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Abstract

The aim of this study was to evaluate the antioxidant and antiproliferative activities of PSO in vitro 
and its application in horse oil storage. We determined the reducing power of PSO and its 

scavenging effects on hydroxyl (•OH) and 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH•) and 

tested its stabilizing effects on horse oil storage. The results showed that PSO had remarkable, 

dose-dependent antioxidant activities, and it effectively prevented horse oil lipid oxidation. We 

treated cervical cancer HeLa cells, esophageal cancer Eca-109 cells and breast cancer MCF-7 cells 

with PSO using non-neoplastic monkey kidney Vero cells as controls. The results indicate that 

PSO significantly inhibited tumor cell growth in a time- and dose-dependent fashion. Our studies 

suggest that PSO may be used as a substitute for synthetic antioxidants in food preservation and 

may be potentially useful as a food and cosmetic ingredient. Meanwhile, the oxidative stress can 

cause hypertension, so PSO is expected to develop a health care products for the prevention and 

mitigation hypertensive symptoms.
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Introduction

Purslane (Portulaca oleracea L.) is a widely distributed weed that is extensively used not 

only as an edible plant but also as a traditional Chinese herbal medicine [1]. Both the leaves 

and seeds of purslane can be consumed orally or applied topically to soothe a skin allergy 

[2]. Many studies have demonstrated various pharmacological effects of this plant, such as 

antibacterial [3,4] hypoglycemic, [5] anti-hypoxia, [6] antioxidant effects, [7] antitumor 

activity, [8] and neuroprotective effects [9]. As a medicinal and edible wild plant, purslane is 

generally known as a “longevity food” due to its reputation as a “natural antibiotic”. 
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Purslane contains many compounds, including flavonoids, [10] alkaloids, [11] omega-3 fatty 

acids, noradrenaline, alkaloids, coumarins, flavonoids, polysaccharides, and other active 

ingredients. In particular, purslane seeds are reportedly more effective in antioxidation than 

those from other herbs [12]. In previous studies, we have extracted purslane seed oil (PSO) 

with a 17.68% yield using an ultrasound-assisted enzyme hydrolysis combined with a 

Soxhlet extraction method. We then analyzed the fatty acid profile and content of the oil 

using a Gas Chromatography-Mass Spectrometer (GC-MS) [13]. Analysis of the PSO 

showed that alpha-linolenic acid reached 40.2570% followed by linoleic acid (29.4308%) 

and oleic acid (15.6103%). Saturated fatty acids represent 13.9455% of the total oil, while 

monounsaturated fatty acids and polyunsaturated fatty acids (PUFAs) account for 16.2877% 

and 69.6878%, respectively. Moreover, the linolenic acid content (40.2570%) in PSO is 

much higher than in camellia seed (0.27%), [14] grape seed (7.3%), [15] and olive (6.09%) 

oils [14] but is slightly lower than in flaxseed oil (41.22%) [12]. The content of linoleic acid 

(29.4308%) is much higher than in most other vegetable oils, such as flaxseed (15.44%), 

camellia seed (7.26%), grape seed (11.4%), and olive (0.56%) oils. It is well known that 

linolenic acid is an omega-3 fatty acid while linoleic acid is an omega-6 fatty acid, and both 

are the essential fatty acids that play important roles in human growth and development as 

well as in disease prevention [16]. Additionally, oils that are rich in omega-3 fatty acids are 

most likely beneficial to human health [17]. PSO is expected to show superior antioxidant 

activity and antitumor effects due to its high omega-3 fatty acid content. Thus, it is a good 

candidate as both a health food and a cosmetic ingredient.

However, there are few studies regarding the composition of fatty acids in purslane and PSO 

[13,18,19]. Moreover, to the best of our knowledge, there is no published research on PSO's 

antioxidant activity or antiproliferative effect on cancer cell lines. Therefore, in this study, 

we tested PSO's antioxidant activity on free radical scavenging and its inhibitory effects on 

tumor cell proliferation. Additionally, we also tested PSO as a preserving agent in horse oil 

storage to explore whether it can be used as a food-preserving agent.

Materials and Methods

Fresh, mature purslane seeds were provided by Xinjiang Yuansen Agriculture Science and 

Technology Development Co., Ltd. PSO containing 40.2570% alpha-linolenic acid and 

29.4308% linoleic acid was obtained by an ultrasound-assisted enzyme hydrolysis combined 

with a Soxhlet extraction method. The optimal preparation conditions of PSO were as 

follows: [13] for the hydrolysis process, 2% complex enzyme was used (the ratio of neutral 

protease to cellulase was 1:1), the liquid-solid ratio was 5:1, pH was 5.0, and the hydrolysis 

time was 2 h; for the sonication process, 40 W ultrasonic power was used, an ultrasonic bath 

temperature was set to 55°C, and the sonication time was 15 min. Petroleum ether was used 

as a solvent for the Soxhlet extraction. Fresh, untreated horse fat was purchased from a local 

market in Yili, Xinjiang, China. Liquid horse oil was obtained from the horse fat using a 

steam melting method followed by a refining process consistent with our previous studies 

[20]. Horse fat provides the raw material of which 31.08% of the lipids are unsaturated fatty 

acids, notably, palmitoleic acid (3.71%) and oleic acid (27.37%). The standard tertiary 

butylhydroquinone (TBHQ) that was used in vitro studies was purchased from Sigma 

Chemical Co. (St. Louis, MO, USA).
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In vitro antioxidant potential of PSO

TBHQ is a frequently used synthetic antioxidant; therefore, it was used as a reference 

material for evaluating the antioxidant activity of PSO in this study. The antioxidant activity 

of PSO was determined by various methods, such as 1,1-diphenyl-2-picryl hydrazyl (DPPH) 

radical scavenging, hydroxyl radical scavenging, and reducing power assays. PSO was 

dissolved in an anhydrous ethanol to form a series of final concentrations. Equal 

concentrations of TBHQ and PSO were used in each experiment. All tests were conducted in 

triplicate, and the mean values were plotted.

Hydroxyl radical (•OH) scavenging activity assay

The phenanthroline-Fe2+ oxidation method previously described by Xiao et al. was used to 

measure hydroxyl radical scavenging activity [21]. Briefly, 4 mL of sodium phosphate buffer 

(pH 7.4) was added to a test tube and mixed with 1.5 mL of 5 mmol /L phenanthroline 

solution. Next, 1 mL of 7.5 mmol /L FeSO4 solution and 1 mL of a series of concentrations 

(0.5, 1, 2, 3, 4, 5, 6, 7 mg/mL) of PSO sample solution were added to the solution in 

sequence. Finally, 1.5 mL of double distilled water and 1.0 mL of 0.1% H2O2 were added. 

The absorbance of the final solutions was measured at 536 nm with a UV-visible 

spectrophotometer following incubation at 37 for 60 min. Deionized water and TBHQ were 

used as blank and positive controls, respectively. Antioxidant value was expressed as IC50, 

the concentration of the sample that caused 50% inhibition of hydroxyl radical formation.

DPPH• radical scavenging activity assay

The scavenging activity of DPPH free radicals was measured according to the method 

reported by Ting et al, with slight modifications [22]. Briefly, 2 mL of 2×10-4 mol/mL 

DPPH was added to 2 mL series of concentrations (0.1, 0.3, 0.5, 1, 2, 3, 6, 10, 15, 20, 25, 30 

mg/mL) of PSO in sequence. The reaction mixture was incubated for 30 min at room 

temperature in the dark, after which absorbance was measured at 517 nm using a 

spectrophotometer (TU-1900 PuXiTongYong, Beijing, China). Distilled water was used 

instead of the sample solutions as a control. TBHQ was used as a positive control. A mixture 

with an equal volume of distilled water and anhydrous ethanol was used as a blank control. 

The results were expressed as the amount of sample necessary to scavenge 50% of DPPH• 

radicals (IC50).

Determination of reducing power

The reducing power of PSO was examined using the Prussian blue method [23]. Briefly, 1 

mL of each PSO sample solution (0.01, 0.05, 0.1, 0.3, 0.5, 1.2, 2.4, 3.6, 4.8, 6, 7.2 mg/mL) 

was added to a solution containing 2.5 mL of phosphate buffer (pH 6.6) and 2.5 mL of 1% 

K3Fe(CN)6. The buffered solutions were then stored at 50 for 20 min, after which 2.5 mL of 

10% trichloroacetic acid (TCA) was added. Next, 2.5 mL of distilled water and 2.5 mL of 

0.1% FeCl3 were mixed with 2.5 mL of the previous mixtures. After 10 min, the absorbance 

value (A) was measured at 700 nm with a UV-visible spectrophotometer. The reference 

absorbance value (A0) was given by a blank reagent control. Deionized water was used as 

the blank control, and TBHQ was used as the positive control.
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Antiproliferative effect of PSO in vitro

HeLa, Eca-109, MCF-7, and Vero cells were obtained from the Xinjiang University Xinjiang 

Biological Resources Gene Engineering Key Laboratory (Urumqi, China). The in vitro 

antiproliferative activity of PSO was determined by measuring 3-(4,5-dimethylthiazol-2-

yl)-2,5-diphenyltetrazolium bromide (MTT) dye absorbance in living cells (HeLa, Eca-109, 

and MCF-7) with Vero (normal) cell as controls. Briefly, cells were seeded in the 96-well, 

flat-bottomed plates containing 100 μL of a cell suspension with a known concentration per 

well and allowed to adhere at 37 in a humidified atmosphere containing 5% CO2. Usually, 

5×104 cells were seeded per well. PSO was dissolved in dimethyl sulfoxide (DMSO) and 

then filtered with filter membranes (0.45 μm and 0.22 μm) to achieve sterilization. 200 μL 

PSO at concentrations of 12.5 μg/mL, 50 μg/mL, 200 μg/mL, 800 μg/mL, 1600 μg/mL and 

3200 μg/mL were added to their respective wells. In total, 20 μL of the MTT solution (5 

mg/ml; Sigma-Aldrich, MO, USA) was then added at 24 h, 48 h, or 72 h for dyeing, and the 

cells were incubated for another 4 h at 37. After the incubation, the cell suspensions were 

centrifuged at 800 rpm for 10 min, and the supernatants were replaced by 200 μL DMSO to 

solubilize the formazan crystals formed in viable cells. Absorbance at 570 nm was measured 

using a microplate ELISA reader (Model 550, Bio-Rad, USA). The results were expressed 

as a percentage of control proliferation (100%). The IC50 value was expressed as the 

concentration of PSO that inhibited the growth of cells by 50% [8].

Effect of PSO on the oxidative stability of horse oil during storage

The peroxide value (POV) is an indicator of lipid oxidation. The POV was determined by the 

Schall Oven method [24]. Briefly, an oil sample was incubated in a digital electric heating 

blast oven at 63 ± 1 constant temperature, and the POV values was measured once every 24 

h, according to the National Standard of the People's Republic of China (GB/T 5538-2005/

ISO3960:2001) [25]. The lower the POV, the stronger the oxidative stability of the sample. 

The POV (mmol/kg) of the sample was calculated by the following equation:

where V is the volume of sodium thiosulfate (Na2S2O3) for the measurement (mL); V0 is the 

volume of Na2S2O3 for the blank test (mL); C is the concentration of Na2S2O3 solution 

(mol/L); and m is the weight of the sample (g).

To investigate the effect of PSO on horse oil storage stability, we added 0.5% (w/w) PSO to 

30 g of horse oil. After thoroughly mixing the solution, the subsequent operations were 

performed according to the Schall Oven method. A blank test without added PSO and 

TBHQ was necessary. The TBHQ-added group was used as a positive control.

To investigate the effect of the dose of PSO on horse oil storage stability, we added PSO 

with different proportions of 0.05%, 0.25% and 0.5% to horse oil. After thoroughly mixing 

the solution, the subsequent operations were performed according to the Schall Oven 

method. The group without PSO added was regarded as a control.
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Statistical analysis

All results were expressed as the mean ± SD. The data were analyzed statistically using 

ANOVA. Statistical calculations were conducted using Graphpad Prism 5.0 (Graphpad 

Software Inc., San Diego, CA, USA). Values of p < 0.05 were considered significantly 

different.

Results and Discussion

Evaluation of PSO antioxidant activity in vitro

Hydroxyl free radical scavenging activity of PSO: Among the tested free radicals, 

hydroxyl free radicals are the most active and toxic. Thus, the hydroxyl free radical 

scavenging capacity can be used as an indicator of antioxidant activity. As shown in Figure 

1a, the hydroxyl free radical scavenging capacity of PSO was enhanced at higher 

concentrations of PSO in a nearly linear relationship until a concentration of 4 mg/mL. The 

IC50 values of PSO and TBHQ were 1.388 ± 0.2033 mg/mL and 2.193 ± 0.1014 mg/mL, 

respectively. Moreover, at the same concentrations, the ranking of hydroxyl radical 

scavenging ability of PSO, TBHQ, almond oil, and grape seed oil was PSO > TBHQ> 

almond oil (IC50 2.53 mg/mL) > grape seed oil (IC50 6.66 mg/mL) [26]. Therefore, the 

hydroxyl free radical scavenging activity of PSO was the strongest among the tested 

samples. In the literature, grape seed oil is reported to contain linoleic (65.0%), linolenic 

(1.5%), oleic (17.0%), palmitic (8.0%), stearic (4.4%) and arachidonic (0.6%) acids; [27] 

while oleic (63-78%) and linoleic (12-27%) acids are the major fatty acids in almond oil 

[28]. It is clear that the predominant fatty acid in PSO is linolenic omega-3 fatty acid. 

Therefore, we reason that the stronger antioxidant activity of PSO may be attributed to its 

higher content of linolenic acid. Indeed, previous research indicates that an increased 

amount of omega-3 PUFAs may enhance antioxidant activity [29,30]. However, whether the 

observed effect is due to the omega-3 or to the other fatty acids in PSO needs to be further 

evaluated.

DPPH• free radical scavenging capacity of PSO—The DPPH• scavenging ability of 

PSO was enhanced when the oil concentration was increased (Figure 1b). A strong linear 

relationship is observed within the range of PSO concentrations from 3-20 mg/mL. 

Moreover, it is worth mentioning that PSO's antioxidant activity could only be detected at 

concentrations at or above 3 mg/mL. The IC50 values of DPPH• radicals scavenging of PSO 

and TBHQ were 11.16 ± 0.07075 mg/mL and 0.3783 ± 0.07886 mg/mL, respectively, and 

the result indicated that the DPPH• free radical scavenging capacity of PSO was weaker than 

that of TBHQ. Additionally, the DPPH• free radical scavenging capacity of PSO was higher 

than that of walnut oil (IC50 147.0 mg/mL) [31] and weaker than that of flaxseed oil (IC50 

3.31 mg/mL) [32]. It has been reported that the major fatty acids in walnut oil are linoleic 

(60.42-65.77%), oleic (13.21-19.94%) and linolenic (7.61-13%) acids [31]. The main fatty 

acid components of flaxseed oil are alpha-linolenic (41.22%), linoleic (15.44%), and oleic 

(28.2%) acids. Obviously, the stronger DPPH• radical scavenging ability of PSO may be due 

to its higher content of linolenic omega-3 fatty acid.
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Reducing power of PSO: Many studies have demonstrated that the activity of an 

antioxidant is closely related to its reducing power: the greater the reducing power, the 

stronger the antioxidant activity. Therefore, the reducing power can reflect the antioxidant 

activity [33]. The results in Figure 1c showed that the reducing power increased as the 

concentration of PSO increased, and there was a strong positive linear relationship. 

However, the reducing power of PSO was weaker than that of TBHQ.

In summary, we observed a strong antioxidant activity of PSO, suggesting that PSO is a 

likely candidate as a food and cosmetic ingredient.

In vitro inhibitory effect of PSO on tumor cell proliferation

MTT assay for tumor cell proliferation inhibition: The antiproliferative effect of PSO on 

MCF-7, Eca-109 and HeLa cells was evaluated by an MTT assay, and the IC50 values were 

derived from the dose-response curves (Figure 2). PSO induced a significant dose- and time-

dependent decrease in the proliferation rate of HeLa, MCF-7, and Eca-109 cells. The IC50 

values of PSO against MCF-7, HeLa, and Eca-109 cells were 1566 ± 0.01691 μg/mL, 1844 

± 0.0217 μg/mL and 5366 ± 0.03851 μg/mL, respectively. PSO showed a stronger inhibitory 

effect on the proliferation of MCF-7 cells.

Growth inhibition of HeLa cells: As shown in Figure 3, PSO inhibited the growth of HeLa 

cells in a dose- and time-dependent manner with IC50 values of 11634 ± 0.02706 μg/mL, 

1844 ± 0.0217 μg/mL and 1179 ± 0.01989 μg/mL, respectively, after 24 h, 48 h, and 72 h. 

The same dual-dependent relationship was found by Cao et al. concerning essential oil from 

Artemisia lavandulaefolia, [34] Thus, PSO may significantly inhibit the proliferation of 

HeLa cells.

Effect on proliferation of Eca-109 cells: As shown in Figure 4, PSO inhibited the growth 

of Eca-109 cells in a dose- and time-dependent manner with IC50 values of 65540 

± 0.03675 μg/mL, 5366 ± 0.03851 μg/mL, and 3048 ± 0.03686 μg/mL, respectively, after 24 

h, 48 h and 72 h. Therefore, PSO may significantly inhibit the proliferation of Eca-109 cells.

Effect on proliferation of MCF-7 cells: As shown in Figure 5, PSO inhibited the growth of 

MCF-7 cells in a dose- and time-dependent manner with IC50 values of 3179 ± 0.02242 

μg/mL, 1566 ± 0.01691 μg/mL, and 1064 ± 0.01413 μg/mL, respectively, after 24 h, 48 h 

and 72 h. PSO significantly inhibited the proliferation of Eca-109 cells.

Growth inhibition of vero cells: As shown in Figure 6, the antiproliferative effect of PSO 

on Vero cells has a slightly increasing trend in a concentration- and time-dependent manner. 

However, the inhibitory rate of PSO against Vero cells was only 19.25 ± 1.2162% at a 

concentration of 1600 μg/mL after a 72 h incubation time. The inhibitory rate against 

MCF-7 cells was up to 54.51 ± 1.1738% (p<0.05), while against HeLa cells, the rate was up 

to 54.42 ± 1.7466% (p<0.05). For Eca-109 cells, the rate was up to 44.33 ± 2.3405% 

(p<0.05) under the same conditions. Therefore, our results indicate that PSO had less 

cytotoxic effect on the normal Vero cells. Overall, the growth inhibition of Vero cells by 

PSO was much weaker than that of MCF-7, HeLa, and Eca-109 cells.
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In summary, the above in vitro studies clearly show that the inhibitory effect of PSO on 

MCF-7 cells was stronger than that on HeLa and Eca-109 cells. This is the first report that 

demonstrates inhibition of the breast cancer cell growth in vitro by PSO. This report 

suggests a potential therapeutic role of PSO in the treatment of breast cancer. Further 

research on the mechanism of PSO inhibition of MCF-7 cell proliferation remains to be 

conducted.

Application of PSO to horse oil storage: Due to the adverse health effects of synthetic 

antioxidants, such as TBHQ and butylated hydroxyanisole (BHA), there has been a 

considerable increase in demand for isolating naturally occurring bioactive molecules for the 

food and pharmaceutical industries [35]. In this study, we compared the antioxidant effect of 

PSO to the synthetic antioxidant TBHQ in horse oil storage. As shown in Figure 7a, the 

addition of both PSO and TBHQ showed improved protection against auto-oxidation of 

horse oil. The POVs were much lower than those of horse oil alone, but PSO was weaker 

than TBHQ in inhibiting lipid peroxidation. This implies that we can further improve horse 

oil stabilization if PSO and TBHQ are combined, producing a synergistic effect [36] while 

minimizing the amount of synthetic antioxidant.

Additionally, we investigated the dose-dependent effect of PSO on storage stability of horse 

oil. We found that the lipid antioxidant capacity of PSO increased with the dose. This is 

significantly different from the control group, which showed a significant increasing trend 

the POV in the absence of PSO (Figure 7b). This result suggests that PSO can be used as a 

natural preservative in the food and cosmetics industries.

Conclusions

With increased knowledge of the important bioactive molecules in seed oils, such as lipids 

and pigments, seed oils that possess anti-oxidation and anti-tumor potential have gained 

significant attention for the treatment of tumors and other cancer-related problems [37,38]. 

We tested the anti-oxidation and anti-tumor cell proliferation activities of PSO. Our study 

showed that PSO had remarkable free radical scavenging capabilities, as its hydroxyl free 

radical scavenging activity is stronger than that of TBHQ. PSO also displayed a stronger 

antiproliferative effect on MCF-7 cells than on either HeLa or Eca-109 cells with a dual-

dependent relationship in a time- and dose-dependent manner. Moreover, PSO protects horse 

oil against lipid oxidation in a dose-dependent manner. Our findings suggest that PSO can be 

useful as a health food for the prevention and mitigation hypertensive symptoms and 

cosmetic ingredient. Studies on the mechanisms of anti-oxidation and anti-tumor cell 

proliferation are currently underway.
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Figure 1a. 
Antioxidant activity of PSO in vitro. Hydroxyl radical scavenging ability.
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Figure 1b. 
Antioxidant activity of PSO in vitro. DPPH• radicals scavenging ability.
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Figure 1c. 
Antioxidant activity of PSO in vitro reducing power.
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Figure 2. 
The curve of PSO inhibition of MCF-7, HeLa and Eca-109 cell proliferation for 48 h.
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Figure 3. 
Time curve of HeLa cell proliferation as a function of different concentrations of PSO.
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Figure 4. 
Time curve of Eca-109 cells proliferation as a function of different concentrations of PSO.
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Figure 5. 
Time curve of MCF-7 cells proliferation as a function of PSO concentration.
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Figure 6. 
Time curve of vero cells proliferation as a function of different concentrations of PSO.
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Figure 7a. 
Effect of PSO on the oxidative stability of horse oil during storage. Effect of PSO and other 

antioxidants on horse oil storage stability.
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Figure 7b. 
Effect of PSO on the oxidative stability of horse oil during storage. Effect of the PSO dose 

on storage stability of horse oil.
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