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Abstract

Single-cell RNA-sequencing (scRNA-seq) enables researchers to quantify transcriptomes of thousands of cells simultaneously and
study transcriptomic changes between cells. scRNA-seq datasets increasingly include multisubject, multicondition experiments to
investigate cell-type-specific differential states (DS) between conditions. This can be performed by first identifying the cell types in
all the subjects and then by performing a DS analysis between the conditions within each cell type. Naïve single-cell DS analysis
methods that treat cells statistically independent are subject to false positives in the presence of variation between biological
replicates, an issue known as the pseudoreplicate bias. While several methods have already been introduced to carry out the statistical
testing in multisubject scRNA-seq analysis, comparisons that include all these methods are currently lacking. Here, we performed
a comprehensive comparison of 18 methods for the identification of DS changes between conditions from multisubject scRNA-seq
data. Our results suggest that the pseudobulk methods performed generally best. Both pseudobulks and mixed models that model
the subjects as a random effect were superior compared with the naïve single-cell methods that do not model the subjects in any way.
While the naïve models achieved higher sensitivity than the pseudobulk methods and the mixed models, they were subject to a high
number of false positives. In addition, accounting for subjects through latent variable modeling did not improve the performance of
the naïve methods.

Keywords: single cell, RNA sequencing (RNA-seq), differential expression

Introduction
Single-cell RNA-sequencing (scRNA-seq) can be used
to quantify transcriptomes of thousands of single cells
simultaneously. scRNA-seq experiments comprise mul-
tisubject, multicondition setups, in which each condition
includes samples collected from multiple subjects, cell
lines or other biological replicates, and the researchers
want to investigate transcriptomic changes between the
conditions. Obtaining a large enough number of samples
is crucial to ensure that the discovered gene markers are
prevalent in the subject groups or treatment conditions,
and not only in single subjects or biological replicates.

The analysis workflow of multisubject, multicondition
scRNA-seq data involves steps that are the same as in
any scRNA-seq analysis. Quality control is important
to remove poor-quality cells, such as doublets, empty
droplets and dead cells [1]. Normalization aims to make
the gene expression profiles of different cells more com-
parable by decreasing the technical bias caused by the
library size and other confounding factors [2]. In cell

type identification, each cell is given identity from the
cell types that are present in the tissue. Data integration
methods can be used to automate the identification of
the same cell types across the samples [3, 4].

Once the cell types have been confidently identified
from all the samples, the next step is to perform a
differential state (DS) analysis between two or more con-
ditions within each cell type separately. DS changes can
be divided into several subtypes [5], including changes in
the mean expression, which is commonly known as dif-
ferential expression (DE). The other DS types model more
subtle transcriptomic differences, such as the proportion
of highly and lowly expressed cell populations. While
virtually all methods have been designed to detect only
changes in the average expression, single-cell method
developers have recently started to pay attention to the
other DS types as well [6, 7].

The classical statistical tests for DS testing in scRNA-
seq data, such as the Wilcoxon rank-sum test, naïvely
assume the samples are statistically independent.
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However, this is usually not the case in multisubject
scRNA-seq data, where cells from the same subject
often have more similar gene expression profiles, which
causes an error in the statistical testing known as the
pseudoreplicate bias [8]. To alleviate the pseudoreplicate
bias, two approaches currently exist. The first approach
is to use mixed models that model subjects as a random
effect. The second approach is pseudo-bulk aggregation,
which transforms scRNA-seq data into bulk-like data
by aggregating gene counts within each cell type and
subject. Both approaches have previously been shown to
reduce the number of false positives [6, 8–10].

DE analysis in scRNA-seq data was first investigated
in papers that did not address the issue of multisubject
setup [11, 12]. Since then, a few papers have investi-
gated the issue of multisubject, multicondition scRNA-
seq DE analysis. However, there still remains a lack of
consensus regarding the best approaches. The muscat
simulator [6] was introduced to enable the simulation
of multisubject, multicondition data based on reference
data, and it also allows simulating other DS types with
more subtle differences in addition to DE. The muscat
R package also provides functions for several pseudob-
ulk methods and mixed models. A more recent paper
by Zimmerman et al. [8] compared several off-the-shelf
mixed models, pseudobulk methods and naïve methods
that do not model the subjects in any way using a limited
simulation setup. The simulation was based on plate-
based data with dropouts and not droplet data, such
as chromium [13], which is currently the most popular
scRNA-seq protocol and is generally not considered zero-
inflated [14]. The authors recommended a mixed model
based on the MAST statistical test [15] (MAST_RE) that
accounts for the subjects as a random effect and claimed
it was superior compared to the pseudobulk methods.
Another recent paper by Squair et al. [10] compared naïve
methods, pseudobulk methods and one mixed-model
method (muscat_MM). Their comparison was not based
on a simulation but on a comparison between paired
scRNA-seq and bulk RNA-seq data. The ground truth
for the bulk data was defined using two of the bulk DE
tests, which could cause significant bias in the results.
The comparison did not consider the recently introduced
MAST model (MAST_RE) [8] or NEBULA, which is another
recently introduced mixed model specifically designed
for the DS analysis of multisubject scRNA-seq data [16].

To address the need for a better understanding of the
relative performance of various naïve, pseudobulk, and
mixed-model methods, we compared 18 different meth-
ods for DS analysis of multisubject scRNA-seq data. Our
comparison included three mixed models (MAST_RE [8],
muscat_MM [6] and NEBULA-LN [16]) that model subjects
as a random effect, six pseudobulk methods (edgeR [17]
and DESeq2 [18] with sum aggregation, Limma [19] and
ROTS [20] with sum and mean aggregation), and five
naïve methods (the popular Wilcoxon rank-sum test and
four other methods from the Seurat R package [3]). The
three mixed models have not been compared before

in the same study. Additionally, we tested four latent
variable methods from the Seurat R package that can
be used to account for variables, such as batch effects
in DS analysis. The suitability of the latent variable
methods to account for different latent variables such
as subjects in DS analysis is not yet fully understood.
To compare the DS analysis methods, we first carried
out a comprehensive simulation analysis based on
two different simulation models. The performance
was assessed using several gold-standard performance
metrics: area under the receiver operating characteristic
curve (AUROC), sensitivity, specificity, precision, F1-
score and Matthew’s correlation coefficient (MCC). We
estimated the proportion of false positives by performing
a mock comparison between random groups using
real data. Finally, we investigated the reproducibility of
the methods by investigating the correlation between
the obtained gene lists from different subsets of the
same data.

Materials and methods
Methods for detecting DS
In total, we considered 18 DS analysis methods in our
comparison (Table 1). These methods belong to two
broad categories: pseudobulk methods and single-cell
methods. The pseudobulk methods aggregate count
values from each sample and cell type (cluster) to create
data that can be analyzed using the same methods as
bulk RNA-seq data, maintaining the same number of
genes but reducing the number of cells to the number
of samples in the gene expression matrix. Single-cell
methods assume that the data have been normalized
at the single-cell level, and the DS analysis is carried
out using the normalized data directly. The single-cell
methods can be further divided into two subcategories:
mixed models and naïve methods. The mixed models
model the subjects as a random effect, whereas the
naïve models assume that all the cells are statistically
independent and do not model the subjects in any way. In
addition, we considered a third type of single-cell method
from the Seurat R package, the latent variable model, that
tests whether the difference in gene expression between
the groups can be explained by the difference in one or
multiple latent variables. These methods were designed
to account for batch effects or other confounders in
the data.

The aggregation of the count values for pseudobulk
methods can be performed using two approaches: cumu-
lative summing of raw count values (sum) or averaging
single-cell-normalized count values (mean). The sum
aggregation is followed by bulk normalization, and it has
achieved better performances in earlier studies than the
mean aggregation [6]. A recent study by Thurman et al.
[9] recommended the sum aggregation with DEseq2 for
multisubject DS analysis, which is a popular statisti-
cal test for bulk RNA-seq DE analysis [18]. We selected
DEseq2 and three other statistical tests, Limma, edgeR
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and ROTS [17, 19, 20] as a representation of the pseu-
dobulk methods. In addition to performing the pseudob-
ulk aggregation for all four statistical tests by the sum
aggregation, we also tested the mean aggregation for two
of the statistical tests (ROTS and Limma) that can be
used with any normalization method. The sum and mean
aggregated pseudobulk methods are denoted with _sum
and _mean suffixes in the results, respectively.

Mixed models that account for the subjects as a ran-
dom effect are gathering increasing interest. We included
three mixed models in our comparison: MAST_RE, mus-
cat_MM and NEBULA-LN. A recent paper by Zimmerman
et al. [8] recommended for multisubject DS analysis a
MAST model (MAST_RE) [15] that models the subjects
as a random effect. The muscat R package includes a
mixed model (muscat_MM), which uses the lme4 linear
mixed model with voom weights [6, 21, 22]. NEBULA-
LN is a recently introduced negative binomial mixed
model designed for fast, multisubject DS analysis and
estimation of co-expression between genes [16].

Seurat is a popular R package for scRNA-seq data
analysis, including a wide array of statistical tests for DS
analysis [3, 23]. These include naïve methods that do not
model the subject in any way, such as the Wilcoxon rank-
sum test, as well as models that can be used with ‘latent
variables’ to account for different confounding factors
during the statistical testing. The way in which the latent
variable modeling is performed varies depending on the
statistical test. The batch effect is the only confounder
that is mentioned in the documentation, but the user
can include an arbitrary number of latent variables in
the FindVariables function. The four statistical tests of
Seurat that support the use of latent variables are MAST,
logistic regression, negative binomial generalized linear
model (negbinom) and Poisson generalized linear model
(Poisson). We included these four tests and their naïve
versions in our comparison. In addition, we included the
Wilcoxon rank sum test, which is the default method for
DS analysis in Seurat. Other approaches for performing
multisubject DS analysis, such as mixed models with
random effects or pseudobulk methods, are not currently
available in Seurat (version 4.1).

Simulation of scRNA-seq data
Since it is in practice very difficult to ascertain which
genes are differentially expressed between conditions in
real scRNA-seq data, simulation is necessary to obtain an
accurate benchmark. To simulate scRNA-seq count data,
we used two different approaches. The first approach is
based on a reference-free negative binomial generative
model presented in the original study of one of the
benchmarked tools (NEBULA). This approach can sim-
ulate DE and non-DE genes by controlling the average
fold change between the groups but no other DS types.
The second approach uses muscat, which is a recently
introduced R package based on a reference-based nega-
tive binomial generative model that enables simulating
multisubject, multicondition scRNA-seq data using real

data as reference [6]. It can simulate genes of four dif-
ferent DS types and two non-DS types: changes in the
mean expression (DE), changes in the proportions of low
and high expression components (DP), changes in the
differential modality (DM), changes in both the propor-
tions and modality (DB), equivalent expression (EE), and
equivalent expression at low and high components by an
equal proportion (EP).

Simulation using a reference-free negative binomial
generative model

We performed a reference-free negative binomial gener-
ative model simulation using the approach from the orig-
inal paper of one of the benchmarked tools (NEBULA-LN)
[16]. This simulation allowed tuning of the model param-
eters, including two overdispersion parameters (cell and
sample) that create random variation in the gene expres-
sion levels between cells and samples, and the average
number of cells per sample.

To generate gene expression data that included both
non-DE and DE genes, we made changes to the original
NEBULA simulation. As in the original simulation, we
simulated non-DE genes by setting logFC = 0. Addition-
ally, we simulated DE genes with logFC between 0.5 and
2.0. In total, our simulation included 1280 datasets, each
containing 100 DE genes and 1900 non-DE genes. We
simulated the 1280 datasets by adjusting five different
parameters: the number of samples (6, 8, 10, 12, 14, 16,
18, 20, 30, 40), the average number of cells per sample
(100, 500, 1000, 2000), the distribution for sampling the
average number of cells (Poisson, negative binomial), cell
overdispersion (0.05, 0.10, 0.20, 0.50) and sample overdis-
persion (0.1, 1, 10, 100). The average expression term in
the generative model ranged from −4 to 2.

Simulation using a reference-based negative binomial
generative model

In our simulation with muscat, we considered reference
data from four studies (Kang [24], Kallionpää [25],
Thurman [9] and Liu [26]), which are summarized in
Table 2. The Kang dataset comprises peripheral blood
mononuclear cells (PBMC) from lupus patients before
and after treatment with interferon-β. The Kallionpää
dataset includes PBMC cells from children that developed
type I diabetes at a young age along with paired control
samples. The Thurman dataset includes cells segregated
from large and small airway surface epithelium of
newborn cystic fibrosis (CF) and non-CF pigs. The Liu
dataset includes PBMC cells from COVID-19 patients,
patients with tropical infectious diseases and healthy
subjects.

For each simulated dataset, we simulated three clus-
ters with varying magnitudes of differences. 10% of the
genes in each cluster were assigned a differential distri-
bution (2.5% for each of the four differential distributions
DE, DP, DM and DB). The relative log-fold-change (logFC)
values were set to 0.5, 1 and 1.25 for clusters 1, 2 and 3,
respectively. Using Kang data as reference, four datasets
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Table 2. Details of the reference datasets used in the simulation using a reference-based negative binomial generative model

Kang Kallionpää Liu Thurman

Number of replicates in simulation 8, 16 12 12, 16, 20 8
Tissue types PBMC PBMC PBMC Airway surface epithelium
Conditions IFN-β-treated versus

nontreated
T1D cases versus matched
controls

COVID-19 versus healthy
controls

CF versus non-CF

Organisms Human Human Human Pig
Number of control samples in
original dataset

8 4 14 4

References [24] [25] [26] [9]

were simulated: 20 000 cells and 4 replicates per con-
dition, 20 000 cells and 8 replicates per condition, 5000
cells and 4 replicates per condition and 5000 cells and
8 replicates per condition. One dataset was simulated
using Kallionpää data as reference: 7500 cells and 4 repli-
cates per condition. Using Liu data as reference, three
datasets were simulated: 12 000 cells and 6 replicates
per condition, 16 000 cells and 8 replicates per condition
and 20 000 cells and 10 replicates per condition. One
dataset was simulated using Thurman data as reference:
20 000 cells and 4 replicates per condition. Additionally,
to investigate the impact of the number of cells and the
number of samples on the performance, we extended the
muscat simulation for the Liu dataset so that it included
more variation in the number of cells per sample (500,
1000, 2000, 4000) and the number of subjects (8, 12, 16,
20, 24, 28, 32, 36, 40).

For Kang, Liu and Thurman reference data, we used the
cell type annotation that was provided by the authors of
the original studies in the muscat simulation. For Kallion-
pää data, we performed Seurat integration (v 4.0.3) with
the default parameter values and used the resulting
clustering in the muscat simulation.

Simulation of imbalanced distribution of cells across the
samples

In both simulations, the datasets contained an almost
even distribution for the number of cells between sub-
jects. However, this assumption is not valid in many
real situations, and a recent paper by Zimmerman et al.
[8] suggested that especially the performance of pseu-
dobulk methods deteriorates when a dataset has an
uneven distribution for the number of cells. Therefore,
we also simulated clusters that had a large variation
in the number of cells between the samples. In the
reference-free simulation, the random sampling of the
number of cells was performed using two statistical dis-
tributions: Poisson for balanced distribution and negative
binomial for imbalanced distribution. In the reference-
based simulation, we randomly subsampled cells for
all simulated datasets without replacement so that the
proportion of the remaining cells in the samples varied
with even intervals from 0.20 to 1. The subsampling was
performed for each of the clusters separately and the
proportions of remaining cells were chosen randomly for
the samples.

Performance evaluation
We performed receiver operating characteristic (ROC)
curve analysis on the simulation results using the pROC
R package [27]. As the predictor, we used the P-values,
and as the response, the ground truth provided by the
simulation on which genes had DS. Since the methods
had different gene filtering strategies (Table 1), we only
considered genes that were included by all methods.

While the AUROC is useful for assessing the perfor-
mance so that the evaluation is not constrained to a
specific P-value threshold, and it can be interpreted as
measuring the accuracy of ranking positive genes higher
than negatives, it is possible to achieve a perfect AUROC
score with statistically insignificant P-values. To assess
the ability of the methods to provide well-calibrated P-
values, we also calculated the sensitivity, specificity, pre-
cision, F1-score and MCC of the methods using the false
discovery rate (FDR) of 0.05 as a cutoff. Before adjusting
the P-values for multiple comparisons, we excluded the
genes that were not included by all the methods (Table 1).

Average overlap to measure differential
distribution of points between conditions
To measure the differential distribution of data points
between two groups, we define a metric called the aver-
age overlap. We count in each group how many pseu-
dobulk normalized data points (replicates) are within
the range of the values of the other group, divide the
counts by the number of samples in each group and then
average the two ratios. Given two pseudobulk normalized
gene expression vectors, xA = [xA1, . . . , xAm] and xB =
[xB1, . . . , xBn], that measure the expression of a gene for
m and n replicates in the groups A and B, respectively,
we determine the number of values in the group A that
are within the range of the values of the group B: m′ =
#{i| min(xB) ≤ xAi ≤ max(xB)}, where # denotes the
cardinality of a set. Similarly, we determine the number
of values of the group B that are within the range of the
values of the group A: and n′ = #{i| min(xA) ≤ xBi ≤
max(xA)}. The average overlap O is defined as

O = 1
2

(
m′

m
+ n′

n

)
.

A high average overlap close to one indicates that the
data points of the two groups are mixed and the gene
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is not differentially expressed. In contrast, a low value
close to zero indicates that the groups are differentially
distributed and the gene is differentially expressed. We
use the average overlap as one of the measures besides
average expression and fold change to investigate the
properties of the genes from the reference-based simu-
lation that were classified differently by the pseudobulk
methods and the mixed models.

Mock comparison using real data to estimate the
proportion of false positives
To estimate the proportion of false positives, we per-
formed a mock analysis using a real scRNA-seq dataset
that includes PBMCs from healthy subjects, patients with
flu or COVID-19 [26]. We took the 14 healthy control sam-
ples and used the metadata stored in the publicly avail-
able Seurat object (GEO accession GSE161918) to extract
B cells that were labeled as singlets and had a maximum
of 10% mitochondrial reads. We randomly assigned one
of the two mock groups for each sample and performed
statistical testing between the mock groups using each
of the 18 methods to determine the DS genes. A gene
was considered significant if FDR ≤ 0.05. Before adjusting
the P-values for multiple comparisons, we excluded the
genes that were not included by all the methods (Table 1).
We performed the random mock group assignment 30
times using different random seeds.

Reproducibility
Biological measurements need to be reproducible
between experiments that study the same problem but
with different replicates [28]. To study the reproducibility
of DS detection methods, we randomly downsampled
the Liu data set [26] from the reference-based simulation
that consists of 10 replicates per condition and 20 000
cells in total. In line with the rest of the reference-
based simulations, the minimum number of replicates
per condition was four. In addition, we also considered
the imbalanced version of the same data set for which
we downsampled cells from the replicates, with the
remaining proportion of cells ranging with even intervals
from 20 to 100%. We repeated the downsampling of
the replicates 50 times for both the balanced and
imbalanced data sets, generating in total 100 data sets.
To measure reproducibility, we calculated Spearman’s
rank correlation between each pair of the 100 data sets
using the nominal P-values as input.

Results
Simulation based on a reference-free negative
binomial generative model
We simulated data based on a reference-free negative
binomial generative model from the original paper of the
NEBULA method (see the section titled, ‘Simulation using
a reference-free negative binomial generative model’). To
benchmark the methods in a way that is not limited to a
single P-value cutoff, we calculated the AUROC for each

method and cluster (see the section titled, ‘Performance
evaluation’). The AUROC values were, on average, highest
for the pseudobulk methods, followed by the naïve and
latent variable methods. The number of cells and sam-
ples did not have a noticeable impact on the superiority
of the method types (Figure S1, see Supplementary Data
available online at https://academic.oup.com/bib).

In addition to the AUROC, we calculated the sensitivity,
specificity, precision, F1 score and MCC using FDR of
0.05 as a cutoff to define the positives and negatives.
Overall, the sensitivity was higher for the naïve methods
and the latent methods compared to the pseudobulk
methods and the mixed models, and it increased when
the number of samples increased with all the methods,
as expected (Figure S2, see Supplementary Data available
online at https://academic.oup.com/bib). However, the
pseudobulk methods generally provided significantly
better precision and specificity compared to all other
method types (Figures S3 and S4, see Supplementary
Data available online at https://academic.oup.com/bib).
When considering precision (Figure S4, see Supplemen-
tary Data available online at https://academic.oup.com/
bib) as the inverse of FDR (FDR = 1 – Precision), the
pseudobulks were the only methods that were able to
achieve FDR values that were close to the expected
FDR of 0.05. The F1 score (Figure S5, see Supplementary
Data available online at https://academic.oup.com/bib)
is the harmonic mean of sensitivity and precision that
amplifies the impact of small values. Although the
naïve methods achieved excellent sensitivity, their weak
precision caused the F1 scores to be small, making
the pseudobulks clearly the best methods based on
the F1 score. The MCC is preferable to F1 score and
accuracy for assessing overall performance when the
binary labels (DS and non-DS) are imbalanced [29],
which is often the case in gene expression data. The
MCC values (Figure S6, see Supplementary Data available
online at https://academic.oup.com/bib) suggested that
the pseudobulks once again outperformed the other
method types. With Limma and ROTS, we also tested
the effect of the aggregation method on the results,
suggesting the systematically better performance of the
sum over the mean aggregation (Figure 1, Figures S1–
S6, see Supplementary Data available online at https://
academic.oup.com/bib).

Finally, we investigated how the imbalance in the
number of cells between the samples affected the
performance (Figure S7, see Supplementary Data avail-
able online at https://academic.oup.com/bib). In this
simulation, the imbalance had a negligible effect on the
performance of all methods.

Simulation based on a reference-based negative
binomial generative model
We used the muscat R package to simulate scRNA-
seq data using data from four different studies (Kang,
Kallionpää, Thurman and Liu; see the section titled,
‘Simulation using a reference-based negative binomial

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac286#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac286#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac286#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac286#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac286#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac286#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac286#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac286#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac286#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac286#supplementary-data
https://academic.oup.com/bib
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Figure 1. Results of the simulation based on a reference-free negative binomial generative model. Each boxplot shows values for 1280 simulated datasets
with varying data properties.

generative model’), to study the effects of different
DS types, including changes in the mean expression,
changes in the proportions of low and high expression-
state components (DP), changes in modality and changes
in both proportions and modality (DB). In total, 54 cell
populations (clusters) were used in the benchmarking.

We first calculated the AUROC for each method
and cluster and grouped the results by the DS type
(Figure 2). These results indicate that the DS type did not
have a notable impact on the ranking of the methods.
Unsurprisingly, the performance scores for the DE type
were consistently higher than for the three other DS
types, which contained more subtle transcriptomic
differences between the groups than the DE genes. The
pseudobulk methods and the naïve methods achieved
higher performance than the latent models and the
mixed models. The latent models were clearly the
weakest-performing models. The mixed models had
considerable variation between their performances:
MAST_RE achieved slightly better overall performance
compared to NEBULA-LN, whereas muscat_MM was
inferior with all four data types. Again, the pseudobulk
aggregation by summing performed generally better
than the mean aggregation.

In addition to the AUROC, we calculated the sensitivity,
specificity, precision, F1 score and MCC using FDR of 0.05

as a cutoff to define the positives and negatives (Figure 2).
The results suggested that the naïve methods provided
the best sensitivity from the method types, followed
by the latent variable models. However, their specificity
and precision were worse compared to the pseudobulk
methods and the mixed models (Figure 2). In other words,
the pseudobulk methods and the mixed models were
able to effectively minimize the number of false positives,
whereas a significant proportion of the findings, gener-
ally 25% (precision 0.75), found by the naïve methods
and the latent variable models were false. The estimated
FDR levels of the pseudobulks were in concordance with
the expected FDR of 0.05, but the other method types
achieved inflated FDR levels. Overall, the precision and
specificity were higher for the pseudobulk methods than
for the mixed models. The F1 score and MCC suggested
that the pseudobulks, mixed models and naïve methods
performed similarly. The F1 score intensified the low sen-
sitivity values of the pseudobulk methods, explaining the
discrepancy in the results in the reference-free simula-
tion (Figure 1). The results remained similar when inves-
tigating the impact of the number of cells and samples
on the performance (Figures S8–S13, see Supplementary
Data available online at https://academic.oup.com/bib).

To take a closer look at the two best-performing
mixed models (NEBULA-LN and MAST_RE) and the four

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac286#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac286#supplementary-data
https://academic.oup.com/bib
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Figure 2. Results of the simulation based on a reference-based negative binomial generative model. Each box plot includes performance values for 54
cell populations (clusters). The rows signify the four different differential states: changes in both proportions and modality (DB), changes in the mean
expression (DE), differential modality (DM) and changes in the proportions of low and high expression-state components (DP). The columns group the
results by the four different performance metrics: Area under the receiver operating characteristic (AUROC) curve, sensitivity, specificity and precision.
Seurat_poisson_latent was left out from the results due to its high failure rate for the simulation.
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Figure 3. Analysis of the genes that were differently detected between the pseudobulk methods and two top-performing mixed models in the negative
binomial simulation. (A) Average overlap was calculated by counting in each group how many pseudobulk (pb) normalized data points (samples) were
within the range of the values of the other group, divided by the number of samples in the group and then taking their average. (B) Absolute value of the
log2-transformed fold change calculated between the pseudobulk normalized gene expression values of the two groups. We added a pseudocount value
of 1 to each mean expression when calculating their fold change. (C) Average pseudobulk normalized gene expression. The pseudobulk normalization
was performed using the normalization that was used for Limma and ROTS (Table 1). (D) Average single-cell (sc) normalized gene expression. The single-
cell normalization was performed using the normalization method that muscat simulator uses. To make the boxplots more readable, we removed the
outliers for (B–D).

pseudobulk methods that use the sum aggregation, we
studied the genes that behaved differently among the
six methods (Figure 3). We defined a metric called the
average overlap to measure the differential distribution
of data points between two groups (see the section titled,
‘Average overlap to measure differential distribution
of points between conditions’) for which a low value
indicates DE and a high value no changes in expression.
When investigating the average overlaps of the gene-
wise distributions between the sample groups, the
false positives of the pseudobulk methods had a small
overlap (from 0% to 35%) compared to true negatives (on
average above 50%), suggesting that the false positives
of the pseudobulk methods occurred due to errors in
normalization or random chance in the simulation
(Figure 3A). The false positives of the mixed models did
not show such a trend, and their average overlap values
were relatively high (above 0.5) and similar to those of
the true negatives (Figure 3A), suggesting that the false
positives of the mixed models occurred due to faults
in the DS modeling by the methods themselves. The
fold changes indicated that the false positives of the
pseudobulk methods also had a higher fold change than
the mixed models or the true negatives and they were
comparable to the true positives (Figure 3B). However, the
false positives of the pseudobulk methods had generally
lower average expression than the mixed models or the
true positives (Figure 3C and D).

Finally, we investigated how the imbalance of the
number of cells affected the performance (Figure S14,
see Supplementary Data available online at https://
academic.oup.com/bib). In general, the AUROC values
of the methods were noticeably lower in the imbalanced
datasets, but especially the sensitivity of the methods
decreased in the imbalanced datasets. The imbalance
did not affect the superiority of the method types.

Mock comparison with real data
To further estimate the proportion of false positives for
each method in a real experimental setting, we car-
ried out a mock comparison by randomly dividing 14
healthy subjects from a COVID-19 study into 2 mock
groups. The results suggest that the naïve methods that
did not account for subjects in any way and the latent
methods were subject to a high number of false posi-
tives (Figure 4). In contrast, the pseudobulk methods and
the mixed models generally produced small numbers
of false positives, which are in concordance with the
expected FDR of 0.05. This is in accordance with the
simulation results in the section titled, ‘Simulation based
on a reference-free negative binomial generative model’.
The logistic regression model of Seurat, which models
the subjects as a latent variable, did not find any false
positives, but this is likely due to the method’s inability to
produce any positive findings for some data types, such
as the reference-based negative binomial simulation (see

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac286#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib
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Figure 4. Mock analysis using real data to estimate the proportion of false positives. The mock analysis was performed by segregating good-quality B
cells from a COVID-19 dataset [26] that consists of 14 healthy control subjects and by randomly assigning one of the two mock groups for each subject.
The assumption is that no genes with differential states should be found between the random mock groups. The random sampling was repeated 30
times. Seurat_poisson_latent was left out from the results due to its high failure rate (29/30) for the mock data. The dashed vertical line at 5% denotes
the expected maximum proportion of false positives with an FDR threshold of 0.05.

the section titled, ‘Simulation based on a reference-based
negative binomial generative model’).

Reproducibility analysis with simulated data
To investigate the reproducibility of the 18 DS detection
methods, we subsampled replicates from the Liu data
set 100 times (see the section titled, ‘Reproducibility’)
and analyzed the correlation of the P-value lists using
Spearman’s rank correlation coefficient. The results
(Figure 5) suggested that the latent methods produced
the least reproducible predictions. Overall, the repro-
ducibility of the pseudobulk methods, naïve methods
and mixed models was similar. However, the pseudobulk
method that uses ROTS in statistical testing and the
mean aggregation achieved significantly higher repro-
ducibility compared to the rest of the pseudobulk meth-
ods. This likely occurs due to the built-in reproducibility
optimization of ROTS, which is not used by any of the
other methods. In addition, MAST_RE achieved markedly
higher reproducibility than muscat_MM, NEBULA-LN
and many pseudobulk methods.

Discussion
Finding DS between conditions from scRNA-seq data
involves performing statistical testing between two or
more groups of cells for each cell type separately. scRNA-
seq experiments increasingly include multiple subjects
or biological replicates to confirm that the transcrip-
tomic changes are prevalent in groups and not only in
single subjects. This requires specialized tools due to the
hierarchical structure of the data. Cells from the same
subject often have more similar gene expression profiles,
which violates the statistical independence assumption
of the basic statistical tests.

This issue has been already addressed in recently pub-
lished studies that have proposed new, improved meth-
ods for the DS analysis of multisubject scRNA-seq data
[6, 8, 9, 16]. The two approaches that currently seem the
most promising are the pseudobulk methods that aggre-
gate counts from each cluster and sample and the mixed
models that model the subjects as a random effect. Both
have been demonstrated to decrease the number of false
positives compared to regular statistical tests, such as
the Wilcoxon rank sum test, that naïvely assumes the
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Figure 5. Analysis to assess reproducibility of the DS analysis methods. Spearman’s correlation between P-value lists. Spearman’s correlation could
not be calculated for Seurat_LR_latent because all its P-values were constant. Seurat_poisson_latent crashed during the DS analysis runs. Each violin
plot includes correlation values between all pairs (with symmetrical pairs excluded) of the 100 subsets of the Liu data. The subsets were generated by
sampling replicates without replacement from the data set that consists of 10 replicates per condition and 20 000 cells.

cells are statistically independent [8, 10]. However, no
attempts have yet been made to compare these tools in
the same work.

In this article, we compared 18 tools for the DS analysis
of multisubject scRNA-seq data. These methods included
both pseudobulk methods and mixed models, but also
naïve single-cell methods that do not model the subjects
in any way, as well as methods that model the subjects as
a latent variable. Our benchmarking framework included
both simulated and real data. For the simulation, we
considered both a reference-free negative binomial gen-
erative model and a reference-based negative binomial
generative model. The reference-free generative model
simulated genes with changes in the mean expression
(DE). The reference-based negative binomial generative
model simulation was performed using the muscat R
package, which is currently the only simulator that can
simulate multisubject scRNA-seq data with four differ-
ent DS types. Finally, we performed a mock comparison
using 14 healthy control subjects from a large COVID-19

dataset, [26] which enabled us to estimate the proportion
of false positives for each method.

The results indicated that the naïve methods were
indeed subject to a higher rate of false positives than
the pseudobulk methods and the mixed models. This
conclusion is supported by all our analyses. While the
naïve models generally provided higher sensitivity, this
benefit was negated by the lower precision and speci-
ficity. In other words, the naïve models reported a lot
of findings, but a large proportion of these were false
positives. Although the AUROC results suggested that the
P-values of the naïve methods accurately ranked the pos-
itives before the negatives, the main issue was that the
P-values were poorly calibrated. With an FDR of 0.05 as a
cutoff to define the positives and negatives, the methods
can be expected to find at most 5% false positives from
all positives. The naïve methods found high proportions
of false positives, up to 40% in the mock comparison and
the simulations. In the simulation, the precision values of
the pseudobulk methods were in better accordance with
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the FDR cutoff than the precision values of the mixed
models.

We observed notable variation in the performances of
the mixed models. Of the three mixed models that we
considered in our comparison, MAST_RE and NEBULA-LN
achieved considerably better overall performance than
muscat_MM. However, the performances of the pseudob-
ulk methods were mostly similar. Our results suggested
that the pseudobulk aggregation by calculating the mean
of single-cell normalized data provided inferior perfor-
mance compared to the sum approach that cumulatively
sums the count values and then uses bulk RNA-seq
normalization. This is in line with at least one previous
study that found that the sum aggregation outperformed
the mean aggregation [6].

We investigated how the number of cells and samples
affected the performance of the methods. An earlier
study [8] found that the pseudobulks performed worse
than the mixed models when the number of samples was
small. The same paper also suggested that the pseudob-
ulks would perform worse than the best-mixed model
(MAST_RE) when the samples have an uneven distribu-
tion for the number of cells. However, we were unable to
validate these findings.

The popular Seurat pipeline includes four statistical
tests that allow for the incorporation of several latent
variables in the models. The latent models test if the
observed DE change between the conditions can be
explained by the difference in one or several variables.
According to the package manual, this is recommended
if the data contains batch effects in the DS analysis, but
no instructions are provided for any other variables. As
of Seurat v4.1, using latent variables is currently the
only way to account for the subjects in the DS analysis
with Seurat. Our results strongly suggest against their
use in the DS analysis when the subject is included as a
latent variable. The latent models performed generally
even worse than their naïve counterparts. A recent study
came to the same conclusion when they used ComBat
to correct the data for the subject effect before the DS
analysis [8, 30]. However, the latent models might still
be appropriate when modeling batch effects or other
variables as latent variables.

Our comparison includes limitations and details that
can cause bias in the results. First, the reference-free
simulation was originally presented in the original paper
of NEBULA-LN, which is one of the methods compared
in this article. The simulation uses the same generative
model that is used by the NEBULA mixed model. There-
fore, NEBULA could have an unfair advantage over the
other mixed models in the comparison. Secondly, our
comparison did not investigate the role of prepreprocess-
ing, such as normalization or clustering. In this article,
we focused solely on benchmarking DS detection meth-
ods for multisubject, multicondition data. More versatile
comparisons are still needed to investigate the com-
plex relationship between the different analysis steps
of which the DS detection is only one step [31]. While

our simulation framework included data sets with an
imbalanced distribution of cells between the subjects, we
did not consider the most extreme scenarios where the
same types can be extremely rare in some subjects but
abundant in other subjects.

Our findings opened many interesting research ques-
tions that require further investigation in future stud-
ies. Our results suggested that the mean aggregation
generally outperformed the sum aggregation. Investigat-
ing why exactly the sum aggregation performed better
was not investigated in this study. This would require
adjusting the normalization workflows of the pseudob-
ulk methods to test, for example, whether the TMM nor-
malization [32] is a beneficial step. Interestingly, however,
the mean aggregation provided better reproducibility and
precision in the reference-free simulation for ROTS. The
second interesting observation was the significant vari-
ation in the performance of the three mixed models.
Our results suggested that muscat_MM was inferior to
NEBULA and MAST_RE. The inferiority of muscat_MM
was mainly attributable to its low sensitivity. In the orig-
inal study on muscat, the results suggested in the same
way that muscat_MM achieved lower sensitivity than the
pseudobulk methods. It would be useful to investigate in
future studies what exactly causes the low sensitivity of
muscat_MM. This would require testing different config-
urations of the mixed modeling and data transformation.
However, muscat_MM uses linear mixed modeling (lme4)
and voom transformation, which differs from the other
two mixed models.

To conclude, we performed a comprehensive compar-
ison to benchmark 18 methods for DS analysis of mul-
tisubject scRNA-seq data. Our results suggest that the
pseudobulk methods and the mixed models that model
subjects as a random effect were superior compared
to the naïve single-cell methods that do not model the
subjects in any way. We also recommend not to perform
DS analysis using Seurat’s statistical tests so that the
subjects are modeled as a latent variable. Overall, the
pseudobulk methods outperformed the mixed models. If
the user wants to achieve high specificity and precision
at the risk of losing some true positives, we recommend
the pseudobulk ROTS with the sum aggregation. If sensi-
tivity is more important than the false-positive results,
then we recommend the pseudobulk methods Limma,
DESeq2 or edgeR combined with the sum aggregation. We
recommend that scRNA-seq analysis pipeline developers
should begin to include pseudobulk methods and mixed
models in their pipelines. To facilitate DS analysis of
multisubject scRNA-seq data, the codes that implement
all the methods in this article are freely available online
(https://github.com/elolab/multisubjectDSanalysis).
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Key Points

• Naïve single-cell differential states analysis methods are
subject to high proportions of false positives when ana-
lyzing data with multiple biological replicates.

• Latent variable models are not effective in reducing false
discoveries when accounting for biological replicates.

• Pseudobulk methods and mixed models that account for
biological replicates as a random effect are effective in
reducing false discoveries.

• Overall, our results suggest that pseudobulk methods
outperform mixed models.
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