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Abstract: MicroRNA160 plays a crucial role in plant development by negatively regulating the auxin
response factors (ARFs). In this manuscript, we design an automatic molecule machine (AMM) based
on the dual catalytic hairpin assembly (D-CHA) strategy for the signal amplification detection of
miRNA160. The detection system contains four hairpin-shaped DNA probes (HP1, HP2, HP3, and
HP4). For HP1, the loop is designed to be complementary to miRNA160. A fragment of DNA with
the same sequences as miRNA160 is separated into two pieces that are connected at the 3′ end of HP2
and 5′ end of HP3, respectively. In the presence of the target, four HPs are successively dissolved by
the first catalytic hairpin assembly (CHA1), forming a four-way DNA junction (F-DJ) that enables the
rearrangement of separated DNA fragments at the end of HP2 and HP3 and serving as an integrated
target analogue for initiating the second CHA reaction, generating an enhanced fluorescence signal.
Assay experiments demonstrate that D-CHA has a better performance compared with traditional
CHA, achieving the detection limit as low as 10 pM for miRNA160 as deduced from its corresponding
DNA surrogates. Moreover, non-target miRNAs, as well as single-base mutation targets, can be
detected. Overall, the D-CHA strategy provides a competitive method for plant miRNAs detection.

Keywords: miRNA160; dual catalytic hairpin assembly process; signal amplification strategy;
AMM system; strand displacement reaction

1. Introduction

MicroRNA (miRNA) is a type of non-coding single-stranded RNA widely found in eu-
karyotic cells, with a length of about 20–24 nucleotides [1,2]. MiRNA helps regulate various
biological processes in plants, including maintenance of genome integrity, development,
metabolism, alongside adaptive responses to environmental stress [3–6]. For example,
miRNA160 plays an important role in the auxin (IAA) response in plants by targeting auxin
response factor (ARF) genes, including ARF10, ARF16, and ARF17 genes [7–9]. In the auxin
signal transduction pathway, miRNA160 is an essential factor for maintaining the normal
development of roots, leaves, and floral organs, alongside seed germination and callus
formation [10–13]. To maintain the water balance in leaves, miR160 serves as a regulator to
ensure the normal development and environmental adaptation of plants [7,8]. Moreover,
miR160 affects the expression of ARF17 and thus is related to tapetum development and
pollen wall formation [14]. As a result, there has been enormous interest in developing
biosensors for the sensitive, convenient, and cost-effective detection of miRNA160.
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The detection of miRNAs remains a great challenge owing to the inherent properties,
such as small size, low expression level, and high sequence homology [15–18]. In general,
traditional miRNA detection methods include microarray, northern blotting, and quantita-
tive reverse transcription PCR (RT-qRCR) [19–21]. Despite the advantages of microarrays,
such as high-throughput and multiple miRNA detection, the demands of complicated
instrumentation greatly limit the application of microarrays for the online detection of
miRNA [22,23]. The time-consuming operation and limited throughout, as well as poor
sensitivity, restrict the practical detection of northern blotting for trace miRNA detec-
tion [24]. Although RT-qRCR assay is accomplished with high speed and high sensitivity,
the thermal-recycling controlling system and expensive instruments increase the detection
cost [25–27]. Due to these limitations above, the development of new sensing probes is
one of the current areas driving the demand for convenient, simple, sensitive, and specific
detection of miRNAs.

Besides genetic molecules in living systems, DNA is now also known as a versatile
tool in the fields of biochemical analysis and nanomaterials [28–31]. Due to the advan-
tages of programmability, controllability, and diversity of base-pairing, a variety of DNA
nanostructures have been assembled and found spectacular applications in designing DNA
sensing probes, providing numerous opportunities for reliable detection of various target
analytes, such as DNA, RNA, metal ion, and protein [32–37]. For example, Deng et al. [38]
developed a rolling circle amplification (RCA)-based amplification technology for miRNA
detection with high specificity. Although the method is sensitive, the synthesis and purifi-
cation of the circular probe require complicated procedures. Moreover, the usage of protein
enzymes inevitably increases the detection cost. To overcome those difficulties, various
signal amplification strategies without protein enzymes were developed, such as hybrid
chain reaction (HCR) and catalytic hairpin assembly (CHA) [39–42]. Both HCR and CHA
are an enzyme-free process that provides an efficiently-amplified signal and have been
often applied in the detection of miRNAs [43,44].

In this manuscript, we present an automatic molecule machine (AMM) based on the
dual catalytic hairpin assembly (D-CHA) process for the signal amplification detection of
ARF-targeted miRNA160. The general CHA reaction uses complementary DNA strands as
DNA probes and is introduced into hairpin-shaped structures before the detection [45–47],
providing several advantages, such as low detection cost, convenient storage, low back-
ground signal, and simple operation [48–50]. The CHA-based detection has been used as a
satisfactory alternative amplification method for the detection of numerous biomarkers
in medical diagnoses [51–53] and combined with different analytical techniques, such
as fluorescence, electrochemistry, colourimetry, surface plasmon resonance (SPR), and
electrophoresis [54–58]. In this work, the AMM system contains four hairpin-shaped
DNA probes (HP), including HP1, HP2, HP3, and HP4. Specifically, HP1 was used as a
recognition element for miRNA160. A DNA fragment with the same sequence as target
miRNA160 is split into two halves and innovatively introduced at the 3′ end of HP2 and 5′

end of HP3, respectively. A pair of fluorophore (FAM) and quencher (BHQ1) molecules
are modified at the ends of HP4 for signalling. After the target induces the assembly of
four-way DNA junction (F-DJ) based on the first catalytic hairpin assembly (CHA), the split
DNA halves are brought together and serve as an integrated target analogue to initiate the
second CHA reaction. This dual-CHA-based signal amplification is termed D-CHA. The
comparative experiments have demonstrated that the D-CHA strategy displays a better
assay performance compared with traditional CHA, possessing several advantages, such
as simple operation procedure, high sensitivity, and specificity.

2. Results and Discussion
2.1. Design of AMM Machine and Its Dual Catalytic Hairpin Assembly

The AMM system contains four hairpin-shaped (HP) DNA probes, HP1, HP2, HP3,
and HP4. The loop of HP1 is designed to be a recognition element for miRNA160. A DNA
fragment with the same sequences as target miRNA160 was split into two halves and placed
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at the 3′ end of HP2 and 5′ end of HP3, respectively. For signalling, a pair of fluorophore
(FAM) and quencher (BHQ1) molecules were modified at the ends of HP4. As shown in
Figure 1, a dual catalytic hairpin assembly (D-CHA) process contains CHA1 and CHA2 for
ultrasensitive detection of miRNA160. CHA1: In the presence of the target, four HPs were
successively dissolved, forming a four-way DNA junction (F-DJ). Specifically, HP1 was
first dissolved by the target species, releasing its 3′ end. The released 3′ sequence of HP1 is
designated to bind HP2 by strand displacement, releasing the 3′ end of HP2. Similarly, HP3
and HP4 are opened, and the released 3′ sequence of HP4, in turn, hybridizes with HP1,
releasing the target species and initiating the next round of hybridization/displacement
reactions. CHA2: After the formation of F-DJ from CHA1, the two red halves at the ends of
HP2 and HP3 are brought together and serve as a target analogue to initiate the second
CHA reaction. The reaction process is the same as CHA1, but a combined DNA fragment
is used as a target instead of miRNA160. The reaction continues autonomously until most
DNA probes are assembled into F-DJ.
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Figure 1. A schematic diagram of experimental principles of the AMM system for plant miRNA160
detection. The AMM system contains two catalytic hairpin assembly (CHA) processes. CHA1: In the
presence of the target, HP1 is dissolved and releases the 3′ end of HP1 that hybridizes with HP2 and
releases the 3′ end of HP2. Similarly, the hairpin-shaped HP3 is opened and subsequently hybridizes
with HP4. The released 3′ sequence of HP4 can, in turn, bind to HP1, displacing the pre-hybridized
target species and forming a four-way DNA junction (F-DJ). CHA2: Besides the released target
initiating the next round of hybridization/displacement reactions, the red DNA fragments at the
ends of HP2 and HP3 are brought together and serve as an integrated target analogue to initiate the
second CHA reaction.

2.2. Feasibility of AMM for miRNA160 Detection

Considering the intrinsic characteristics of RNA, such as susceptibility to nuclease
degradation, a DNA analogue of miRNA160 (named miRNA160D) was used in this
section. The feasibility of the AMM system for the miRNA160D amplification detection
was validated by collecting the fluorescence spectrum. As shown in Figure 2A, the low
fluorescence intensity is detected for HP4 in sample a, indicating that FAM is effectively
quenched by the BHQ1 due to the hairpin-shaped structure of HP4. Subsequently, when
HP3, HP2, and HP1 were successively added to HP4, no substantial increase in fluorescence
intensity was detected, as shown in samples b, c, and d, and demonstrated that the four
hairpin-shaped DNA probes could stably coexist in the absence of target miRNA. In
contrast, the high fluorescence intensity can be detected once the target is added to sample e,
revealing that AMM can provide an intense signal response. The data in Figure 2B shows
that the F-DJ prepared from the D-CHA-based system triggered by target (i) and the
reaction mixture (ii) of HP1, HP2, HP3, and HP4 after annealing have identical gel mobility.
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Overall, the low background and the high signal response of the AMM system demonstrate
that it is suitable for the target detection with a low expression, such as miRNAs.

1 

 

 
Figure 2. The feasibility of the AMM system for the detection of plant miRNA160D. (A) Fluorescence
spectra of various reaction mixtures were collected to evaluate the assay ability. Sample a: HP4;
Sample b: HP3 + HP4; Sample c: HP2 + HP3 + HP4; Sample d: HP1 + HP2 + HP3 + HP4; Sample e:
HP1 + HP2 + HP3 + HP4 + miR160. (B) Comparative nPAGE analysis of reaction products of four-
way DNA junction (F-DJ) from D-CHA-based system that triggered by target (i) and the reaction
mixture of HP1, HP2, HP3, and HP4 after annealing (ii). The concentration of HP1, HP2, HP3, HP4,
and target are 250 nM, 250 nM, 250 nM, 250 nM, and 125 nM, respectively. HP2-II and HP3-II were
separately used as HP2 and HP3 in this section; the optimal process can be found in Figure S3.

2.3. D-CHA-Based Signal Amplification

For improving the high sensitivity of the sensing system, the dual catalytic hairpin
assembly (D-CHA) strategy was proposed. After the first CHA reaction, F-DJ is formed
and brings two halves of the target analogue at the ends of the HP2 and HP3 together,
initiating the second CHA reaction and providing additional stimuli that contribute to
ultrasensitive miRNA160D detection.

To provide convincing evidence for the D-CHA amplification effect, the closely-related
comparative experiments were performed. A CHA-based system with the same component
was used as control, but HP2-VI without the extended end was used instead of HP2. After
the first CHA reaction, the four-way DNA junction (F-DJ) is formed, and the second CHA
cannot be triggered owing to the lack of a combined target analogue. The corresponding
assay system is called a single CHA-based one (S-CHA). As shown in Figure 3, only
a 170% fluorescence increase is detected for S-CHA in the presence of target miRNA,
while the fluorescence intensity of D-CHA increases by 336% upon target stimulation,
demonstrating that the combined target analogue efficiently contributes to the signal
amplification. Moreover, the fluorescence increase of the D-CHA-based system is much
higher than S-CHA, indicating that the design of D-CHA does promote the autocatalytic
reaction acceleration (See Supplementary Materials Figure S1).

2.4. Assay Performance of the AMM System for miRNA160D Detection

To make AMM operate with high efficiency in the presence of miRNA160D, the
reaction time and probe sequences were first optimized. To investigate the optimal reaction
time, the fluorescence intensity of AMM in the presence and absence of miRNA160D was
recorded after incubating for different time periods ranging from 0.5 to 10 h. As exhibited
in Figure S2, the signal-to-noise ratio (F/F0) gradually increases with the reaction time
progresses until reaching the plateau. It can be found that the optimal time is 8 h. The
sequences of two halves of the target analogue at the ends of HP2 and HP3 are crucial for
the D-CHA reaction. Thus, the dependence of the fluorescence signal on the sequences of
HP2 and HP3 was studied by using different HP2 and HP3 for miRNA160D detection. As
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shown in Figure S3, HP2-II and HP3-II offered the highest signal-to-noise ratio (F/F0) and
was thus used in the subsequent experiments.
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Subsequently, the assay performance of the AMM system was evaluated by probing
a series of different concentrations of miRNA160D under the optimized experimental
conditions. As shown in Figure 4A, the signal intensity at 520 nm gradually increases
with the increase in target concentration, demonstrating that the quantitative detection
of miRNA160D can be achieved. The fluorescence spectra of AMM in the presence of a
low concentration of target miRNA can be found in the inset. If the target concentration
is capable of generating a detectable signal higher than the background, it is defined
as the limit of detection (LOD), the LOD as low as 10 pM is achieved for miRNA160D
detection. Figure 4B,C plots the fluorescence intensity against the target concentration in
the high concentration range and low concentration range, where F and C represent the
peak fluorescence intensity and the miRNA160D concentration, respectively. Meanwhile,
a detectable signal can be obtained in the presence of a synthetic RNA target (Figure S4)
or extracted RNA from peach (Figure S5), indicating the feasibility of the method for
RNA detection.
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Figure 4. Quantitative detection of plant miRNA160D by AMM. (A) Fluorescence spectra of AMM
upon the different concentrations of target DNA: 0, 0.01 nM, 0.02 nM, 0.05 nM, 1 nM, 10 nM, 30 nM,
50 nM, 80 nM, 100 nM, 150 nM, and 200 nM. Inset: Fluorescence spectra at low concentrations of
miRNA160D. The calibration curves in the high concentration range (B) and low concentration
range (C). The concentration of HP1, HP2, HP3, and HP4 are 250 nM, 250 nM, 250 nM, and 250 nM,
respectively. The error bars represent means ± SD (n = 3).

2.5. Detection Specificity

The selectivity is another essential parameter for evaluating the assay performance of
DNA probes. To test the selectivity of the AMM machine, the DNA surrogates of common
plant miRNAs (miRNA156D, miRNA159D, miRNA164D, miRNA390D, miRNA396D) were
detected against miRNA160D under identical conditions. As exhibited in Figure 5A, if
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defining the signal intensity induced by miRNA160D is 100%, the relative fluorescence sig-
nal of non-target miRNAs is not more than 30%, demonstrating a high detection specificity
of AMM towards target miRNA. Moreover, five mutant targets were retrieved from the
miRBase database (http://www.mirbase.org/) (accessed on 10 September 2021), including
one-, two-, three-, four-, and five-base mismatched target (MT1, MT2, MT3, MT4, and
MT5), were detected. As depicted in Figure 5B, no substantial signal increase is observed
upon mutant targets compared with the background. The feasibility of AMM for discrim-
inating the mutant miRNA from miRNA160D has also been demonstrated via a blind
test (Table S2). Namely, AMM is able to discriminate the single-base-mismatched targets,
indicating a high capability to distinguish mismatched targets. Besides, compared with
previous CHA-based probes, AMM displays comprehensive advantages (Table S3).
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solved during the first CHA, generating a four-way DNA junction (F-DJ) and releasing 
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Figure 5. The detection specificity of AMM towards miR160. The fluorescence intensity was recorded
upon non-targets (A) and mutant targets with one-, two-, three-, four-, and five-base mismatched
targets (abbreviated as MT1, MT2, MT3, MT4, and MT5, respectively) (B). The concentration of HP1,
HP2, HP3, HP4, and target are 250 nM, 250 nM, 250 nM, 250 nM, and 125 nM, respectively. The error
bars represent means ± SD (n = 3).

3. Conclusions

In summary, a dual CHA amplification is proposed on the basis of the extension of
hairpin probe ends by adding the same sequences as the target, leading to the formation of
an automatic molecule machine (AMM) system for the sensitive detection of ARF-targeted
miRNA160. In the presence of the target, four HPs are successively dissolved during the
first CHA, generating a four-way DNA junction (F-DJ) and releasing the pre-hybridized
target species. The next round of reactions is initiated by the released target; F-DJ has a
combined target analogue composed of two halves that are respectively designed at the
end of HP2 and HP3, enabling another CHA reaction. Thus, the amplified fluorescence
signal can be achieved compared with traditional CHA. The target can be detected down
to 10 pM. Moreover, the non-target miRNA, as well as single-base mutation targets, can
be distinguished, indicating a high specificity. Overall, the AMM system comes with
simple operation steps, high sensitivity, and specificity, providing a competitive method
for detecting plant miRNA.

4. Materials and Methods
4.1. Materials

DNA sequences used in this experiment were synthesized and purified by Shanghai
Shengong Biological Engineering Co., Ltd. (Shanghai, China). All DNA sequences are
listed in Table S1. HP4 modified with FAM and BHQ1 was purified by high-performance
liquid chromatography (HPLC), while other label-free sequences were polyacrylamide gel
electrophoresis (PAGE)-purified. The DNA sequences were dissolved in ultrapure water
to a concentration of 10 µM after centrifugation at 8000 rpm for 2 min, and the resulting

http://www.mirbase.org/
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solutions were kept at 4 ◦C before use. Other reagents were analytical grade and purchased
from Sinopharm Chemical Reagent Co. (Shanghai, China).

4.2. Preparation of AMM System

Four DNA probes (HP1, HP2, HP3, and HP4) were separately annealed to form a
hairpin-shaped structure by following steps: 1 µL of 10 µM DNA probe was added into
9 µL of TAE buffer (2 mM EDTA, 12.5 mM MgCl2, 40 mM Tris, pH = 8.0) and heated at 90 ◦C
for 5 min. The resulting solution was gradually cooled to room temperature. Subsequently,
AMM (40 µL) was prepared by mixing the four solutions together.

4.3. RNA Extracted from Peach

The mortar and pestle were first cooled sufficiently by liquid nitrogen. The peach
kernel sample was added and ground to powder. After the liquid nitrogen was completely
volatilized, 1 mL of Trizol was added and reacted for 10 min (the sample volume should
not exceed 10% of Trizol). Chloroform (0.2 mL) was added and reacted for another 10 min.
Afterwards, the supernatant was collected by centrifuging (15,800 rpm) at 4 ◦C for 10 min.
Isopropanol (0.5 mL) was added and reacted at −20 ◦C for at least 15 min, and then the
RNA precipitation was collected by centrifuging (15,800 rpm) at 4 ◦C for 10 min. The RNA
was washed by cooled ethyl alcohol (1 mL, 75%), then resuspended in diethyl oxydiformate
(DEPC) treated water.

4.4. Fluorescence Measurement

A 0.5-µL aliquot of the target at a given concentration of H2O was added to the AMM
system prepared above, followed by incubating at 25 ◦C for 8 h. After diluting with TAE
buffer to the final volume of 200 µL, the fluorescence spectrum of the resulting solutions
was collected between 500 to 600 nm on a Hitachi F-7000 (Hitachi Ltd., Tokyo, Japan). The
fluorescence peak at λem = 520 nm was used to evaluate the fluorescence intensity.

Supplementary Materials: The following are available online, Figure S1: The real-time monitoring
of fluorescence change; Figure S2: Optimization of reaction time; Figure S3: The dependence of the
fluorescence signal on the sequence of HP2 and HP3; Figure S4: Fluorescence spectra of AMM upon
the different concentrations of target RNA; Figure S5: The detection of miRNA160 that was extracted
from the peach; Table S1: Oligonucleotide sequences used in this work; Table S2: Blind test results of
miRNA160D; Table S3: Comparison in assay ability and advantages [59–63].
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