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Abstract: We developed an importance sampling based method that 
significantly speeds up the calculation of the diffusive reflectance due to 
ballistic and to quasi-ballistic components of photons scattered in turbid 
media: Class I diffusive reflectance. These components of scattered photons 
make up the signal in optical coherence tomography (OCT) imaging. We 
show that the use of this method reduces the computation time of this 
diffusive reflectance in time-domain OCT by up to three orders of 
magnitude when compared with standard Monte Carlo simulation. Our 
method does not produce a systematic bias in the statistical result that is 
typically observed in existing methods to speed up Monte Carlo simulations 
of light transport in tissue. This fast Monte Carlo calculation of the Class I 
diffusive reflectance can be used as a tool to further study the physical 
process governing OCT signals, e.g., obtain the statistics of the depth-scan, 
including the effects of multiple scattering of light, in OCT. This is an 
important prerequisite to future research to increase penetration depth and to 
improve image extraction in OCT. 

©2011 Optical Society of America 

OCIS codes: (170.3660) Light propagation in tissue; (110.4500) Optical coherence 
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1. Introduction 

Optical Coherence Tomography (OCT) is rapidly becoming an important imaging technique 
for numerous medical and biological applications [1]. It is a sub-surface imaging technique 
that uses either a low-coherence light source (time-domain systems) or a wavelength-swept 
laser source (frequency-domain systems). It has one to two orders of magnitude higher 
resolution than ultrasound imaging and an imaging depth that can reach up to 3 mm, 
depending on the optical properties of the tissue, and can produce images inside the body 
when integrated with optical fiber probes. The use of infrared and visible light is safer to most 
biological samples than ionizing radiation like X-rays or gamma rays, and it also allows for 
spectroscopic characterization of an object, e.g., a tumor in tissue [2]. 

Frequency-domain OCT (FD-OCT) has been receiving increasing attention because of its 
higher imaging speed and higher signal-to-noise ratio compared to time-domain OCT (TD-
OCT) [3]. However TD-OCT systems can attain higher imaging resolution and dynamic range 
than their Fourier-domain counterparts [4]. In this paper we focus on TD-OCT imaging, but 
we are currently generalizing our results to FD-OCT systems. Monte Carlo simulation of FD-
OCT imaging is more challenging than TD-OCT because the image of an object is not 
obtained through a relatively simple reflectance based model. Due to the nature of the Fourier 
transform, the image of every point in the object is obtained from many measurements 
involving the whole object. 

OCT imaging considers the ballistic and quasi-ballistic photons reflected from a target 
layer inside the tissue, which we denote Class I diffuse reflectance, as the OCT signal that 
produces the image [5]. However multiple scattered photons reflected from the tissue, which 
we denote Class II diffuse reflectance, do not carry useful information about the target layer 
and are considered a source of noise in OCT [6]. It has been demonstrated that Class II diffuse 
reflectance is the fundamental limitation in increasing the imaging depth of OCT in tissue [7]. 
Understanding the physical process governing both Class I and Class II diffusive reflectance 
is an important prerequisite to any effort to increase penetration depth and to enhance the 
quality of the images obtained with OCT. As this physical process is complicated, Monte 
Carlo simulation of light transport in tissue [8–11] has been used to obtain the TD-OCT signal 
[5]. 

We use Monte-Carlo simulation with importance sampling to calculate the TD-OCT 
signal because the probability that a photon propagating in typical biological tissue will 
undergo single-scattered backreflection is very low. This very low probability of events of 
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interest would require an unacceptably large computational time if standard Monte Carlo 
simulation were used. Importance Sampling is an advanced statistical method [12] that 
consists of biasing random events in such a way that the events of interest, which are often 
rare, appear more often in Monte Carlo simulations [13–19]. To produce the correct statistical 
result in Monte Carlo simulation with importance sampling, each biased sample is weighted 
by the likelihood in which this sample would have been observed in the unbiased simulation. 
This procedure, which has to be tailored to each particular application, can reduce the 
computational time of Monte Carlo simulations by several orders of magnitude. 

Importance sampling, tailored to each particular application, has been applied in optical 
communications [13–16], confocal microscopy [17], atmospheric optics [18] diffuse optical 
tomography (DOT) [11] and TD-OCT [5]. In the applications involving Monte Carlo 
simulation of light transport in three-dimensional space, one limitation that we addressed is 
the statistical bias that increases with depth as the photons are preferentially scattered in the 
backward direction by importance sampling based implementations. 

In this paper we describe a new importance sampling method to speed up the calculation 
of the Class I diffuse reflectance light by up to three orders of magnitude when compared with 
standard Monte Carlo simulation methods. This importance sampling method applies multiple 
biases in the direction of photon scattering towards the apparent position of the OCT 
collecting fiber. To eliminate the residual statistical bias on the Class I diffusive reflectance in 
the range of interest that are present in the previously reported methods [5,10,17], which 
underestimates the diffuse reflectance, we developed a photon packet splitting procedure at 
the location of each biased backscatter [19]. Our method enables an accurate calculation of the 
TD-OCT signal at all depths about one thousand times faster than the standard Monte Carlo 
method. We speed up the convergence of the calculation by biasing the photon scattering in 
any layer towards the apparent position of the collecting fiber in that given layer. The 
calculation of the apparent position of the collecting fiber accounts for the change in the 
direction of light propagating through dielectric interfaces due to refraction. In Sec. 2 we 
describe the previously used Monte Carlo method to calculate the Class I diffuse reflectance 
in multi-layered turbid media. In Sec. 3, we describe the importance sampling based method 
that we developed to speed up the calculation of the Class I diffuse reflectance using Monte 
Carlo simulations. In Sec. 3, we also show how we extended previously proposed work on 
Monte Carlo bias to account for biased backscattering. In Sec. 4, we show numerical results 
for both the standard Monte Carlo method and our Monte Carlo method with importance 
sampling. In Sec. 4, we also validate our importance sampling method by comparing it against 
previous Monte Carlo simulations and we demonstrate the significant computational 
advantage of our importance sampling based method. 

2. Previous modeling and simulation parameters 

We started the Monte Carlo modeling of light transport in multi-layered tissues (MCML) with 
a C-language software package that is available for download from the web site of the Oregon 
Medical Laser Center [20]. MCML allows the simulation of an ensemble of photon packets 
launched in a steady-state pencil beam, normal to the surface of the topmost layer. Each 
photon packet produces a random walk whose step size is determined by an exponentially 
distributed random variable defined by the interaction coefficient, which is equal to the sum of 
the absorption µa and the scattering µs coefficients. The scattering events, which take place at 
the end of the random steps, are produced by two random angles that determine the future 
direction of the photon packet scattering in three-dimensional space . To account for the 
photon packet scattering with arbitrary anisotropy factor, g, we use the same Henyey-
Greenstein probability density function used in the MCML software package that is defined as 
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where θs is the angle between the photon packet propagation direction û  prior to the 
scattering and the new scattering direction ˆ 'u . After rotating away from the previous 
propagation direction û  by an angle s , so that ˆ ˆcos 's  u u , the scattering direction ˆ 'u  is 

rotated around the previous propagation direction û  by an angle  that is randomly picked 
from a uniform probability density function from 0 to 2π. At each scattering event, where the 
light-matter interaction is modeled, the weight W of the photon packet is decreased by an 
amount determined by the absorption coefficient µa at the scattering location. The weight W, 
which is initialized at 1, is an estimate of the residual number of photons left in the packet. 
When the packet weight reaches Wth = 104, the photon packet is either eliminated with 
probability 1/m or is left to continue propagating with probability 1 – 1/m and weight equal to 
mW. In this work we use m = 10. This elimination process, called a Russian roulette 
technique, is an unbiased way to remove from the simulation the photon packets that have a 
negligible contribution to the scattering and absorption in the tissue, so that a new photon 
packet can be simulated. 

The Class I diffuse reflectance at the depth equal to z is obtained by calculating the mean 
value of the indicator function I1 of the spatial and temporal filter of the Class I diffuse 
reflectance for all the photon packets (samples) in the ensemble. The indicator function I1 of 
the spatial and temporal filter for the ith photon packet is defined as 
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where lc is the coherence length of the source, ri is the distance of the ith reflected photon 
packet to the origin along the plane z = 0, where the collecting optical system is located, dmax 
and θmax are the maximum collecting diameter and angle, respectively, θz,i is the angle with the 
z-axis, which is the axis normal to the tissue interface, Δsi is the optical path, and z is the 
maximum depth reached by the photon packet. The diffuse reflectance R1 at any depth, which 
is the expected value of I1 at that corresponding depth, and its corresponding standard 
deviation σR,1 can be estimated by the expressions 
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where N is the initial number of photon packets in the Monte Carlo simulations [21]. 

3. Novel Importance sampling to simulate Class I diffuse reflectance in TD-OCT 

First, we modified the MCML software package to implement the spatial filter, the angular 
filter, and the time gating for the diffusely reflected photons according to the optical fiber 
model specified. For simplicity, we also used a square time gating as in [5]. Then, we 
implemented our importance sampling method that we describe in this section. Since most 
tissue generally are highly forward scattering, the value of their anisotropy factor is close to 1. 
Thus there is a very small probability that a simulated photon packet at a given depth 
undergoes backscattering towards the tip of the collecting fiber. This already small probability 
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of collecting Class I photons decreases rapidly with the depth from which the photon is 
backscattered. To speed up the simulation of collected Class I photons, we developed a novel 
importance sampling method for Monte Carlo simulations that bias the scattered photon 
packet direction ˆ 'u  preferentially towards the apparent position of the center tip of the 
collecting optical system v̂  once the photon packet reaches the depth range of interest. If a 
focusing lens is used, the bias direction v̂  will be defined as the direction of the apparent 
position of the center of the lens. We define the center of the Cartesian coordinate system at 
the tip of the collecting optical system. The bias direction in which the collecting optical 
system is located is defined as ˆ / | | v R R , where ˆ ˆ ˆx y z  R x y z  is the vector position 

vector of the scattering point in the tissue. 
The photon packets propagating in a direction closer to v̂  will have a higher probability of 

contributing to the collected Class I diffuse reflectance. Therefore our bias direction is more 
efficient than biasing only in the backward direction as previously done in [5], since that 
direction may not be consistent with the apparent direction of the collecting fiber. This 
reasoning is particularly true deeper in the tissue, where photon packets suffer one or more 
forward scattering events that deviate them from their original direction of propagation. 

3.1 Calculation of the apparent position of the collecting optics 

To determine the bias direction of the photon scattering in any of the tissue layers, we first 
calculate the apparent position of the detector in each layer using the paraxial approximation. 
The apparent position of the detector changes with the layer because of refraction in layers of 
tissue with different refractive indices. In the topmost layer, in which the detector is located, 
the apparent position of the detector is equal to the actual position of the detector: 

,1 ˆ ˆ ˆ0 0 0d   R x y z . We calculate the apparent position in each layer following a recursive 

process starting from the second layer until the last layer. The apparent z-coordinate of the 
detector in the jth layer, '

,d jz , is given by 
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where ,L jz  is the topmost coordinate of the jth layer and jn  is the refractive index of the jth 

layer. We obtained Eq. (5) from the law of refraction using the paraxial approximation: 
sin tan   [22]. In the paraxial approximation, a photon packet located in the layer j would 
arrive at the origin (0,0,0) in the absence of additional scattering if it is directed towards the 
coordinate (0,0, '

,d jz ). The bias direction produced by a scattering located at the position R  

located at the jth layer is defined as 

 '
,ˆ ˆ .d jz v z R   (6) 

3.2 Calculation of scattering angle of the first backscattering event 

Once the photon packet reaches the target depth range, we bias the angle of the scattered 
photon packet propagation direction ˆ 'u  towards the bias direction v̂  in that layer, instead of 
the previous propagation direction û  used in the unbiased case, or opposed to the opposite of 
the direction of propagation, ˆu , as done in [5]. To randomly sample the biased angle B  

between the biased direction v̂  and the new scattering direction ˆ 'u , we use the same 
probability density function in Eq. (1) that is used to model the scattering angle as a function 
of the anisotropy factor in MCML. However, the bias coefficient does not necessarily need to 
be equal to the anisotropy factor g. Our probability density function of the biased angle is 
defined as 
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where a is a bias coefficient. After randomly picking a biased angle B  away from the biased 

direction v̂ , so that ˆ ˆcos 'B  v u , the resultant biased scattering direction ˆ 'u  is rotated 

around the biased direction v̂  by an angle  that is randomly picked from a uniform 
probability density function from 0 to 2π. This last procedure is equivalent to the one used in 
MCML software package to enable a full three-dimensional scattering, except that the 
scattered angle B  in Eq. (7) is defined with respect to the biased direction v̂ , instead of the 

direction û  in which the photon packet was propagating prior to that scattering event. This 
procedure produces the new propagation direction ˆ 'u  of the photon packet after the first 
biased scattering. Then the scattered photon packet is associated with a quantity that is defined 
as the likelihood ratio in the importance sampling formalism [13–16]. The likelihood ratio of 
the photon packet using our probability density function of the biased angle, Eq. (7), is given 
by 
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where ˆ ˆcos 'S  u u  is a calculated variable, since it is a function of both the random values 

of B  and . The likelihood ratio in Eq. (8) is the ratio of the probability that this biased 

scattering angle would have been observed in an unbiased simulation divided by the 
probability of the biased scattering angle specified by the biased distribution. While B is the 

angle between the scattered direction ˆ 'u  and the bias direction v̂ , the likelihood ratio also 
depends on the angle S  between the scattered direction ˆ 'u  and the incoming propagation 

direction û , which is the direction of the forward propagation towards which the photon 
packet was much more likely to have been scattered. Figure 1 shows a schematic 
representation of these vectors and the angles used in this bias procedure. Since the actual 
choice of the bias distribution only affects the speed of convergence of the calculation, other  
 

 

Fig. 1. Schematic representation of the vectors and the angles used in the bias procedure. 
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biased probability function can also be used to randomly generate the biased scattering 
towards the bias direction v̂ . The Henyey-Greenstein probability density function that we 
used in Eq. (8), whose bias strength determined by the coefficient a, enabled a rapid 
convergence of the Importance Sampling method for the cases that we reported in Sec. 4 as a 
result of the strong bias used. 

3.3 Calculation of scattering angles of further backscattering events 

Once a photon packet is biased towards the apparent position of the collecting optical system 
at any given depth in which the photon packet interacts with the tissue, the photon packet 
becomes most likely to be collected at the tip of the fiber. However, the photon packet can be 
scattered several times in the tissue after the first backscatter bias before reaching the 
collecting optical system. These additional scatterings, while most likely being in the forward 
direction, according to the standard scattering function in Eq. (1), decrease the correlation 
between the biased direction and the event in which the photon packet is collected by the tip 
of the fiber. We overcome this lack of correlation by continuing to bias the scattering 
direction ˆ 'u  towards the direction v̂ , which points to the apparent position of the collecting 
optical system, at every scattering point until the photon packet is terminated. These 
additional biases still use the probability density function of the biased angle and the 
corresponding likelihood ratio given in Eqs. (7) and (8), respectively. Because the values 
picked for the angle between the scattering direction and the biased direction are independent 
from one scattering event to the next, the total likelihood ratio is equal to the product of all the 
likelihood ratios of all biased scattering point until the photon packet is terminated. 

After undergoing the first biased scattering, each simulated photon packet is biased at 
every additional scattering point until it is terminated, which happens when the photon packet 
either leaves the tissue or undergoes so many scatterings that it becomes eliminated by a 
Russian roulette procedure, described in Sec. 2. At the end of the ensemble of N Monte Carlo 
simulations, with our importance sampling, the diffuse reflectance R1 and its corresponding 
standard deviation σR,1 can be estimated by the following expressions 
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Equations (9) and (10) are similar to the Eqs. (3) and (4), except that the indicator function 
at any sample is multiplied by its corresponding likelihood ratio. This importance sampling 
procedure applied at a certain depth range, such as from 0 µm to 600 µm, or at any other 
specified depth range, allows a much larger number of photon packets to be scattered from 
that depth range towards the collecting optical system than what is obtained using a standard 
Monte Carlo method that is also based on the MCML. At the end of the simulation, each 
biased photon packet is weighted by its likelihood ratio, which adjusts the contribution of each 
sample to the estimation of the Class I diffuse reflectance, so that the estimated diffuse 
reflectance converges towards the true value several order of magnitudes faster than using the 
standard Monte Carlo method. 

3.4 Comparison with a previously proposed bias method 

This importance sampling implementation is comparable to the bias procedure described in 
[10,11], except in the way in which the biasing of the scattering angle is implemented. In our 
method, the angles are deterministically biased towards the preferred direction, and the 
scattered photon packets are weighted by the corresponding likelihood ratio that eliminates 
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any residual statistical bias. In the method in [10,11], the scattering direction is chosen using 
the standard Henyey-Greenstein probability function in Eq. (1), but the actual scattering 
direction is rejected as many times as necessary until an acceptable direction closer to the 
direction of the source is chosen. Therefore, the method in [10,11] requires considerable 
additional computational time per biased scattering event. We note that this computational 
time increases with the bias strength, since the probability of rejection of the scattering 
directions increases with the amount of bias. Moreover, in this method a discrete, one-
dimensional, lookup table of bias scatter weights has to be generated prior to the simulations 
to enable weighting the scattered photon packets that were biased. That process adds 
statistical bias to the results due to the approximation to the nearest value in the table of 
weights. Moreover, in [10,11] no procedure was provided to address the reduction in the 
number of photon packets that are penetrating the tissue due to the backward bias scattering, 
which limits the use of that technique to forward bias scattering. 

3.5 Importance sampling statistics as a function of the depth 

One limitation that results from the use of previously existing bias methods is the 
underestimation of the diffuse reflectance beyond the start of the target depth range in which 
the diffusive scattering is biased. The application of the first bias in the backward direction 
implies that there is a smaller probability that the photon packets will be forward scattered 
beyond the early part of the target depth range. This causes a systematic statistical bias that 
also affects the performance of the angle biasing procedure used in [5] and also the bias 
procedure used in [10,11], which limits their application to a thin target layer. For these 
reasons, these bias procedures are limited to model systems in which only forward bias 
scattering is applied. 

We ensure the correct statistics in the importance sampling method by splitting the photon 
packet that is biased towards the apparent position of the collecting optics in two photon 
packets prior to the first biased scattering [19]. One of these two photon packets is the one 
biased towards the collecting optical system, which is associated with the likelihood ratio 
specified in Eq. (6), as described earlier in this section, and we apply the successive biased 
scatterings until the photon packet is terminated. Then the other photon packet continues a 
forward propagation starting at the location of the biased backward scattering point, having 
the initial direction û  and scattered by the standard procedure that is described in Sec. 2. We 
ensure that there is no systematic statistical bias in the statistical result of the forward 
propagating split photon packet by assigning to this second photon the likelihood ratio '( )L i , 

which is the complement of the likelihood ratio of the biased backward scattered photon 
packet ( )L i , so that '( ) 1 ( )L i L i  . This second photon packet, which is only created if 

( ) 1L i  , is also allowed to undergo one biased backscattering, which may lead to another 

photon packet split, and successive additional biased scatterings towards the tip of the 
collecting optical system until the photon packet propagates beyond the simulation domain. In 
the cases that we studied, this procedure increased the computational time of each sample by a 
factor of 5 when compared with a sample computed using the standard Monte Carlo. The 
increase of computational time of importance sampling compared with the standard method 
depends on the average value of the mean free path and on the width of the target depth range. 
It is important to point out that each split photon packet is not counted as an additional photon 
packet when determining the value of N in Eqs. (9) and (10), since the use of the likelihood 
ratio associated to each photon packet in these equations will produce the correct statistical 
result. Once a photon packet exceeds the region within the depth target layer, it will no longer 
be biased and will likely be terminated after exceeding the boundary of the last layer while 
propagating in the forward direction. Then a new photon packet will be created at the origin as 
in the standard MCML method, and a new Monte Carlo sample will be simulated. Despite the 
higher computational cost per photon packet, the computation of the Class I diffuse 
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reflectance in the case that we studied using Monte Carlo simulations with importance 
sampling required as little as one-thousandth of the computational time required to achieve the 
same accuracy in the diffuse reflectance calculation using the standard Monte Carlo method. 

4. Validation of our new importance sampling method 

We validate the calculation of the Class I diffuse reflectance using Monte Carlo simulations 
with the importance sampling method that we developed by comparing it against extensive 
standard Monte Carlo simulations. We simulate a turbid media that consists of three layers, 
shown schematically in Fig. 2. The first layer extends from 0 µm to 330 µm, and the third 
layer extends from 360 µm to 1.2 mm, have an absorption coefficient µa = 1.5 cm1 and a 
scattering coefficient µs = 60 cm1. The second layer extends from 330 µm to 360 µm and has 
an absorption coefficient µa = 3 cm1 and a scattering coefficient µs = 120 cm1. We assume 
the three layers to have the same refractive index n = 1 and an anisotropy factor g = 0.9, as in 
[5]. We simulate a TD-OCT system that is delivered and collected by the tip of an optical 
fiber with a radius of 10 µm and an acceptance angle of 5 degrees as in [5]. For simplicity, a 
point source of light is assumed along the vertical direction as in [5,10,11], since the objective 
of this study is to validate and demonstrate the effectiveness of the importance sampling 
implementation that we developed. 

 

Fig. 2. Schematic representation of a simulation setup similar to [5]. 

In Figs. 3 and 4, we show results obtained with 2 × 106 Monte Carlo simulations with 
importance sampling, which has a computational cost slightly smaller than 107 standard 
Monte Carlo simulations. In Figs. 3 and 4, we also show results obtained with the angle 
biasing method described in [5] when applied to the entire range from 0 µm to 600 µm. 
Because of the systematic bias due to the artificial reduction in the number of photons 
penetrating the tissue as pointed out in Sec. 3.4, this method can only be applied to calculate 
the diffusive reflectance produced by a very narrow layer as described in [5]. We run the 
Monte Carlo simulations with importance sampling with the bias coefficient a = 0.9. The 
choice of a = g is the value for the bias coefficient that enabled the fastest conversion of the 
statistical results in (9) and (10) with respect to the number of simulated photon packets 
because it produces the best combination of strong bias with a limited range of variation of the 
likelihood ratio in Eq. (8). Therefore, the results shown in Figs. 3 and 4 indicate that our new 
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importance sampling procedure reduces the computational cost to obtain the Class I diffuse 
reflectance by about three orders of magnitude. 

 

Fig. 3. The Class I diffuse reflectance as a function of the depth for the first simulation setup 
described in Sec. 4, whose schematic representation is shown in Fig. 2. The black solid line are 
results obtained with 2 × 106 Monte Carlo simulations with the importance sampling method 
described in Sec. 4. The green long-dashed line are results obtained with 1010 standard Monte 
Carlo samples. The black double-dashed line are results obtained using the angle bias 
procedure described in [5]. The pink short-dashed lines are results of plus and minus one 
standard deviation of Monte Carlo simulations with importance sampling with 2 × 106 samples 
that were estimated using an ensemble with 64 × 106 simulations. 

 

Fig. 4. The same Class I diffuse reflectance results shown in Fig. 3, except that the Class I 
diffuse reflectance is shown in linear scale for the depth interval from 310 µm to 380 µm. The 
error bars shown for the solid and for the dashed line were estimated in each respective Monte 
Carlo simulation. 

In Fig. 5 we show a clear evidence of the effectiveness of our importance sampling 
procedure that we described in Sec. 3. While an ensemble with 107 standard Monte Carlo 
simulations produces a very small number of Class I diffusely reflected photon packets, an 
ensemble with 2 × 106 Monte Carlo simulations with importance sampling produces a number 
of Class I diffusely reflected photon packets that exceeds the number of Class I diffusely 
reflected photon packets produced by as many as 1010 standard Monte Carlo simulations at 
depths greater than 132 µm. The agreement between the Class I diffuse reflectance, obtained 
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with our importance sampling and with the standard Monte Carlo method with a much larger 
number of samples, indicates that the biased samples with importance sampling are weighted 
in a way that eliminates any residual statistical bias. Therefore, not only does our importance 
sampling method converge to the true statistical result, but it does so at a much faster rate than 
the standard Monte Carlo method. 

 

Fig. 5. The number of Class I photon packets diffusely reflected as a function of the depth in 
the simulations whose results are shown in Fig. 3. The black solid line are results obtained with 
2 × 106 Monte Carlo simulations with the importance sampling method described in Sec. 3. 
The green long-dashed line are results obtained with 1010 standard Monte Carlo simulations. 
The pink short-dashed line are results obtained with 107 previously implemented Monte Carlo 
method samples. 

We also validate our method to simulate an TD-OCT imaging system in the presence 
multiple layers with different scattering properties and refractive indices by comparing it 
against extensive standard Monte Carlo simulations. In this case, the apparent position of the 
detector is calculated recursively in all the tissue layers using Eqs. (5) and (6). The light is 
emitted by a fiber optic probe that is radially reflected by a prism, as shown in Fig. 6. 

 

Fig. 6. Schematic representation of a simulation setup with multiple layers with different 
refractive indices. 

The optical system has a focusing lens that has a numerical aperture that enables collecting 
light at an angle of up to 4 degrees and a diameter of 0.5 mm. As in [5,10,11], a point source 
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that emits in the vertical direction is assumed. There is air between the center of the probe and 
the first layer, which is located at 2.12 mm from the center of the fiber. We simulate a turbid 
media that consists of three layers with refraction occurring at their interfaces. The first 
diffusive layer, which extends from 2.12 mm to 2.22 mm from the center of the fiber, has the 
following specifications: refractive index n = 1, absorption coefficient µa = 1.5 cm1, and the 
scattering coefficient µs = 60 cm1. The second diffusive layer, which is extends from 2.32 
mm to 2.42 mm from the center of the fiber, has the same absorption and scattering 
coefficient as the first layer, but its refractive index is n = 1.33. The third layer, which extends 
from 2.42 mm to 2.62 mm from the center of the fiber, has the following specifications: 
refractive index n = 1, absorption coefficient µa = 1.5 cm1, and the scattering coefficient µs = 
30 cm1. We assume there is air at the end of the third layer. We consider the three diffusive 
layers have anisotropy factor g = 0.9. In Fig. 7 we show the simulation results of this TD-OCT 
setup probing a tissue with multiple layers with different refractive indices. We observed an 
excellent convergence between the results obtained with our new importance sampling 
method and the results obtained using standard Monte Carlo simulations using MCML. Our 
results, however, were obtained in one-thousandth of the time required by standard method. 

 

Fig. 7. The Class I diffuse reflectance as a function of the distance from the center of the 
optical fiber for the second simulation setup described in Sec. 4, whose schematic 
representation is shown in Fig. 6. The black solid line are results obtained with 2 × 105 Monte 
Carlo simulations with the importance sampling method described in Sec. 4. The green long-
dashed line are results obtained with 109 standard Monte Carlo samples. The blue dots are 
results obtained with 106 standard Monte Carlo simulations. The pink short-dashed lines are 
results of plus and minus one standard deviation of Monte Carlo simulations with importance 
sampling with 2 × 105 samples that were estimated using an ensemble with 64 × 105 
simulations. 

5. Conclusion 

We developed and validated a new importance sampling method that reduces the computation 
time of obtaining Class I diffuse reflectance in TD-OCT simulations using Monte Carlo 
simulations by three orders of magnitude. Practically, this amounts to reducing the 
computation time of the diffuse reflectance from several hours, which may be prohibitive for 
many practical applications, to seconds. We also showed how our method extends and 
improves existing methods that were proposed to speed up Monte Carlo simulations of 
general light transport in tissue. We are currently developing another new importance 
sampling method to obtain Class II diffuse reflectance, which limits the imaging depth in 
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OCT systems, in a computationally efficient way. Our fast Monte Carlo calculation of TD-
OCT signals could be used to further study the physical process governing both Class I and 
Class II signals, e.g., obtain the statistics of the depth scan, including the effects of multiple 
scattering of light, in TD-OCT. This paper focused on TD-OCT, but we are currently 
generalizing our results to FD-OCT. This is an important prerequisite to many efforts to 
increase penetration depth and to better image extraction in OCT systems. 
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