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Abstract: Barley is characterized by a rich genetic diversity, making it an important model for studies
of salinity response with great potential for crop improvement. Moreover, salt stress severely affects
barley growth and development, leading to substantial yield loss. Leaf and root transcriptomes
of a salt-tolerant Tunisian landrace (Boulifa) exposed to 2, 8, and 24 h salt stress were compared
with pre-exposure plants to identify candidate genes and pathways underlying barley’s response.
Expression of 3585 genes was upregulated and 5586 downregulated in leaves, while expression of
13,200 genes was upregulated and 10,575 downregulated in roots. Regulation of gene expression was
severely impacted in roots, highlighting the complexity of salt stress response mechanisms in this
tissue. Functional analyses in both tissues indicated that response to salt stress is mainly achieved
through sensing and signaling pathways, strong transcriptional reprograming, hormone osmolyte
and ion homeostasis stabilization, increased reactive oxygen scavenging, and activation of transport
and photosynthesis systems. A number of candidate genes involved in hormone and kinase signaling
pathways, as well as several transcription factor families and transporters, were identified. This study
provides valuable information on early salt-stress-responsive genes in roots and leaves of barley and
identifies several important players in salt tolerance.

Keywords: Hordeum vulgare L.; salinity; RNA-seq analysis; differentially expressed genes; tolerance;
candidate genes

1. Introduction

Salinity is one of the most pressing abiotic stressors threatening plant growth and
agricultural production worldwide. Saline conditions are increasing rapidly along with the
alarming rise of global warming, particularly in arid and semiarid regions [1]. Given these
severe conditions, understanding the molecular mechanisms underlying salinity stress
response in plants could contribute to the development of salt-tolerant crops in order to
sustain productivity and quality.

Salinity is often recognized as an excessive accumulation of sodium ions in the soil [2],
leading to osmotic stress and ion toxicity [3,4]. These two main effects of salt damage
result in decreased photosynthetic efficiency, redistribution of cell wall constituents, reduc-
tion of cell expansion and division, and oxidative damage from reactive oxygen species
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(ROS) [2,5,6]. Hence, salinity stress generates deleterious effects on plant growth and
productivity.

In response to salt stress, plants activate several tolerance mechanisms, including
physiological, biochemical, and molecular changes. These diverse mechanisms allow the
accumulation of osmoprotectants, regulation of ion homeostasis, and detoxification by
the activation of ROS scavengers via efficient signal transduction networks [1]. Several
important mechanisms have been characterized, including the osmoprotectant pathway
and scavengers that regulate ROS homeostasis [7]. Both antioxidant enzymes and nonen-
zymatic compounds play critical roles in detoxifying ROS induced by salinity stress [8]. In
addition, membrane transporters and ion channels, namely, the high-affinity potassium
transporter and salt overly sensitive families involved in Na+-specific transport, play a
crucial role in Na+ homeostasis through the regulation of K+/Na+ and H+/Na+ balances,
respectively [4,9,10]. Further, several transcription factor families, such as the dehydration-
responsive element-binding protein (CBF/DREB) family [11] and the mitogen-activated
protein kinase family, function in pathways that regulate the expression of stress-related
genes [12,13] along with other factors that regulate abiotic stress responses. Finally, the
interaction of several plant hormones, such as abscisic acid (ABA), cytokinins, auxins,
ethylene, salicylic acid, and jasmonic acid, plays vital roles in salt stress signaling and
response [14,15].

High-throughput RNA sequencing (RNA-seq) is an important approach to study the
expression of a large number of genes in a given tissue at a given time point [16]. RNA
transcript profiling is a powerful technology for genomewide transcript characterization,
differential gene expression analysis, variant detection, and gene-specific expression. These
features are facilitating a deeper understanding of the genetic variation in complex phe-
notypic traits, such as salt tolerance, and allowing the enrichment of salt stress response
pathways [17]. Several RNA sequencing studies have examined salt stress responses in
different plants, such as barley (Hordeum vulgare L.) [18], sweet potato (Ipomoea batatas (L.)
Lam.) [19], rapeseed (Brassica napus L.) [20], and Arabidopsis [21]. These studies suggest the
involvement of a substantial number of salt tolerance genes encoding oxidation–reduction
processes and osmoprotectant metabolism, ion transport, heat shock proteins (HSPs), and
hormone signaling. Furthermore, differentially expressed genes (DEGs) encoding several
transcription factors and signal transduction components associated with salinity tolerance
have been identified. However, a paucity of information is available regarding differences
between expression profiles of shoot and root in salt-tolerant barley cultivars.

Barley is an important food, feed, and industry crop with economic significance
worldwide [22]. Barley yields are seriously threatened by escalating levels of salinization
due to the overall reduction of root and leaf growth. Indeed, salt stress first impacts the
root system of plants by inducing osmotic stress, leading to ion toxicity effects due to
nutrient imbalance in cytosol, decreasing turgor due to limits in leaf gas exchange and
stomata closure, and increasing oxidative damage, all of which interfere with normal cell
division and expansion, leading to lower growth and yield rates [23–26]. Barley is still
considered a relatively salt-tolerant crop and an important model for investigations of
plant responses to changes in salinity [24]. Barley nuclear genomes are characterized by
robust genetic diversity, making it attractive for stress tolerance breeding. Barley landrace
accessions harbor novel genetic resources; Boulifa is a Tunisian accession with high salinity
tolerance [27,28]. Therefore, investigating salt tolerance mechanisms remains important
for barley breeding programs and helps to identify key genes involved in salt tolerance.
The identified candidate genes represent valuable resources for future genetic engineering
studies in cereals as well as in other crops towards the development of new varieties
with more salt-tolerant characters and would be exploited to establish efficient applied
breeding plans.

In order to identify candidate genes, molecular functions, and biological processes
involved in response to salinity, stress high-throughput RNA-seq was performed on the
salt-tolerant Tunisian accession Boulifa. Leaves and roots were examined separately and at



Int. J. Mol. Sci. 2021, 22, 8155 3 of 17

different time points following exposure to severe salt stress (200 mM NaCl) in order to
deepen our understanding of the specific response of these tissues under different stress du-
rations. The results improve the current understanding of salt stress response mechanisms
in barley leaves and roots and can be applied to developing salt-tolerant cereals.

2. Results
2.1. Analyses of RNA-Seq Datasets

An average of 23.9 million high-quality reads were obtained for each sample (an
average total count of 24.14 million reads per sample before filtering low-quality reads
(Table S1)). On average, 92.5% of the reads were mapped to the barley genome, indicating
that the samples were comparable. On average, 62.5% of the reads were pseudoaligned to
the barley transcriptome, and 32,587 genes were detected (Table S1). Furthermore, the time
point clustering of replicates in 21 of the 24 samples, shown in Figure 1, indicates the high
quality of sampling and RNA-seq analysis.

Figure 1. Cluster analysis using 25% highly variable genes. Gene expression in leaf (pink) and root
(orange) was assessed under salt (200 mM NaCl) treatment for 2, 8, and 24 h relative to untreated
plants (0 h). Samples and biological replicates (L1, L2, and L3 for leaves and R1, R2, and R3 for roots)
are shown. The color gradient (upper right) indicates the pattern of expression from lowly (blue)
to highly (red) expressed genes and ranges from −4- to +4-fold changes in expression. Sampling
time point and tissue type are shown at the top of the cluster plot and defined on the right. The
dendrogram at the top shows the sample clustering, and the black arrows indicate the samples that
did not cluster by time point in the analysis.

2.2. Differentially Expressed Genes in Leaves and Roots under Salt Stress

Principal component analysis (PCA), a dimensionality reduction technique that
projects high-dimensional data on the principal components that represent the largest
variation in the data, was conducted in order to assess the largest source of variation
among data. The samples were projected onto principal component 1 (PC1) as the X-axis
and principal component 2 (PC2) as the Y-axis, representing, respectively, the first and the
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second largest sources of variation in the data. In Figure S2, PC1 (X-axis), which represents
86.5% of the variation in data, separates out samples by tissue, indicating that tissue is likely
the largest source of variation in our data. Therefore, differential expression analysis was
performed separately for each tissue. Differentially expressed genes were assessed in leaves
and roots of plants exposed to short (2 h), intermediate (8 h), and long-term (24 h) salt
stress, and responses were compared with pretreatment plants. The pattern of differential
expression in untreated and salt-treated barley seedlings is shown in Figure 1. Red and
blue signify overexpressed and underexpressed genes, respectively. The numbers of DEGs
are depicted as volcano plots (Figure 2). For all salt treatment durations, differences in
total DEGs were observed between leaves and roots. In leaves, the numbers of DEGs were
1290, 4338, and 3546 compared with 6449, 8915, and 8414 in roots after 2, 8, and 24 h salt
treatment, respectively. The intermediate term response (8 h) showed the highest number
of DEGs, followed by the long-term (24 h) and the short-term (2 h) (Figure S1). In both
leaves and roots across time points, the greatest numbers of shared DEGs were between
8 and 24 h. Stress-responsive DEGs were either common to both tissue types or specific
to each type (Figure 3). Tissue-specific DEGs were much more prominent in roots at all
time points, particularly in short-term stress response. At 2 h of salt treatment, 6033 DEGs
(representing 82% of the total DEGs in this tissue/time of treatment) were specific to roots,
whereas only 874 DEGs (12%) were specific to leaves, and 415 DEGs (6%) were shared
by both tissues. Intermediate- and long-term responses shared similar proportions of
tissue-specific DEGs, with 63% and 66% DEGs in roots, 14% and 13% shared DEGs, and
23% and 21% DEGs in leaves at 8 and 24 h of salt stress, respectively.
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Figure 2. Volcano plots depict differentially expressed genes. Salt-treated plants were sampled at 2, 8, and 24 h of salt
treatment, and differentially expressed genes (DEGs) were assessed relative to untreated plants (0 h) in leaves and roots.
For each plot, the X-axis shows a log base 2-fold change, and the Y-axis indicates the adjusted p-values for the differences
in expression. For each time point, the total DEG numbers are shown in the upper middle of each graph, upregulated
DEGs are indicated by a red up arrow, and downregulated DEGs by a black down arrow. Blue dots and red dots equate to
significant DEGs and nonsignificant genes, respectively.
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Figure 3. Shared and unique differentially expressed genes in barley seedlings. Differentially
expressed genes (DEGs) exposed to 2, 8, and 24 h salt treatment were evaluated relative to untreated
plants (0 h). Blue and red circles indicate roots and leaves, respectively, and shared DEGs are indicated
by overlap. The number of affected genes is given for each segment of the Venn diagram.

At all time points, fewer up- than downregulated DEGs were detected in leaves
(3585 up and 5586 down) (Figure 2). However, in roots, more DEGs were up- than down-
regulated (13,200 up and 10,575 down) (Figure 2). Across time points, only 921 DEGs
(representing 0.36% of the total DEGs in leaves and roots) were oppositely modulated in
the two tissues. The highest degree of differential modulation was observed at 8 h of salt
treatment (501 DEGs) compared with only 69 at 2 h and 351 at 24 h of salt stress.

2.3. Gene Ontology Enrichment Analysis of Differentially Expressed Genes

In leaf samples, the most enriched biological processes were biosynthetic and metabolic
processes (Figure 4). These categories were consistent across time points, although the
largest DEG numbers for both GO terms were detected at 8 h. In roots, the predominant
processes were metabolic, cellular metabolic, and response to stress (Figure 4a).

Enrichment of GO terms involved in metabolism, such as biosynthetic, small-molecule,
cellular, organic substance, nitrogen compound, and primary metabolic processes, was
detected in both leaves and roots. Although these categories were enriched in both tissues,
roots also included more enriched GO terms and several other metabolic processes, in-
cluding cellular protein, lignin, and polysaccharide, along with protein modification and
phosphorylation. Biosynthetic processes, such as alpha amino acid, cellular amino acid
compound, lysine, and organic substance biosynthetic, as well as the chlorophyll metabolic
process, were enriched only in leaves mainly after 8 and 24 h salt treatments. Response
to stimulus, enriched predominantly in roots, included response to oxidative stress and
response to biotic stress.

Catalytic activity was over-represented in both leaves and roots at all time points
(Figure 4b). While this was the main molecular function highly enriched in leaves, several
other GO categories were ascribed to roots, such as binding, antioxidant, and kinase
activities. In both tissues, catalytic activity was mainly represented by GO terms for
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oxidoreductase, ligase, transferase, hydrolase, and decarboxylase. In roots, GO terms
associated with binding affinity were mainly represented, such as nucleotide, protein, ion,
organic cyclic compound, anion, carbohydrate, and ATP (Figure 4b).
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KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis showed that
the pathways enriched in leaves and roots in response to salt stress were different, but
were conserved across time points for each tissue (Table 1). In leaves, porphyrin and
chlorophyll metabolism, biosynthesis, and metabolism of various amino acids (lysine,
alanine, aspartate, and glutamate), as well as biosynthesis of aminoacyl-tRNA, antibiotics,
and several secondary metabolites, were identified. The over-represented pathways in
roots were drug metabolism of various enzymes (oxidoreduction and phospholipase) and
biosynthesis of phenylpropanoids, characterized by their antioxidant activity (such as
phenylalanine and flavonoids).
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Table 1. Over-represented KEGG pathways identified in barley leaves and roots under salt stress.

Leaves Roots

KEGG ID Enriched Pathway KEGG ID Enriched Pathway

Ko00860 Porphyrin and chlorophyll metabolism ko00980 Metabolism of xenobiotics by cytochrome P450
Ko00970 Aminoacyl-tRNA biosynthesis ko00982 Drug metabolism—cytochrome P450

Ko00261 Monobactam biosynthesis (glutamate
dehydrogenase (NAD(P)+)) ko00983 Drug metabolism—other enzymes

(phospholipase)
Ko00300 Lysine biosynthesis ko00940 Phenylpropanoid biosynthesis
Ko00250 Alanine, aspartate, and glutamate metabolism ko00460 Cyanoamino acid metabolism
Ko00997 Biosynthesis of various secondary metabolites ko00480 Glutathione metabolism

Ko00270 Cysteine and methionine metabolism ko00400 Phenylalanine, tyrosine, and tryptophan
biosynthesis

Ko00941 Flavonoid biosynthesis ko00140 Steroid hormone biosynthesis

Ko00332 Carbapenem biosynthesis (NADH-quinone
oxidoreductase subunit C) ko00943 Isoflavonoid biosynthesis

Ko00906 Carotenoid biosynthesis

2.4. Candidate Salt-Responsive DEGs

Based on functional annotation, several candidate genes were found to be differentially
regulated in both leaves and roots at short- (2 h), intermediate- (8 h), and long-term (24 h)
salt stress treatments. The most prevalent salt-responsive genes were categorized in
different families, including ion-transporter-related, antioxidant, hormone-related, abiotic
stress-responsive, transcription factors, and signal transduction (Table S2).

Several components of the ABA signaling pathway, such as ABA sensor pyrabactin
resistance 1, ABA-independent SNF1-related protein kinase 2 (SnRK2), and 2C-type protein
phosphatases (PP2C), as well as ABA-responsive elements GRAM-domain-containing
protein and ABC transporter G family member 3, were differentially regulated under
all stress durations in both tissues. Auxin-signal-transduction-related genes were also
differentially expressed, including several auxin-responsive factors, auxin-induced proteins,
and dormancy/auxin-associated family protein. Additionally, a number of both ethylene-
and jasmonic-acid-mediated signaling pathways were differentially regulated in barley
seedlings (Table S2).

Several other gene families involved in signaling were differentially regulated in both
leaf and root tissues under all salt stress durations (2, 8, and 24 h), including calcium
signaling, leucine-rich repeats receptor-like kinase (LRR-RLK), and protein kinases. Differ-
ential expression of several others was observed only in roots, such as the NTPase-domain-
(NACHT) and the pyrin-domain (PYD)-containing protein. Among protein kinases, histi-
dine kinase, histidine-tRNA ligase, and hybrid signal transduction histidine kinase I were
identified. Compared with leaves, more differentially expressed kinases were detected in
roots. Various transcription factor families were differentially expressed in both tissues,
among them a basic helix-loop-helix DNA-binding superfamily protein, WRKY DNA-
binding protein, kinase interacting (KIP1-like) family protein, homeobox-leucine zipper
protein 3, and heat shock transcription factor C1.

Several oxidoreductase, glutathione S-transferase, and peroxidase families were dif-
ferentially expressed, particularly in roots after 8 and 24 h salt exposure. Superoxide
dismutase (SOD) and catalase antioxidant enzymes were also differentially regulated by
salt stress. Catalase genes, including catalases 1 and 3, were upregulated in both leaves and
roots under all stress durations except 24 h in roots, while Fe superoxide dismutase 2 was
downregulated only in roots. Chalcone synthase 2, with a crucial role in ROS detoxification,
was differentially expressed in both roots and leaves. Genes involved in the biosynthesis
of proline, sugars, and glycine betaine, all of which are major osmoprotectants, were also
differentially expressed in both tissues, particularly in leaves after 8 and 24 h salt stress.
The ATP-binding cassette (ABC) transporter family, such as ABC transporter G family
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members, and solute transporters, including those for sugars, amino acids, and peptides,
were differentially regulated in both tissues under all salt stress durations.

Transcript expression of various membrane transporters and ion channels, including
glutamate receptor-like, cyclic nucleotide-gated, high-affinity K+ transporters (HKTs), salt
overly sensitive Na+/H+ exchanger (SOS), and two-pore-domain K+ channel (TPK), were
differentially expressed in both tissues mainly after 8 and 24 h salt treatments.

Components of photosystems I (PSI) and II (PSII) and light-induced proteins were also
differentially expressed in both leaves and roots under all salt stress durations. Furthermore,
plant–pathogen interaction genes, such as thaumatin superfamily proteins, and defensin
genes were up- or downregulated.

2.5. Validation of RNA-Seq Data by Quantitative Real-Time qRT-PCR

Eight genes, including two up- and two downregulated genes in leaves and two up-
and two downregulated genes in roots, were selected for confirmation of RNA-seq data
by qRT-PCR. The expression fold changes for all six transcripts were in agreement with
RNA-seq regardless of salt stress duration (Figure 5).
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3. Discussion

Salt stress tolerance is determined by several interconnecting effects of different
molecular, cellular, metabolic, and physiological mechanisms [8]. Understanding the
networks that underlie the barley salt stress response will be of great interest for the
identification of possible breeding targets in order to improve barley stress tolerance under
a future scenario of global climate change.

Transcriptomic approaches can provide relevant information to elucidate the complex
molecular and genetic mechanisms involved in barley salt tolerance response [17,29].
Furthermore, comparing transcriptomes of stressed vs. nonstressed barley plants across
different time points supplies important key markers to support salt tolerance breeding
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programs. Tunisian local barely accessions may hold genes of high value for salinity
tolerance due to their potential to grow under adverse conditions [28].

Barley leaf and root transcription profiles after 2, 8, and 24 h of high salt stress
treatments (200 mM NaCl) revealed an array of up- and downregulations in various
biological processes involved in the overall salt stress response (Figures 4 and 6). Based
on pairwise comparisons between control and salt-stressed samples, the number of DEGs
was high and varied with the duration of salt treatment (Figure 2). Elevation of DEGs at all
time points suggests important changes in the Boulifa seedling gene expression in response
to salt stress. This extensive genetic regulation could be responsible for salt tolerance in the
Boulifa genotype by affecting several physiological and biochemical processes. High salt
induced the greatest number of DEGs following 8 h of exposure (Figure 2 and Figure S1). In
agreement with a previous study, higher DEGs in wild barley leaves were found after 12 h of
salt treatment compared with 24 h [30]. The salt-induced increase and subsequent decrease
of DEGs may be attributed to the increasing stress of extended salt exposure, followed by
possible recovery after 24 h. Based on these findings, 8 to 12 h of salt treatment should
be the most appropriate duration to elucidate the genes involved salt stress responses. In
contrast, a positive correlation between the duration of imposed stress and the number
of DEGs in barley roots exposed to 6 and 24 h salt stress was demonstrated [15]. This
discordance could be attributed to the differences in salt exposure times and/or imposed
salt concentrations. Indeed, in our experiment the severe salt stress applied (200 mM) could
induce a rapid and strong response compared with 150 mM used by Osthoff et al. [15].

Comparison of DEGs between root and leaf tissues revealed significant differences
in expression in response to salt stress (Figure 1). For all treatment durations, the most
severe impact on gene expression regulation was observed in roots compared with leaves
(Figures 2 and 3 and Figure S1), emphasizing the more prominent role of roots in sensing
salinity and responding through regulation of very complex transcriptional processes [31].
Early (2 h) salt-responsive DEGs were seven times more abundant in roots than in leaves;
however, after 8 and 24 h, root DEGs were around three times greater than those of
leaves (Figure S1), indicating a rapid salt stress response in roots, the primary organ
of exposure [31]. At all time points, downregulated genes were more abundant than
upregulated genes only in leaves. These results are consistent with previous reports
on transcriptional responses in root and leaf tissues of different plant species subjected
to abiotic stresses. Baldoni et al. [32] detected a higher number of DEGs in the roots
(6007 genes) of a tolerant rice genotype (Eurosis) subjected to osmotic stress compared
with leaves (3065) after 3 h treatment; however, the number of DEGs in both roots and
leaves were similar after 24 h. Additionally, they detected a higher number of upregulated
genes (61.6% of all DEGs) than downregulated genes (38.4%) only in roots. Furthermore,
Luo et al. [19] detected more DEGs in roots than in leaves of salt-stress-treated sweet
potato with also a greater number of upregulated DEGs than downregulated DEGs (544 up
and 392 down) in roots and more downregulated DEGs than upregulated DEGs (75 up
and 145 down) in leaves. Even in quinoa and peach, similar trends of DEG distribution
between roots and leaves subjected to salt stress were reported [33,34]. The high number of
downregulated genes in leaves under high salinity could be attributed to the efficiency in
conserving resources and energy under stress conditions by repressing the transcriptional
process of genes mainly associated with oxidative activities and cell wall compartment,
which could be constitutively active. This may have contributed to the salt tolerance
phenotype of Boulifa [28].

To gain further insight into the mechanisms underlying barley salt stress tolerance
at an early seedling stage, DEGs in both leaves and roots were annotated, GO-enriched,
and categorized into different functional groups (biological processes), including sensing
and signaling pathways, transcriptional reprograming, hormone and ion homeostasis
regulation, and metabolic changes as summarized in Figure 6.
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Figure 6. Flow chart of the salt stress tolerance mechanism in barley. The induced stress response
begins with the activation of several sensing and signaling pathways, followed by transcriptional
reprograming, resulting in the activation of diverse cellular homeostasis mechanisms for ROS
detoxification, osmoprotection, ion homeostasis, and photosystem protection. Samples L2h, L8h, and
L24h and R2h, R8h, and R24h for leaves and roots, respectively, under different stress durations are
shown. The color gradient indicates the pattern of GO term enrichment level from low (yellow) to
high (brown).

To avoid salinity damage, plants have evolved sensors to detect stress and activate
signal transduction for the modification of cellular traits through transcriptional regula-
tion [35,36]. Therefore, sensing and signaling are crucial for salt stress response [37–39].
Several salt-induced signaling pathways have been previously reported, including ab-
scisic acid (ABA) [40], hormone [41], calcium [42], and receptor-like kinase pathways [43]
(Table S2).

The current study suggests the involvement of several signal transduction genes, in-
cluding differentially expressed ABA signaling pathway genes. The ABA receptors, which
are critical for plant growth and development under abiotic stress [44], were differentially
expressed particularly in roots. Indeed, the ABA sensor pyrabactin resistance 1, a negative
regulator of the ABA-independent SnRK2 and a selective inhibitor of the PP2C [45], and
both PP2C and SnRK2, major negative regulators of ABA signaling [46], were differentially
expressed at all time points in both tissues. Furthermore, a number of ABA-responsive
elements were differentially regulated under all stress durations.

Several other hormones play important roles in barley salt signaling, including differ-
entially expressed hormone-related genes, such as auxins, ethylene, and jasmonic acid.

Auxins play an important role in determining plant architecture and contribute mainly
to cell elongation and division. Several auxin-responsive protein family members, auxin sig-
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naling pathway constituents, and dormancy/auxin-associated family proteins, involved in
defense against virulent bacterial pathogens [47], were differentially expressed, suggesting
their important roles in barley salt stress response.

Ethylene is involved in ion homeostasis, ROS detoxification, and salt stress tolerance in
plants [48]. Several genes encoding ethylene signaling pathway proteins were differentially
expressed in both tissues under all stress durations. Relative to leaves, the majority of
ethylene-signaling-associated DEGs were found in roots. Moreover, after 2 h salt exposure,
the ethylene-signaling-associated DEGs were found only in roots (Table S2), demonstrating
the rapid salt stress response in these tissues.

A number of jasmonic-acid-mediated signaling pathways that regulate many devel-
opmental and defense mechanisms, including root growth inhibition and activation of
antioxidant enzymes upon exposure to high salinity [37], were upregulated under all stress
durations mainly in roots. In addition, several calcium–calmodulin signal transduction pro-
teins were differentially expressed in barley seedlings, particularly in roots, emphasizing
the importance of calcium signaling and related mechanisms in regulating transcriptional
activity in response to salt stress [37].

Various transcripts for proteins involved in signal transduction, such as the LRR-RLK
protein and scaffold protein families were differentially expressed under all salt stress
durations. Additionally, several transcripts encoding signal transduction histidine kinases
were salt-regulated in barley seedlings. Relative to leaves, more kinases were differentially
expressed in roots. These results are in agreement with previous studies [29,30,34] and
confirm the involvement of signal transduction in salinity tolerance in barley and highlight
the more complex signaling regulation in roots, supporting the notion that roots are the
primary sensors of salt stress.

At 8 h of salt exposure, there were higher numbers of kinase DEGs in both leaves and
roots. Furthermore, several transcription factors regulating gene expression in different
signaling pathways [49] were identified under severe salt stress. Similar transcription
factor families were identified by RNA-seq analysis in a mutant barley line exposed to salt
stress [18].

Several metabolic pathways that include numerous proteins were differentially ex-
pressed in barley leaves and roots under salt stress. Indeed, in response to ROS, synthesis
of stress-related metabolites (hormone, multiple osmolytes, and cell wall components) and
photosynthesis and metabolite and water transport systems were upregulated (Table S2).

The antioxidant defense system was strongly affected in barley seedlings under salt
stress with over-represented DEGs corresponding to antioxidant and oxidoreductase activ-
ities (Figure 4). Antioxidant enzymes such as SOD and catalase were represented among
DEGs. These genes, widely described as active in ROS homeostasis [37], were also indi-
cated through RNA-seq analyses of barley roots, mutant barley, and wild barley subjected
to salt stress [15,18,30]. Chalcone synthase 2, which plays diverse roles in cell protection
and detoxification as ROS scavengers and osmoregulators [1,15,31], was differentially
expressed in both roots and leaves.

Several genes involved in the biosynthesis of major osmotic components, including
proline, sugars, glycine betaine, and polyamines, were differentially expressed. These
osmoprotectants, which have very important roles in maintaining water uptake, membrane
and protein protection, and stabilization against abiotic stresses [50], were also identified
in mutant barley exposed to salt stress [18]. These results highlight the involvement
of osmotic and oxidative homeostasis maintenance in preventing stress-induced ROS
accumulation, resulting in high growth performance previously detected in the tolerant
genotype Boulifa [27,28].

Several proteins belonging to the ATP-binding cassette (ABC) transporter family
involved in the modulation of stomatal response to CO2 [51] were upregulated in leaves
and differentially expressed in roots under all stress treatments. Additionally, solute
transporters were highly differentially expressed at all time points in both roots and leaves,
suggesting their involvement in the re-establishment of cellular osmotic homeostasis.
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Cellular ionic homeostasis, which is an essential process for growth during salt
stress [52], was also highly differentially expressed in barley seedlings under salt stress.
Two major classes of nonselective cation channels permeable to potassium and calcium
were involved in re-establishing ionic balance after defense action [53]. The HKT trans-
porters were upregulated in leaves and roots at all time points, while the SOS, which
contributes to ion homeostasis by transporting Na+ out of the cell [54], was downregulated
only in leaves after 24 h of salt treatment. The TPK channel, activated by calcium with
strong selectivity for K+ over Na+, is involved in intracellular K+ redistribution between
different tissues and stomatal regulation by monitoring turgor pressure [55]. The expres-
sion of this transporter was downregulated in both tissues at all stress time points. Other
transporters active in the root tissue, such as the stelar K+ outward rectifier (SKOR) that
mediates the delivery of K+ to the xylem for root–shoot potassium allocation [56], and the
transient receptor potential cation channel subfamily V member 6 (Trpv6) that mediates
Na+ and Ca2+ influx [57] were differentially expressed. In roots, expression of both genes
was upregulated after 24 h of salt exposure, emphasizing the importance of root function
in water and nutrient uptake during salt stress.

Salt-stressed plants must respond to not only ionic and osmotic disruptions but also
impaired photosynthesis [37]. A large number of genes involved in the protection of
photosystems were differentially expressed in leaf samples mainly after 8 h of exposure to
salt stress. The regulation of these photosystem genes could be the origin of the sustained
high growth rate, maintenance of water use efficiency, and photosynthetic potential in
the tolerant genotype Boulifa under severe salt stress [27,28]. Significantly upregulated
were components of PSI and PSII, including PSI assembly protein and PSII reaction center
proteins required for stability and/or assembly, PSI P700 chlorophyll apoproteins, PSI iron–
sulfur center, PSII D2 protein, and PSII 10 kDa polypeptide essential for photochemical
activities [58]. Almost all of these genes were downregulated in roots under all stress
durations. Earlier observations based on transcriptome analysis are consistent with this
finding [32,59]. Both studies found downregulation of several photosynthesis-related genes
in rice roots under osmotic stress and wheat roots under low-phosphorus stress. It was
suggested that the repression of these genes in roots may be related to energy conservation.
Furthermore, some transcripts related to carbohydrates, fatty acids, protein metabolism,
and biosynthetic processes were differentially expressed in both leaves and roots in order
to mobilize an alternative source of energy because of the impairment of photosynthesis
during salt stress [1].

A number of pathogenesis-related (PR) genes were also differentially expressed in
barley seedlings following salt stress. Upregulation of the PR gene expression was noted
in 3-day-old barley seedlings geminated and grown in 100 mM NaCl [34]. At 8 h of salt
stress, the leaf expression of a pathogenesis-related thaumatin superfamily protein was
downregulated, while the expression in roots was downregulated at all treatment durations.
The expression of another PR protein, Solanum tuberosum pathogenesis (STH-2), was upreg-
ulated only in roots, and defensin genes 1 and 2 were downregulated at all time points in
roots but not at the 2 h time point in leaves. These observations support the hypothesis that
pathogenesis-related proteins are involved in plant responses to environmental stresses.

4. Conclusions

In this study, a comprehensive comparison of the gene expressions of barley leaves
and roots after 2, 8, and 24 h high salt stress was performed. The results suggest cross-talk
among diverse pathways in barley in response to salt stress. Differential response included
a rapid regulation of several candidate genes related to hormone and kinase sensing and
signaling, such as ABA-responsive elements, calcium signaling, LRR-RLK, and protein
kinases, and several transcription factors mainly belong to the MYB, bHLH, HD-ZIP, WRKY,
MADS-box, and NAC families. Moreover, differential regulation of antioxidant genes,
genes involved in the biosynthesis of osmolytes, and transporter genes was observed.
Both common and tissue-specific salt-responsive candidate genes identified here constitute
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valuable resources for plant breeders and for further omics studies in barley and other
crops. Future research, such transgenic assay, complementation assay, and subcellular
localization, is needed to further validate the functions of the identified genes in providing
salinity tolerance to plants and the physiological mechanisms in which they are involved.

5. Material and Methods
5.1. Plant Material and Hydroponic Salt Stress Treatment

Seeds of a salt-tolerant Tunisian barley cultivar (Boulifa) [27,28] were surface-sterilized
with 5% sodium hypochlorite solution for 5 min, then thoroughly rinsed with distilled
water and germinated in the dark at 25 ◦C in Petri dishes with distilled water. After
5 days, germinated seedlings were transferred to an aerated hydroponic system containing
half-strength modified Hoagland’s solution [60] under 16 h light at 22 ◦C. After 3 days of
acclimatization, gradual salt stress was applied. NaCl concentrations were brought up to
200 mM by increments of 50 mM NaCl on the first and second day and 100 mM on the third
day. Root and shoot tissues were sampled at 0 h (before adding the first 50 mM NaCl), then
again at 2, 8, and 24 h after reaching a final concentration of 200 mM NaCl. Five plants in
each time point were harvested, pooled, washed thoroughly and separated into roots and
shoots, frozen in liquid nitrogen, and stored at –80 ◦C for RNA isolation. All experiments
were performed in triplicate.

5.2. Total RNA Isolation and DNase Treatment

Total RNA was isolated from shoots and roots representing each time point using the
ZR Plant RNA MiniPrep™ Kit (Zymo Research, Irvine, CA, USA). The quality and quantity
of isolated RNAs were checked by agarose gel electrophoresis and spectrophotometrically
using a BioPhotometer (Eppendorf BioPhotometer plus, Hamburg, Germany). Residual
DNA was eliminated using a TURBO DNA-free™ Kit (Promega, Madison, WI, USA).

5.3. Sequencing

Library construction and sequencing were carried out at the Beijing Genomics Institute
(BGI, Shenzhen, China) for the three replicates of each treatment using the Illumina NextSeq
500 platform. Single-end reads 50 bp in length were generated for each sample at an average
of 24.14 million reads per sample using the oligoDT selection method. Low-quality reads
and adaptor sequences were removed from all samples (clean reads).

All clean reads were deposited in the Sequence Read Archive (SRA) database in NCBI
with accession number PRJNA715166.

5.4. Pseudoalignment and Transcript Abundance Analysis

The reads were pseudoaligned to the barley transcriptome [61] (barley reference from
PGSB barley genome database 2017) using kallisto [62], and gene-level abundances were
obtained. The abundances were normalized using DESeq2 [63] and principal component
analysis (PCA, Figure S2), and hierarchical clustering was performed using the top 25%
highly varying genes in order to examine the underlying structure of the data and to
identify the largest sources of variance.

5.5. Differential Expression Analysis

Differential expression analysis was performed separately for each tissue (root vs.
leaf). Within each tissue, DESeq2 [63] was used to model the gene abundances as a negative
binomial distribution, and three pairwise contrasts were performed (2 vs. 0 h, 8 vs. 0 h,
and 24 vs. 0 h). Genes with adjusted p-value (after Benjamini–Hochberg correction) ≤ 0.01
and absolute log2 fold changes ≥ 1 were reported as significantly differentially expressed
in each contrast.
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5.6. GO Enrichment Analysis and Visualization

For each contrast, gene ontology (GO) terms enriched among the differentially ex-
pressed genes were identified using topGO [64], an R package that provides various
algorithms for calculating the statistical enrichment of GO terms among a list of genes. A
classic Fisher’s enrichment test was performed using each list of differentially expressed
genes to identify significantly enriched GO terms in the molecular function and biological
process domains.

All barley genes were annotated using Blast2go (OmicsBox 2.0.10) [65] to identify
KEGG pathway information. Fisher’s enrichment test was run, and over-represented
pathways were identified using FDR cutoff 0.1.

5.7. Validation of RNA-Seq Findings by Real-Time PCR

Validation of RNA-seq findings was performed by reverse transcription PCR. Quanti-
tative real-time PCR (qRT-PCR) was performed using Applied Biosystems Power SYBR
Green qPCR Master Mix (Life technologies, Carlsbad, CA, USA) on 96-well plates using spe-
cific primers designed by the Primer 3 software (http://bioinfo.ut.ee/primer3-0.4.0/) [66].
The expression levels of eight randomly selected genes and the internal control alpha
tubulin (TUB2) were checked using an Applied Biosystems thermal cycler. The primer
names and sequences used for primer design are in Table S3. Each qRT-PCR reaction
mixture (20 µL) contained 1 µL of fourfold diluted cDNA, 10 µL of PCR mixture (2 × SYBR
Green buffer), 7 µL of water, and 2 µL of primers (10 ppM). The following thermal profile
was used: 95 ◦C (10 min), 40 amplification cycles of 95 ◦C (30 s), 60 ◦C (60 s). Melting curves
were obtained by slow heating from 65 to 95 ◦C at 0.5 ◦C/s and continuous monitoring of
the fluorescence signal. Results were analyzed by the StepOneTM software, v2.2.2 (Applied
Biosystems, Foster City, CA, USA). Transcript abundance quantification was performed
according to the 2−∆∆CT method [67]. Fold change was calculated for the salt-treated
seedlings relative to the untreated plants (0 h).

Total RNA isolation, quantification, and DNase treatment were performed as previ-
ously described. cDNA synthesis was performed from 1 µg of RNA using a GoScript™
Reverse Transcription System Kit (Promega) following the manufacturer’s instructions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms22158155/s1. Figure S1. Differentially expressed genes in leaves (a) and roots (b).
Differentially expressed genes (DEGs) at 2, 8, and 24 h of salt treatments relative to untreated plants
(0 h) are shown. The specific DEG numbers for each time point and the shared DEGs between the
different time points are shown by dots and lines, respectively. Figure S2. Principal component
analysis (PCA) of the data showing the variation due to tissue. Table S1. Statistics of RNA-seq
numerical data analysis in barley seedlings. B0L (control leaves), B0R (control roots), B2L (leaves
salt-stressed for 2 h), B2R (roots salt-stressed for 2 h), B8L (leaves salt-stressed for 8 h), B8R (roots
salt-stressed for 8 h), B24L (leaves salt-stressed for 24 h), B24R (roots salt-stressed for 24 h). Table S2.
Candidate genes of barley in response to salt stress, yellow: downregulated; red: upregulated; blue:
up- and downregulated genes (multiple genes). Table S3. Primers used for qRT-PCR to validate
RNA-seq findings.
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