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Abstract

Motivation: When proteins mutate or bind to ligands, their backbones often move significantly, es-

pecially in loop regions. Computational protein design algorithms must model these motions in

order to accurately optimize protein stability and binding affinity. However, methods for backbone

conformational search in design have been much more limited than for sidechain conformational

search. This is especially true for combinatorial protein design algorithms, which aim to search a

large sequence space efficiently and thus cannot rely on temporal simulation of each candidate

sequence.

Results: We alleviate this difficulty with a new parameterization of backbone conformational space,

which represents all degrees of freedom of a specified segment of protein chain that maintain valid

bonding geometry (by maintaining the original bond lengths and angles and x dihedrals). In order

to search this space, we present an efficient algorithm, CATS, for computing atomic coordinates as

a function of our new continuous backbone internal coordinates. CATS generalizes the iMinDEE

and EPIC protein design algorithms, which model continuous flexibility in sidechain dihedrals, to

model continuous, appropriately localized flexibility in the backbone dihedrals / and w as well. We

show using 81 test cases based on 29 different protein structures that CATS finds sequences and

conformations that are significantly lower in energy than methods with less or no backbone flexi-

bility do. In particular, we show that CATS can model the viability of an antibody mutation known

experimentally to increase affinity, but that appears sterically infeasible when modeled with less or

no backbone flexibility.

Availability and implementation: Our code is available as free software at https://github.com/donal

dlab/OSPREY_refactor.

Contact: mhallen@ttic.edu or brdþismb17@cs.duke.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein design algorithms (Donald, 2011; Lippow and Tidor, 2007;

Regan, 1999) address the following problem: given a protein system

and a set of possible localized changes in chemical composition,

choose the combination of changes that will optimize a desired func-

tional property. Typically the chemical changes are mutations in se-

quence or modification of a ligand, while the functional requirement

is ligand binding affinity (Floudas et al., 1999; Georgiev et al.,

2008b; Karanicolas and Kuhlman, 2009; Lilien et al., 2005), protein

stability (Desmet et al., 1992; Donald, 2011; Gainza et al., 2012;

Georgiev et al., 2014; Kuhlman and Baker, 2000), or some combin-

ation thereof (Hallen and Donald, 2016; Lewis et al., 2014). Solving

this problem requires the ability to accurately model protein struc-

ture, as binding affinity is sensitive to small changes in the conform-

ation of the protein and ligand.

Two approaches are currently employed for protein structure

modeling and coupling it to sequence optimization. First, molecular

dynamics can be used to simulate the behavior of a candidate design

over time (Rapaport, 2004). This approach has the advantage that it

can explore all conformational degrees of freedom. However, these
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simulations are time consuming and must be run separately for each

candidate, making them prohibitively expensive for large sequence

spaces. For example, a molecular dynamics-based design considering

all 20 amino-acid types for each of 10 residues will require 2010¼10

trillion simulations, which is clearly intractable. Indeed, accurately

computing the binding constant for a single sequence is relatively

time-consuming, since the timesteps are on the order of femtosec-

onds while the timescale of ligand binding is many orders of magni-

tude greater. Other loop modeling methods, such as POOL

(Tripathy et al., 2012), that search extensively over the backbone

conformational space of a protein loop also limit their search to a

single sequence (Donald, 2011).

This brings us to the second approach, consisting of combinator-

ial algorithms that search a much larger sequence space without con-

sidering each sequence separately—the time cost scales sublinearly

in the number of candidate sequences. This is important because the

number of sequences is exponential in the number of mutable resi-

dues. Several classes of methods fall under this approach, as re-

viewed extensively in Donald (2011) and Gainza et al. (2016).

Methods based on the DEE/A* algorithm (Desmet et al., 1992;

Gainza et al., 2012; Georgiev et al., 2008b; Gordon et al., 2003;

Hallen et al., 2013; Leach and Lemon, 1998; Pierce et al., 2000), on

branch- (Jou et al., 2016) and tree decompositions (Xu and Berger,

2006), and on algorithms from integer linear programming

(Kingsford et al., 2005; Roberts et al., 2015) and weighted con-

straint satisfaction (Roberts et al., 2015; Traoré et al., 2013, 2016)

offer provable guarantees of accuracy, while methods based on

simulated annealing (Das and Baker, 2008; Kuhlman and Baker,

2000; Wang et al., 2005) and genetic algorithms (Desjarlais and

Handel, 1995; Lewis et al., 2014; Leaver-Fay et al., 2011) do not.

Although the technique we present in this work could be used with

most of these methods in principle, we have implemented it in a

framework based on the DEE/A* algorithm, which we will now ex-

plain further. Using a provable algorithm with our new model en-

sures that empirical observations of accuracy precisely reflect the

accuracy of the model, rather than a convolution of modeling and

algorithm accuracy.

DEE/A* was first presented as a method to optimize protein sta-

bility while modeling only sidechain flexibility (Leach and Lemon,

1998). Protein sidechain flexibility is known empirically to consist

almost entirely of flexibility in sidechain dihedral angles, which are

restricted to certain regions of dihedral space. These regions, termed

rotamers, have been characterized for each natural amino-acid type,

(Lovell et al., 2000) by clustering of sidechain dihedral values for

many residues of each type across many different high-resolution

crystal structures. DEE/A* provided an efficient way to assign an

amino acid type and rotamer to each residue in a protein to minim-

ize energy.

Initially, DEE/A* assumed every residue would only be found at

the ‘ideal’ dihedral values for its rotamer (the modal values for that

rotamer in crystal structure data). Later work helped to relax this as-

sumption. The minDEE algorithm (Georgiev et al., 2008b; Roberts

et al., 2012) enabled search over sequence and conformational space

with each sidechain dihedral restricted to a continuous range (an

ideal rotameric value 69
�
), instead of to an ideal rotameric value

exactly. The energy minima over this larger, more realistic sidechain

conformational space have been shown to be significantly lower

(Gainza et al., 2012). The iMinDEE (Gainza et al., 2012) and EPIC

(Hallen et al., 2015) algorithms sped up minDEE substantially while

using the same modeling assumptions, and other extensions added

the capability to model sidechain conformational entropy (Chen

et al., 2009; Donald, 2011; Georgiev et al., 2008b; Lilien et al.,

2005; Roberts et al., 2012) and backbone motions (Georgiev and

Donald, 2007; Georgiev et al., 2008a; Hallen et al., 2013), while

still exploiting the speedups iMinDEE and EPIC offer.

Previous combinatorial protein design algorithms have also

incorporated backbone flexibility, albeit to a limited extent. The BD

algorithm (Georgiev and Donald, 2007) can allow motions in all

backbone dihedrals (/ and w), but these motions are propagated

down the entire backbone chain, which severely limits the extent to

which the backbone in the region of interest (e.g. active-site loop)

can move without unfolding the protein (generally to �1 Å).

Modeling larger changes would require either handling dramatic

backbone movement elsewhere in the protein or facing the ill-

conditioned problem of making dihedral changes in subsequent resi-

dues cancel each other’s downstream effects. The new parameteriza-

tion we present here makes the latter problem well-conditioned, by

using an intrinsically local set of internal coordinates.

Another previous model for backbone flexibility in protein de-

sign is the use of a restricted repertoire of motions that may move

the backbone more, but do not search all biophysically feasible mo-

tions even locally. These can be ad hoc, discrete backbone changes

specific to a particular protein system (e.g. from antibody loop libra-

ries (Al-Lazikani et al., 1997)), transplantations of fragments of

other proteins’ backbones (Jacobs et al., 2016; Zhou and Grigoryan,

2015), or backbones generated by molecular dynamics simulations

(Fung et al., 2008). Alternately, the repertoire can contain motions

like the backrub (Davis et al., 2006) and shear (Hallen et al., 2013)

that have been observed repeatedly in crystallographic alternates.

The backrub (Davis et al., 2006) in particular has been used in both

DEE/A*-based (Georgiev et al., 2008a; Hallen et al., 2013) and

simulated annealing-based (Smith and Kortemme, 2008) protein de-

sign algorithms. The DEEPer algorithm (Hallen et al., 2013) per-

forms a provably complete search over the space defined by a set of

possible mutations and a predefined repertoire of backrubs, shears

and/or local discrete backbone perturbations.

Indeed, some restriction on backbone flexibility is acceptable in

the protein design context, because we know from X-ray crystallog-

raphy that backbone conformational changes due to mutations or

ligand binding are usually fairly local (Al-Lazikani et al., 1997;

Wong et al., 1999). We also know that backbone motions are

mostly limited to changes in the two dihedral angles / and w of each

residue, and that these dihedrals are restricted to a small subset of

their possible values (Lovell et al., 2003). This subset is known as

the Ramachandran-allowed region and is well-characterized for

each amino acid type (Lovell et al., 2003), analogously to how side-

chains are generally restricted to rotamers. Thus, the set of feasible

backbone conformational changes can be characterized in the space

of / and w changes in the flexible region by imposing both inequal-

ity (Ramachandran) constraints, and holonomic (i.e. equality) con-

straints that ensure the non-flexible regions of the backbone do not

move. Without the latter, significant / and w changes would unfold

the protein, because the amount of atomic motion due to a back-

bone dihedral change increases for atoms that are further from the

axis of the dihedral rotation. Nevertheless, previous combinatorial

protein design algorithms restrict the backbone substantially more

than these empirical limits on flexibility would require.

In the present work, we use a new parameterization of backbone

conformational space to obtain a much more systematic search over

the continuous space of local conformational changes. Any differen-

tial motion in a specified region of the backbone that is accessible by

changing the backbone dihedrals / and w can be accessed via our

parameterization (Fig. 1). Our parameterization is designed for use

in continuous energy minimization with box constraints on all

i6 M.A.Hallen and B.R.Donald

Deleted Text: ; 
Deleted Text: ; <xref ref-type=
Deleted Text: ; Georgiev <italic>et<?A3B2 show $146#?>al.</italic>, 2008b; Gainza <italic>et<?A3B2 show $146#?>al.</italic>, 2012; Hallen <italic>et<?A3B2 show $146#?>al.</italic>, 2013
Deleted Text: Traor&hx00E9; <italic>et<?A3B2 show $146#?>al.</italic>, 2016, 2013; 
Deleted Text: &hx0022;
Deleted Text: &hx0022; 
Deleted Text: ; Georgiev <italic>et<?A3B2 show $146#?>al.</italic>, 2008b
Deleted Text: ; Chen <italic>et<?A3B2 show $146#?>al.</italic>, 2009; <xref ref-type=
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,


degrees of freedom (Gainza et al., 2012; Hallen et al., 2013). Thus,

we need not explicitly include holonomic constraints when using

our parameterization; our parameterization intrinsically does not

move the regions of protein backbone that need to be kept fixed.

This parameterization allows us to use polynomial approximations

(Taylor series) to efficiently evaluate the continuous backbone

movements around a reference backbone. We thus provide a fast

method to compute all atomic coordinates as a function of our novel

degrees of freedom, by calculating Coordinates of Atoms by Taylor

Series (CATS). We have integrated CATS with the iMinDEE

(Gainza et al., 2012) and EPIC (Hallen et al., 2015) protein design

algorithms, which call such continuous minimization as a subrou-

tine. CATS casts the modeling of localized, continuous backbone di-

hedral flexibility into a form that supports all operations required

by iMinDEE and EPIC.

We have implemented CATS in the OSPREY (Gainza et al.,

2013; Georgiev et al., 2008b, 2009; Ojewole et al., 2017) open-

source protein design package. OSPREY has yielded many designs

that performed well experimentally—in vitro (Chen et al., 2009;

Frey et al., 2010; Georgiev et al., 2012; Gorczynski et al., 2007;

Roberts et al., 2012; Rudicell et al., 2014; Stevens et al., 2006) and

in vivo (Frey et al., 2010; Gorczynski et al., 2007; Roberts et al.,

2012; Rudicell et al., 2014) as well as in non-human primates

(Rudicell et al., 2014)—and contains a wide array of flexibility mod-

eling options and provably accurate design algorithms (Gainza

et al., 2013; Georgiev et al., 2009). These features will allow CATS

to be used for many different types of designs.

By presenting CATS, this paper makes the following

contributions:

1. A new, continuous parameterization of backbone conform-

ational space that includes all degrees of freedom that respect

the backbone’s natural geometric constraints.

2. An efficient algorithm, CATS, for using this parameterization in

protein design.

3. An implementation of CATS in our laboratory’s open-source

OSPREY protein-design software package (Chen et al., 2009;

Frey et al., 2010; Georgiev et al., 2008b, 2009; Gainza et al.,

2013), configured for use with any of the protein design algo-

rithms in OSPREY (Georgiev et al., 2008b; Gainza et al., 2012;

Hallen et al., 2013, 2015, 2016; Hallen and Donald, 2016;

Lilien et al., 2005; Roberts and Donald, 2015), available for

download upon publication as free software.

4. Experimental results of computational design calculations that

demonstrate CATS finds sequences and conformations that are

significantly lower in energy than previous algorithms, across 81

test cases using 29 different crystal structures, including an anti-

body mutant that resisted modeling by previous algorithms. In

the antibody study, CATS models a loop backbone motion that

is sterically crucial to the binding activity of a mutant that im-

proves both gp120 binding and HIV-1 neutralization.

2 Materials and methods

2.1 Protein design with continuous flexibility

in closed loops
2.1.1 Framework

CATS builds on previous protein design algorithms that model con-

tinuous flexibility: iMinDEE (Gainza et al., 2012) and its variants

DEEPer (Hallen et al., 2013) and EPIC (Hallen et al., 2015). In this

section, we will review some aspects of the mathematical framework

underlying these algorithms, which will also serve as the foundation

for CATS.

We assume that the conformation of the protein is a function of

the sequence and n internal coordinates x ¼ fxi j i 2 f1; . . . ; ngg. We

then define the conformational space of our system as the union of

voxels (Georgiev et al., 2008b; Gainza et al., 2012; Hallen et al.,

2013). Each voxel v is defined by a protein sequence and the in-

equality constraints

aiðvÞ � xi � biðvÞ; (1)

for i 2 f1; . . . ; ng, where aiðvÞ and biðvÞ are voxel-specific constants

defined per our modeling assumptions. If aiðvÞ < biðvÞ, coordinate

xi is said to have continuous flexibility in v.

The conformation of each residue j will be a function of only

that residue’s amino-acid type and a subset of the degree-of-freedom

values xj ¼ fxi j i 2 Sjg where Sj � f1; . . . ; ng. Thus, we can con-

struct a very large voxel space combinatorially. The conformation

space of each residue j consists of a limited number (usually<100)

of ‘residue-specific’ voxels that bound only the degrees of freedom

in xj. Thus, the conformation space of the entire system consists of

all possible combinations v ¼ v1 \ v2 \ . . . of residue-specific voxels,

where v1 is a voxel specific to residue 1, v2 to residue 2, etc. and

thus all degrees of freedom of the system are bounded in their finite

intersection v. These residue-specific voxels are called residue

Fig. 1. Backbone degrees of freedom used by CATS. (A) A voxel used in CATS for a 7-residue loop in ponsin (PDB id 2O9S (Gehmlich et al., 2007)), projected into

the 2-D space of two of our new continuous degrees of freedom, denoted by xb;1 and xb;2. Voxel border, blue; central conformation, black. (B) Conformations in

the voxel: black, central conformation; red and green, conformations shown as dots in A; purple, a conformation for which all 8 degrees of freedom are at the

voxel edge. (C, D) The boundary of the 2-D-projected voxel shown in A, graphed in the space of atomic Cartesian x coordinates (in Å) for the N and Ca atoms of

E856 (C) and in the space of that residue’s backbone dihedrals (in degrees, D). For this 7-residue loop, the voxel has 8 dimensions and thus forms an 8-dimen-

sional hypersurface in the 14-dimensional backbone dihedral space. The distorted parallelogram in (C) would be exactly a parallelogram if the constraints were

linear
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conformations (RCs) (Hallen et al., 2013). As discussed by Hallen

et al. (2013), any continuous degrees of freedom can be used in this

framework, as long as we can perform efficient and accurate energy

minimizations of the form

min
x2v

E0ðxÞ (2)

where E0 : Rn ! R is the energy as a function of the conformational

degrees of freedom. We must be able to evaluate Eq. (2) for the en-

tire system and for subsets of it. In the former case, the voxel v will

bound all the system’s degrees of freedom and E0 will be the energy

of the entire system. In the latter case, v will only restrict degrees of

freedom for a subset A of the residues: v will be of the form \
j2A

vj.

Likewise, the energy E0 will consist only of interactions among those

residues, and thus only will depend on the degrees of freedom

fxi j i 2 [
j2A

Sjg.
Following Georgiev et al. (2008b), Gainza et al. (2012) and

Hallen et al. (2013), we assume local minimization to be sufficient

to find the minimum within a voxel, and we perform this minimiza-

tion with the cyclic coordinate descent algorithm implemented in

OSPREY (Chen et al., 2009; Frey et al., 2010; Georgiev et al.,

2008b, 2009; Gainza et al., 2013). We also assume the availability

of an energy function Ec : R3m ! R that maps the coordinates of the

m atoms in the system to an energy. We use the implementation of

AMBER (Cornell et al., 1995; Weiner and Kollman, 1981) with

EEF1 (Lazaridis and Karplus, 1999) solvation in OSPREY for this

for purposes of this work, but the iMinDEE framework supports a

wide range of energy functions (Georgiev et al., 2009; Hallen et al.,

2015), and adding CATS to this framework introduces no additional

restrictions on the energy function. Having chosen Ec, we define

E0ðxÞ ¼ EcðaðxÞÞ, where a : Rn ! R
3m maps internal coordinates to

all-atom coordinates.

As discussed by Hallen et al. (2013), the iMinDEE framework is

actually agnostic to the geometric meaning of the degrees of freedom

x, as long as (i) each voxel is defined by box constraints, of the form

in Eq. (1), and (ii) we know how to compute the kinematic map

aðxÞ. The reason iMinDEE and its previously described variants

have limited or no backbone flexibility is that holonomic constraints

on the backbone dihedrals / and w which restrict backbone motion

to a specified region of protein backbone—e.g. a flexible loop re-

gion—are not box constraints. Our contribution in this paper is a

parameterization of backbone conformational space that is equiva-

lent to varying / and w subject to these holonomic constraints, but

satisfies the conditions (i) and (ii) above.

2.1.2 Open and closed loops

For internal coordinates that are sidechain dihedrals, the kinematic

map a is well known: the sidechains are just rotated to the correct

angles. This is because there is no restriction on the termini of the

sidechains. Likewise, defining the voxel in sidechain dihedral space

is fairly straightforward: we assume as in Georgiev et al. (2008b),

Gainza et al. (2012) and Hallen et al. (2013) that each voxel corres-

ponds to the assignment of a sidechain rotamer (Janin et al., 1978;

Lovell et al., 2000) to each residue, and each dihedral is allowed to

vary by 69
�

about the ideal dihedral for the rotamer, which is em-

pirically derived from a database of high-resolution crystal struc-

tures (Lovell et al., 2000). Using sidechain dihedrals as continuous

degrees of freedom allows sidechain motions in all directions that

keep the bond lengths and angles and backbone conformation fixed.

However, as mentioned in Section 1, backbone conformational

changes associated with mutations or binding are generally fairly

local—and indeed, complex, non-local changes are likely outside the

scope of what protein design algorithms can accurately predict. This

effectively imposes holonomic equality constraints: we vary / and w
subject to the constraint that the (user-designated) flexible section of

backbone matches the starting structure at both ends of the flexible

section. Such equality constraints are incompatible with the

iMinDEE framework (Gainza et al., 2012; Hallen et al., 2013). To

resolve this incompatibility, we reparameterize the backbone con-

formational space. Moving our new backbone degrees of freedom

will allow backbone motions in all directions that do not change the

bond lengths, angles and x dihedrals, while keeping the non-flexible

parts of the backbone fixed.

We will now describe the assumptions about peptide plane

geometry underlying CATS (Section 2.2). We will then use these as-

sumptions to define the new degrees of freedom x and explain how

all-atom coordinates aðxÞ are computed from them (Section 2.3).

2.2 Peptide-plane geometry assumptions
The starting point for CATS is a set of assumptions about which

backbone degrees of freedom are free to move and which are not.

We will assume (iii) that peptide planes are rigid bodies, and (iv)

that the N-Ca-C0 bond angle in each residue is fixed. We encode

these assumptions as equality constraints in the form

cðanðxÞÞ ¼ c0; (3)

where anðxÞ denotes the nitrogen and alpha-carbon coordinates of

the flexible residues, the elements of c are quantities constrained by

our geometry assumptions (iii–iv), and the corresponding elements

of c0 are the values of those quantities in the starting crystal struc-

ture. There are four constrained quantities per residue, and each

component of c is a multivariate quadratic function. A detailed de-

scription of these constraints and a justification of the assumptions

are provided in Supplementary Material (SM) 1. The coordinates of

all backbone atoms besides the nitrogens and alpha carbons can be

computed from anðxÞ and the assumption that peptide planes are

rigid bodies, as described in SM 1 as well. Once the backbone con-

formation is determined, the sidechains and alpha hydrogens are

placed onto the backbone as in Hallen et al. (2013). These observa-

tions greatly simplify the calculation of aðxÞ from our backbone de-

grees of freedom x: we need only calculate anðxÞ, and then the other

components of aðxÞ can be computed from anðxÞ.

2.3 New backbone parameterization
To define a voxel in backbone conformational space, we will choose

a central conformation and allow backbone motions away from this

conformation in all directions that maintain the peptide plane geom-

etry (Fig. 1). For a flexible backbone segment of k contiguous resi-

dues with k � 3, this space of motions has 2k� 6 dimensions: 2k

for the / and w dihedrals of each residue, and 6 constraints to ensure

that the residue at the end of the segment is continuous with the

non-flexible residues after it (since the position and orientation of a

rigid body each have 3 degrees of freedom). In the computational

experiments described in this work, the central conformation for

each voxel will be the crystal structure conformation, since we know

it to be favorable and expect that local backbone adjustments

around it can be scored energetically more accurately than arbitrary

backbone motions can. However, in principle other central con-

formations could be used, to cover as much of backbone conform-

ational space as desired (albeit at increased computational cost,

which could scale up to linearly in the number of voxels in backbone

conformational space).
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Let y be the vector of nitrogen and alpha-carbon coordinates for

the k flexible residues. Let y0 be the value of y at the central con-

formation. Consider a vector function f : R6k ! R
6k such that the

first 4kþ 6 components of fðyÞ are the constrained quantities cðyÞ
(see Section 2.2), and the remaining 2k� 6 components are affine

functions of y, which we will call zðyÞ. In other words, f ¼ fc; zg.
The components z parameterize the (2k� 6)-dimensional hypersur-

face of constraint-satisfying backbone conformations, and are

chosen to be affine for simplicity. As long as rf is nonsingular, any

direction of motion b of the nitrogen and alpha-carbon atoms that

keeps the constrained quantities c constant corresponds to a direc-

tion of motion rf � b of the affine components. To put this more

formally,

Theorem 1. Let Db denote the directional derivative in direction

b. If zðyÞ ¼Mzyþ vz is an affine function and c satisfies

jrðcðy0Þ
TÞ MT

z j 6¼ 0, then there exists an affine bijection between

Z ¼ fxb 2 R
2k�6 j xb 6¼ 0g and B ¼ fb 2 R

6k jb 6¼ 0; Dbcðy0Þ ¼ 0g.

A proof of Theorem 1 is provided in SM 3.

Thus we can use the affine components z as our continuous

backbone degrees of freedom. We will choose the constant terms of

the affine functions so that zðy0Þ ¼ 0. We can choose the linear coef-

ficients defining z somewhat arbitrarily as long as rf is nonsingular;

we will choose the (constant) gradient of each component of z to

have norm 1 and to be orthogonal to all other gradients of compo-

nents of f (evaluated at y0 in the case of the constrained components

c, which have non-constant gradient). In other words, we let

zðyÞ ¼Mzðy� y0Þ (4)

where Mz is a ð2k� 6Þ 	 ð6kÞ matrix whose rows are orthonormal,

and also are orthogonal to the rows of the ð4kþ 6Þ 	 ð6kÞ matrix

rcðy0Þ. In this sense the components zðyÞ resemble ‘normal modes’

of backbone flexibility (Bahar and Rader, 2005) in the vicinity of

the central conformation (though whether they are actual normal

modes depends on the energy landscape; our definition of z is in-

tended to be agnostic to the energy function). They are also analo-

gous to the user-controllable degrees of freedom in computer

graphics systems that allow image manipulation while maintaining

satisfaction of a set of constraints (Gleicher, 1992; Ngo et al., 2000;

Ngo and Donald, 1999).

Now, let xb denote the vector of backbone degrees of freedom.

To evaluate aðxbÞ, as is required by the iMinDEE framework, we

must evaluate the inverse mapping of f at the correct constrained

values: aðxbÞ ¼ f�1ðfc0;xbgÞ. We compute this inverse function

efficiently in the form of a Taylor series, whose coefficients we can

derive analytically because we can compute all derivatives of f. The

Taylor series is valid within a certain neighborhood around the cen-

tral conformation y0, and we verify its accuracy within that neigh-

borhood by sampling. In the case where there are multiple possible

values of a given values of xb, we are interested in the branch

defined by the Taylor series. This way, a is a well-defined function

mapping values of our new backbone degrees of freedom xb to

constraint-satisfying atomic Cartesian coordinates (Fig. 1). A sum-

mary of the algorithm for computing a is given in SM 2 and details

of the Taylor series computation are given in SM 5.

Thus, we can use these xb as a set of continuous degrees of freedom

to parameterize our backbone conformational space for use in the

iMinDEE framework. Finally, we can impose bounds on xb to define a

voxel, allowing motion away from the central conformation in any dir-

ection that satisfies the peptide-plane geometry constraints (Eq. 3).

3 Results

3.1 Energy differences and backbone shifts
80 test cases using 28 different crystal structures showed CATS can

make a big difference in protein energetics (Fig. 2). Three types of

test cases were used: (a) design cases searching a large sequence

space, (b) conformational searches for the wild-type sequence and

(c) single-voxel minimizations starting from the wild-type backbone

and sidechain conformations. In each case, CATS was compared to

rigid-backbone design and to DEEPer backbone flexibility (Hallen

et al., 2013). The iMinDEE (Gainza et al., 2012) and EPIC (Hallen

et al., 2015) search algorithms were used throughout, which have

guarantees of accuracy, thus ensuring that energy improvements be-

tween the different models of conformational space are actually due

to changes in the backbone flexibility model and not to error in the

search algorithm. The five to nine flexible residues in each test case

were chosen to be a contiguous segment of protein backbone.

In 87% of designs, 86% of wild-type conformational searches,

and 54% of minimizations, the minimum-energy conformation

found using CATS was lower than the minimum rigid-backbone en-

ergy by at least the thermal energy at room temperature (0.592 kcal/

mol, calculated as the universal gas constant times a room tempera-

ture of 298 K). This is a rough measure for functional significance

(Hallen et al., 2013). Indeed, in 73% of designs the gap between the

CATS and DEEPer minima exceeded this thermal energy. The gap

between DEEPer and rigid-backbone minima in designs exceeded

thermal energy in 67% of designs, closely matching the result in

Fig. 2. Seventy-nine computational experiments comparing CATS, DEEPer and rigid-backbone design. (A) Average improvement in energy (kcal/mol) in CATS

(red) and DEEPer (blue) calculations compared to rigid-backbone calculations. Averages with standard error bars shown for designs, wild-type (WT) conform-

ational searches, and single-voxel minimizations starting from the wild-type conformation. (B) RMSD (Å) between crystal-structure backbones and optimal back-

bones computed by CATS (red) and DEEPer (blue) for the same test cases as (A). CATS is able to model larger backbone changes, and the greater RMSD for

designs compared to minimizations indicates CATS is modeling the backbone shifts induced by mutations

CATS for protein design backbone flexibility i9

Deleted Text: &hx0022;
Deleted Text: &hx0022; 
Deleted Text: ; <xref ref-type=
Deleted Text: ,
Deleted Text: 5-9
Deleted Text: <IMG_FOUND/>


Hallen et al. (2013). On average, designs had 3.5 kcal/mol better

energies with CATS than without backbone flexibility (Fig. 2A).

Moreover, designs with CATS often differed in optimal sequence

from the corresponding rigid-backbone designs, with CATS favoring

larger amino acids in all but one case. Some of these amino acids

were dramatically larger: for example, tryptophan replaced methio-

nine 31 in a redesign of high-potential iron-sulfur protein (PDB id

3A38). This reflects CATS’ ability to find space in a protein for

larger amino acids that would be sterically infeasible with the ori-

ginal backbone conformation. Thus, CATS greatly improves the

modeling of major sequence changes.

Ironically, the design with the largest backbone motion identified

by CATS was in an 8-residue loop in the Dachshund regulatory pro-

tein (PDB id 1L8R (Kim et al., 2002)), which had backbone RMSD

0.31 Å RMSD and improved the energy by 17.1 kcal/mol compared

to the original backbone.

As discussed in SM 5, voxel sizes were selected by starting with a

2-Å range (-1 to 1) for each CATS degree of freedom, and then scal-

ing down this range (for all degrees of freedom at once) by a factor

of 1.3 repeatedly until RMS constraint violations sank below 0.01

Å. Despite this strict threshold, a 
1-Å range for each CATS degree

of freedom was usually chosen (Supplementary Fig. S2). These vox-

els are thus centered at the original (crystal structure) backbone con-

formation, which by construction has a value of 0 for each CATS

degree of freedom. Sidechain dihedrals were allowed 9 degrees of

motion in either direction from ideal rotameric values, as described

previously (Georgiev et al., 2008b; Gainza et al., 2012; Hallen et al.,

2015). Conformational search over the space defined by these voxels

was performed using the EPIC algorithm (Hallen et al., 2015).

Computation times for the CATS designs reported here ranged from

less than a minute to eleven days, with a median of 17.6 hours; for

wild-type conformational searches the median was 7.9 hours.

Further details of all the test cases described in this section are

provided in SM 6.

3.2 Modeling of Trp 54 mutation in VRC07
The homologous antibodies NIH45-46 and VRC07 both bind with

high potency to the HIV surface glycoprotein gp120, and neutralize a

broad range of strains of the virus. However, HIV is notorious for

mutating to resist the immune system, and thus modified antibodies

with increased potency and breadth are of great biomedical interest—

both for passive immunization and as a guide for vaccine develop-

ment. A mutation from glycine to tryptophan at position 54 of

NIH45-46 was found to increase breadth and potency significantly

(Diskin et al., 2011). In a previous study, one of us (BRD) and col-

leagues showed that this mutation increases the breadth and potency

of VRC07 as well (Rudicell et al., 2014). Since then, the question of

whether this mutation can be modeled in computational design has

been an open problem of considerable interest. Large changes in sizes

of sidechains, as in this mutation, are more likely to induce backbone

motions and thus more difficult to model computationally.

Indeed, modeling this mutation has presented a challenge for

previous protein design algorithms. A rigid-backbone conformation

search (starting from a VRC07-gp120 complex structure with leu-

cine at position 54 and PDB id 4OLX (Rudicell et al., 2014)) shows

extensive clashes with two nearby backbone segments (Fig. 3A).

Backrub perturbations (Davis et al., 2006) to the backbone, which

are often used to model previously unobserved backbone changes in

extended conformations such at this loop (Georgiev et al., 2008a;

Hallen et al., 2013; Smith and Kortemme, 2008), could not resolve

these clashes (Fig. 3B). The provably complete DEEPer algorithm

was used to search the space of backrubs, ensuring that a feasible

conformation was not missed in the search. Backbone conform-

ational changes can also be modeled using loops transplanted from

other structures, and indeed antibody loops have been classified into

a list of canonical structures (Al-Lazikani et al., 1997). But the cru-

cial backbone motion here is far more subtle than the shifts between

canonical structures, and thus is best handled with a continuous ap-

proach. Although molecular dynamics techniques can search over

Fig. 3. The CATS conformational space for a mutant of the antibody VRC07 includes non-clashing conformations inaccessible to rigid-backbone design. The back-

bone was either held rigid (A) or allowed DEEPer (Hallen et al., 2013) (B) or CATS (C) flexibility for five residues. (A–C) Steric clashes between atoms indicated in

pink. (D) The three designs overlaid (rigid backbone in magenta, DEEPer in cyan, CATS in green). (E) Broader view: 15 residues (green, yellow, pink) were allowed

continuous sidechain flexibility, of which ten were restrained in an ð18
� Þn -continuous rotamer voxel centered on the original rotamer (n¼number of sidechain di-

hedrals); the segment with backbone flexibility is shown in yellow, and Trp 54 in pink. Designs were run starting from PDB id 4OLX (Rudicell et al., 2014)
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all degrees of freedom in a protein, they are unsuitable for large de-

sign spaces because a separate simulation would be needed for each

sequence. Thus, modeling this sort of backbone motion in the com-

binatorial protein design context requires a technique for continuous

and systematic search of backbone conformations that is compatible

with combinatorial protein design algorithms.

Indeed, CATS resolves this problem, as its conformational space

includes a conformation with favorable contacts all around the mu-

tation. Allowing one of the backbone segments that clashes heavily

with Trp 54 in rigid-backbone search to relax by CATS resolves the

clashes (Fig. 3C), causing a 16 kcal/mol improvement in energy rela-

tive to the rigid-backbone search (this is a 9 kcal/mol improvement

relative to the DEEPer search). This improvement results from a

fairly modest backbone shift: 0.28 Å backbone RMSD for the flex-

ible segment, with per-residue backbone RMSDs up to 0.46 Å (Fig.

3D). The backbone motion modeled by CATS reduces the backbone

RMSD of the modeled structure compared to a crystal structure

with Trp 54 (PDB id 4OLZ (Rudicell et al., 2014)), from 0.61 Å to

0.46 Å, calculated using the method of Kromann and Bratholm

(2013) and Kabsch (1976) for Trp 54 and the two gp120 residues it

clashes with in the rigid-backbone model (Trp 427 and Gly 473).

However, the RMSD change is somewhat difficult to interpret be-

cause independent crystal structures of the same protein would also

be likely to exhibit RMSDs around this level.

These results show the key role that local backbone flexibility, as

modeled by CATS, can play in identifying favorable conformations

and sequences. They also show that CATS can perform designs that

could not be modeled using previous algorithms. In particular, they

show that the level of backbone flexibility modeled by CATS is

functionally significant, resulting in a qualitatively different con-

formational space. In particular, CATS reveals how a mutant that

rigid-backbone computations dismiss as sterically infeasible can ac-

tually bind its target well.

4 Conclusions

CATS is a novel and systematic method to search substantial, con-

tinuous regions of backbone conformational space during protein

design calculations. By moving away from fixed repertoires of mo-

tions and into comprehensive search of conformations with valid

bonding geometry, it moves closer to fully realistic modeling of

backbone conformational changes.

A key challenge as we move into these larger spaces is ensuring

that the energetic cost of the backbone conformational changes is

estimated accurately enough by the energy function to yield useful

results. But CATS can play an important role in addressing this chal-

lenge as well. CATS enables provably accurate algorithms, which

introduce no new error beyond the error in the model, in contrast to

stochastic, heuristic approaches that have been shown to drastically

undersample the conformational space specified by the model

(Gainza et al., 2016; Simoncini et al., 2015). As a result, CATS can

be used to validate energy functions in the highly backbone-flexible

designs it enables, with the guarantee that error in design predictions

is due only to error in the energetic and geometric modeling and not

to error in the algorithm (aside from CATS’ negligible and

well-controlled Taylor series error). In addition, because CATS is

agnostic to the energy function, it will be useful for performing con-

formational searches with the more accurate energy functions of the

future (Hallen et al., 2015, 2016).

CATS is also easily generalizable to non-protein systems—whether

other macromolecules or small molecules. It is applicable in any con-

text where local conformational perturbations are needed subject to

bonding geometry constraints. One need only construct the appropri-

ate multivariate quadratic cðyÞ to reflect these constraints.

We believe these capabilities will make CATS useful in many

kinds of designs.
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