffected birds. White,

black, and grey feathers of affected birds all had large deposits of

debris on barbs and barbules that strongly contrasted with the

clean feathers of unaffected birds (figure 2). In some cases, barbules

in black feathers were so heavily soiled that they were stuck

together. EDX analysis detected sulphur in adjacent barbs and

barbules but none in the debris (figure 3), confirming that the

debris was not keratinous in nature. SEM examination demon-

strated that our ethanol washing treatment successfully removed

the debris from feathers (figure 4).

(b) Color measurements before the washing treatment
Reflectance curves for white, black and grey feathers were

similar but slightly lower than those measured previously in the

same species [23,21] (figure 5), likely because our measurements

were performed on taped feathers on a black background rather

than directly on the bird (e.g. [21]).

White feathers. Brightness of white feathers was slightly

lower for affected than unaffected birds but did not differ

significantly (table 1; figure 6a). Effect size of disease state on

UV-chroma of white feathers was large (.0.8): UV-chroma was

significantly lower in affected than unaffected birds, and did not

differ by sex (table 1).

Black feathers. Brightness of black bib feathers was higher in

affected than unaffected birds (table 1; fig. 6b), and there was no

difference by sex (table 1). UV-chroma of black feathers was lower

in affected than unaffected birds (fig. 6b) and did not differ by sex

(table 1). The effect size of disease state of both brightness and UV-

chroma was large (.0.8) compared to the effect size of sex (,0.3;

table 1).

Black and white contrast. Contrast in brightness between

black and white feathers was significantly lower for affected

(mean = 13.062.4%, n = 10) than unaffected (mean = 20.862.4%,

n = 10) birds before washing (F1,18 = 4.09, p = 0.05, figure 7). Sex

differences were not significant (F1,17 = 1.34, p = 0.18). The effect

size of disease state on contrast was high (d = 0.95, 95%CI = 24.03

to 5.81) compared to the effect size of sex (d = 0.40,

95%CI = 25.81 to 4.1).

Grey feathers. Neither brightness nor UV-chroma of grey

feathers differed by disease state or sex (table 1; figure 6c). The

effect size of disease state and sex on both spectral variables was

moderate (,0.5) to small (,0.2) (table 1).

(c) Wash experiment
White feathers. Brightness of white feathers of affected birds

did not change (t9 = 0.79, p = 0.44) but their UV-chroma increased

by 2.360.7% (t9 = 3.29, p = 0.009; figure 6a) after washing to

reflectance levels statistically indistinguishable from those of

unaffected birds. Neither brightness nor UV chroma of

unaffected birds was changed by the treatment (brightness

t9 = 0.05, p = 0.96; UV-chroma t9 = 0.42, p = 0.68; figure 6a).

After washing, there were no significant differences in brightness

or UV-chroma of white feathers by disease state or sex (table 2);

however, the effect size of disease state on brightness was large

(.0.8; table 2).

Black feathers. Black feathers of affected birds decreased in

brightness (mean difference 22.7560.97%, t9 = 2.81, p = 0.02;

figure 6b) and increased in UV-chroma (mean difference

0.8660.35%, t9 = 2.44, p = 0.03; figure 6b) after the wash. By

contrast, black feathers of unaffected birds did not change in either

color parameter (brightness t9 = 0.30, p = 0.76, UV-chroma

t9 = 1.39, p = 0.19; figure 6b). After cleaning, black feathers of

unaffected birds had both higher brightness and UV-chroma than

those of affected birds, and there was no effect of sex. Effect sizes of

disease state on both spectral variables was very large (.1.0;

table 2), while the effect size of sex was small (,0.2; table 2).

Black and white contrast. Contrast in brightness between

black and white feathers showed little change with the washing

treatment (affected: t9 = 22.03, p = 0.07; unaffected: t9 = 0.006,

p = 0.99; figure 7) and after the wash, did not differ by disease state

or sex (F1,18 = 1.36, p = 0.25; sex F1,17 = 0.62, p = 0.44). The effect

sizes of disease state and sex on contrast were moderate and small

respectively (disease state d = 0.95, 95%CI = 24.03 to 5.81; sex

d = 0.25, 95%CI = 23.3 to 2.59).

Grey feathers. Brightness of grey feathers did not change in

response to the washing treatment (affected: t9 = 21.08, p = 0.30,

unaffected: t9 = 21.33, p = 0.21; figure 6c) and still did not differ

between affected and unaffected birds (table 2). However, UV-

chroma increased by 4.160.82% and 5.760.68% in feathers of

affected (t = 25.02, p = 0.001) and unaffected (t9 = 28.41,

p,0.001) birds, respectively; the difference between the groups

was not significant and the effect size of disease state and sex on

both spectral variables was moderate (,0.5) to small (,0.2)

(table 2, figure 6c).

Discussion

Our results strongly support the hypothesis that ornamental

black and white plumage color reflects disease state in black-

capped chickadees and thus honestly reveals information about an

Figure 1. Black-capped chickadee affected by avian keratin
disorder. An individual from an Alaskan population of black-capped
chickadees shows Avian keratin disorder. The disease produces
elongated and crossed beak phenotypes.
doi:10.1371/journal.pone.0025877.g001

Plumage Reflectance as Signal of Disease State
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individual’s disease state. As predicted, color of black and white

feathers differed between affected and unaffected birds, but color

of control non-ornamental grey feathers did not. Our data further

suggest that feather soiling, likely a result of reduced preening

ability due to overgrowth of the beak [19], is a proximate cause of

these color differences. This is one of the few studies to not only

demonstrate a link between disease state and color but also to

provide a mechanistic explanation for that link.

Natural experiments like this are uniquely powerful in that they

allow us to directly observe how natural processes occur in a real-

world context. While they do not afford the same level of control

as traditional experiments, the obvious and strong effects of the

‘‘treatment’’ (disease) and the mechanistic connection between it

and the color change we observed (as determined by an additional

lab-based experiment) make it reasonable to infer that they are

connected.

UV-reflectance is a signal used in mate choice (e.g., starlings

Sturnus vulgaris, [25]; bluethroats Luscinia svecica svecica, [26]; pied

flycatchers Ficedula hypoleuca, [27]; budgerigars Melopsittacus un-

dulatus, [28]), but the mechanisms linking color to individual

condition are still unclear [29,30,31]. Here, we found that only

healthy birds maintain clean plumage and that cleanliness affects

UV reflectance of the ornamental trait, suggesting that it honestly

reflects health. In contrast with Mennill et al. [21], we did not

detect sexual dichromatism in plumage brightness, which might be

partly explained by our small sample size relative to Mennill et al.

[21]) and/or in differences in the methods used to calculate

reflectance (average percent reflectance here as opposed to

Principal Component Analysis of average reflectance curves).

Nevertheless, the strong effect of disease state (compared to the

effect of sex) on plumage brightess observed here suggests that

clean and bright plumage may be used by both males and females

to assess a potential mate’s condition.

Feather colors can change between the time of feather growth

and the time that they are advertised as a result of UV damage,

abrasion or breakdown by abiotic and biotic factors [32–37]. The

integrity of plumage color can be energetically costly to maintain

and should thus be a reliable communication signal. For example,

experimental breakdown of feathers by bacteria decreases UV-

chroma in structurally colored blue feathers [36], suggesting that

their bright UV colors honestly signal abundance of feather-

degrading bacteria to potential mates. Similarly, UV-chroma of

black feathers appears to provide a robust signal of disease state in

black-capped chickadees.

Figure 2. Feather microstructure of affected and unaffected birds. Examples of SEM micrographs of white cheek feathers (upper panels)
black bib feathers (middle panels) and grey mantle feathers (lower panels) from black-capped chickadees unaffected (left) and affected (right) by
avian keratin disorder. Scale bars are 20 mm.
doi:10.1371/journal.pone.0025877.g002

Plumage Reflectance as Signal of Disease State
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Our SEM data and washing experiment demonstrated that a

significant portion of the observed color differences between

unaffected and affected birds was caused by soiling. Effects of

soiling on plumage color have been investigated in a few studies

but results vary with the composition of the debris, plumage

coloration, and species. For example, soiled carotenoid-colored

feathers were less bright [38,39] while soiled white breast feathers

[37] were more UV-chromatic, than cleaned feathers. Conversely,

experimental soiling and natural buildup of dirt and waxes

decreased UV-reflectance, of structurally-colored blue feathers

[30,40] and iridescent feathers [41]. These latter results and ours

are consistent with the idea that dirt differentially absorbs UV

wavelengths [24] leading to lower UV-reflectance in soiled

feathers. By contrast, increased brightness of soiled black feathers

may result from incoherent light scattering by randomly

aggregated particles reflecting at all wavelengths [42]. Alterna-

tively, the debris that accumulates on black feathers may simply be

closer to white and thereby reflect more light. This would further

explain why dirt did not affect overall brightness of white feathers.

Interestingly, soiling had no effect on grey feathers, suggesting that

this color effectively conceals dirt and is thus not useful as an

honest ornament.

Even after cleaning, spectral characteristics of black feathers

remained distinct between affected and unaffected birds. This

could be the result of an incomplete cleaning treatment or could

suggest underlying morphological differences. For example,

secondary effects of disease during feather growth could result in

reduced volume or altered composition of melanin [43,44] or

microstructural components that influence feather brightness [45].

Potential differences in feather microstructure in relation to disease

state warrant further investigation.

Of course, avian keratin disorder produces abnormal beak

phenotypes that mark a bird as unhealthy even in the absence of

plumage color differences. However, preening is an energetically

costly activity [46,47] that is rarely performed by diseased or

otherwise unhealthy birds [48,19]. Therefore, the effects we

observe here may be generalizable to other systems, particularly

those in which achromatic plumage has been associated with

parameters of individual quality (e.g., pied flycatchers; [49]).

However, comparisons of plumage expression across other species

and disease states are needed to confirm this hypothesis. Future

studies should consider the effect of plumage maintenance when

investigating condition-dependent signals of color displays.

Materials and Methods

Ethics statement
The University of Alaska Fairbanks and the USGS Alaska

Science Center institutional review boards (Animal Care and Use

committees) approved this study (assurances nos. 07-49, 08-57)

and we followed all applicable institutional guidelines.

Figure 3. Soiling on black-capped chickadee feathers. Micro-
graph of soiled barb of a white black-capped chickadee feather (upper
panel) and corresponding EDX dot map of sulfur (lower panel). Yellow
dots in bottom panel indicate the presence of sulfur corresponding to
keretinous structures. d = debris, b = barb. Scale bar is 10 mm.
doi:10.1371/journal.pone.0025877.g003

Figure 4. Removal of feather soling by the ethanol treatment. Example of a white feather from a black-capped chickadee affected by avian
keratin disorder before (a) and after (b) washing with 50% ethanol. Scale bar is 100 mm.
doi:10.1371/journal.pone.0025877.g004

Plumage Reflectance as Signal of Disease State
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(a) Sample collection
In March–April 2009 we collected three contour feathers from

three different color patches (black bib, white cheek, grey mantle)

of 10 affected and 10 unaffected black-capped chickadees held

captive at the University of Alaska Fairbanks for approximately

five months as part of a separate study of avian keratin disorder.

These birds were captured as adults from south-central and

interior Alaska after fall moult; therefore, feathers used in this

study were grown prior to captivity. All affected birds exhibited

beak deformities and were classified according to the criteria

established by [19]. Birds were captured using funnel traps and

mist nets as described by [19]. We performed DNA analysis to

determine sex of birds from blood samples drawn from the

brachial vein [19,50].

(b) Feather appearance
We compared feather appearance of affected (n = 10) and

unaffected (n = 10) captive birds using SEM. Single feathers were

mounted on stubs with carbon tape, sputter-coated with silver and

viewed on a scanning electron microscope (JSM7401F, JEOL

Japan). Following these observations, we analyzed the composition

of three unwashed feathers of affected birds using EDX to

determine if the material observed on barbs and barbules was the

product of abnormal accumulation of amorphous keratin

produced by feather cells. This standard method uses x-rays

emitted from the sample during bombardment by an electron

beam to characterize the elemental composition of materials. Beta-

keratins, which make up feathers, contain small amounts of

sulphur that are detectable in this manner [51,52].

Figure 5. Spectral curves of feathers of affected and unaffected black-capped chickadees. Mean plumage reflectance curves for white A),
grey B), and black C) body regions of birds unaffected (solid lines; n = 10) and affected (dashed lines; n = 10) by avian keratin disorder.
doi:10.1371/journal.pone.0025877.g005

Table 1. GLM showing effects of disease state (affected versus unaffected by avian keratin disorder) and sex on color variables of
white, black, and grey feathers of black-capped chickadees before wash treatment.

Brightness UV chroma

F df p d (95%CI) F df p d (95%CI)

White

Disease state 3.60 1,18 0.07 0.76 (0.71, 0.81) 4.9 1,18 0.04 1.04 (1.04, 1.06)

Sex 1.49 1,17 0.29 0.29 (0.27,0.35) 0.04 1,17 0.84 0.1 (0.09, 0.12)

Black

Disease state 5.10 1,18 0.03 1.07 (1.05, 1.07) 9.40 1,18 0.007 1.45 (1.45, 1.46)

Sex 1.48 1,17 0.24 0.28 (0.26, 0.29) 1.15 1,17 0.29 0.17 (0.16, 0.17)

Grey

Disease state 1.80 1,18 0.19 0.58 (0.57, 0.6) 0.31 1,18 0.58 0.26 (0.25, 0.27)

Sex 0.05 1,17 0.82 0.02 (0, 0.03) 1.73 1,17 0.20 0.13 (0.13, 0.14)

Measure of effect size for main terms in the model is Cohen’s d. Non-significant terms were stepwise-removed from the model. Numbers in bold denote significance at
the 5% level.
doi:10.1371/journal.pone.0025877.t001
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(c) Color measurements
We taped three feathers per color patch per individual to gloss-

free black construction paper, and recorded spectral data from the

distal portion of feathers using an AvaSpec 2048 spectrometer

(range 250–880 nm, Avantes, Broomfield, CO, USA). We

collected color data at normal (0u incident light/0u measurement)

incidence using a bifurcated micron fiber optic probe held by a

probe holder (RPH-1, Avantes) with matte black interior that

excluded ambient light. All data were generated relative to a white

standard (WS-2, Avantes). We used AvaSoft software (Avantes) to

record and average 20 spectra sequentially, and recorded and

averaged three measurements from randomly chosen points on

each color sample. We calculated brightness as the average

percent reflectance in the 300–700 nm range and UV-chroma as

the proportion of total reflectance occurring within 300–400 nm.

We used brightness and UV-chroma of white and black feathers

because previous studies had shown that individual variation in

these parameters is correlated with dominance status and

reproductive success [21,23]. Contrast in brightness within an

individual bird’s plumage (e.g., between adjacent white cheek and

black bib patches) may enhance conspicuousness of signals [53] or,

as shown for black-capped chickadees [21], constitute a signal

itself, conveying individual information on sex and rank. We

therefore included contrast of white cheek and black bib feathers

as an additional component of plumage color. We calculated

contrast as the difference between mean brightness values (%

reflectance) of the two body regions.

We used spectral variables rather than those generated by avian

color vision models both for ease of comparison with previous

studies and because differences in feather appearance between

affected and unaffected birds were evident with unaided human

vision and therefore should be easily detectable by birds.

(d) Washing experiment
To determine if color differences between affected and

unaffected birds were caused by differences in soiling, we

immersed black and white feathers from each individual in a

solution of 50% ethanol for 5 min, rinsed them once with distilled

water and allowed them to air dry in clean petri dishes for 2–

3 hours. We examined a subsample of feathers with the SEM to

confirm that this treatment was effective at removing debris. We

then measured color of cleaned feathers using the methods

described above.

(e) Statistical analyses
Our data did not depart from normality; thus, we used

parametric tests in all cases. To compare plumage reflectance

between unaffected and affected birds we used general linear

models (GLMs) with either brightness or UV-chroma as response

variables and disease state (affected or unaffected by avian keratin

disorder) and sex as explanatory variables. Because of limited

statistical power, we did not test the interaction term of disease

state and sex. We analyzed one model for each feather color

(white, black or grey) and one model for contrast between black

and white feathers. We report the main effects after non-significant

(p.0.05) factors were removed. Effect size, which is less sensitive

to sample size effects, was calculated for both main terms (disease

state and sex) in the GLMs using Cohen’s d [54]. To test the effect

of washing on color variables we used paired t-tests in which

brightness, UV-chroma and contrast measurements before and

after the wash treatment for each individual were compared. All

probabilities are two-tailed and values are reported as means 6

SE. Analyses were performed in R, version 2.9.0 (R Development

Core Team, Vienna).

Figure 7. Effects of the ethanol wash on contrast in brightness
between black and white feathers. Means 6 SE of contrast
between black and white feathers of black-capped chickadees affected
(filled symbols) and unaffected (open symbols) by the keratin disorder
before and after the ethanol wash treatment.
doi:10.1371/journal.pone.0025877.g007

Figure 6. Effects of the ethanol wash on spectral characteristics
of feathers. Brightness and UV-chroma before and after the ethanol
wash treatment of (a) white, (b) black and (c) grey feathers of black-
capped chickadees affected (filled symbols) and unaffected (open
symbols) by avian keratin disorder. Values are presented as mean 6 SE.
doi:10.1371/journal.pone.0025877.g006
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