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Subcortical ischemic vascular disease could induce subcortical vascular cognitive impairments (SVCIs), such as amnestic mild
cognitive impairment (aMCI) and non-amnestic MCI (naMCI), or sometimes no cognitive impairment (NCI). Previous SVCI studies
focused on focal structural lesions such as lacunes and microbleeds, while the functional connectivity networks (FCNs) from
functional magnetic resonance imaging are drawing increasing attentions. Considering remarkable variations in structural lesion
sizes, we expect that seeking abnormalities in the multiscale hierarchy of brain FCNs could be more informative to differentiate
SVCI patients with varied outcomes (NCI, aMCI, and naMCI). Driven by this hypothesis, we first build FCNs based on the atlases
at multiple spatial scales for group comparisons and found distributed FCN differences across different spatial scales. We then
verify that combining multiscale features in a prediction model could improve differentiation accuracy among NCI, aMCI, and naMCI.
Furthermore, we propose a graph convolutional network to integrate the naturally emerged multiscale features based on the brain
network hierarchy, which significantly outperforms all other competing methods. In addition, the predictive features derived from our
method consistently emphasize the limbic network in identifying aMCI across the different scales. The proposed analysis provides a
better understanding of SVCI and may benefit its clinical diagnosis.

Key words: brain multiscale hierarchy; functional connectivity network; graph convolutional network; mild cognitive impairment;
subcortical vascular cognitive impairment.

Introduction
Vascular cognitive impairment refers to a broad range
of cognitive disorders pathologically attributing to
impairments in the cerebral vascular system (Barbay
et al. 2017). Subcortical vascular cognitive impairment
(SVCI) induced by subcortical ischemic vascular disease
(SIVD) is one of the commonest forms of vascular
cognitive impairment (Beishon et al. 2017). The SVCI is
defined as a continuum of cognitive impairment from an
intermediate and reversible state, that is, mild cognitive
impairment (MCI), to vascular dementia (VaD) (Skrobot
et al. 2018). VaD has become the second major cause
of dementia after Alzheimer’s disease (AD) (Román
2002; Jia et al. 2020), which was recently reported to
account for about 16% of all causes of dementia (Cao
et al. 2020). There is also accumulating evidence that
vascular pathology may play an important role in the
development of AD (Beishon et al. 2017). Therefore,
understanding SVCI could be crucial for preventing VaD
and potentially helpful to a better understanding of AD.

Previous studies on SVCI focused on bridging the cog-
nitive impairments to focal structural lesions exhibited
in conventional magnetic resonance imaging (MRI) data
(Roh and Lee 2014). The focal lesions associated with
SVCI include lacunar infarct, white matter hyperinten-
sity (WMH), perivascular space, cerebral microbleed,
and brain atrophy. However, although being extensively
studied, the dependency between the brain focal lesions
and clinical manifestations in cognitive changes remains
controversial and elusive (Duering et al. 2011; Biesbroek
et al. 2013, 2017). The patients with significant and
comparable brain lesions can either have no cognitive
impairment (NCI) or exhibit subtyped MCI such as
amnestic MCI (aMCI) and non-amnestic MCI (naMCI)
(Ter Telgte et al. 2018).

Recent studies demonstrated the impacts of the focal
lesions on the neural connectivity with diffusion tensor
imaging (DTI) and found that focal lesions can influ-
ence the surrounding, even remote areas (Lawrence et al.
2014; Wang et al. 2017; Du et al. 2020). Parallel studies
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explored the origin of variable cognitive performances
under vascular pathology from the perspectives of brain
functions (reviewed in Wang et al. 2020). Such effort also
aimed to elucidate how the structural lesions impact
neural functional interactions and further influence cog-
nitive abilities (see review in Ye and Bai 2018). Functional
MRI (fMRI) can indirectly monitor spontaneous neural
activities by probing fluctuations in blood oxygen level-
dependent (BOLD) signals. Defined by a brain atlas (brain
region parcellation scheme), regional BOLD signals can
be extracted and used to construct functional connec-
tivity network (FCN) for investigating neural informa-
tion exchanges as temporal synchronizations. Among
the FCN-based studies, the abnormal connectivity within
the default mode network (DMN), one of functional sub-
networks relating to the high-level cognitions, has been
regarded as a key factor reflecting the cognitive changes
in SVCI patients (Sun et al. 2011; Yi et al. 2012; Zhou et al.
2016). Meanwhile, some other studies also showed that
the abnormal functional connectivity due to SVCI could
also be identified in multiple functional networks besides
the DMN (Yi et al. 2015; Liu et al. 2019).

However, the existing FCN-based studies are still far
from a conclusive understanding of SVCI, largely hin-
dered by two major limitations.

First, previous FCN-based SVCI studies each utilized
a specific parcellation atlas at a certain spatial scale
to define brain regions for building the FCN. As the
structural lesions induced by SIVD are heterogeneous
in size, shape, and location (Ter Telgte et al. 2018), the
single scale-based analysis may ignore impairments in
functional interactions at the multiple spatial scales.
For instance, microinfarcts are usually identified with a
size of 50 μm in diameter, while WMHs can often be as
large as a few cubic millimeters. Such a variation in the
lesion size could lead to altered FCs among the brain
regions across multiple spatial scales and induce variable
cognitive outcomes. Therefore, using any specific brain
parcellation at a fixed scale may only reveal the tip of
the iceberg of the influence on the complex brain FC
network. A multiscale FCN-based analysis can draw a
more complete picture of the system-level pathologi-
cal alternations in the brain with SVCI and thus could
provide more accurate diagnosis. Besides, from the net-
work neuroscience point of view, a single-scale analysis
ignores the essential multiscale hierarchical organiza-
tion of the brain system in both structure and functional
dynamics (Van Essen and Felleman 1991; Betzel and
Bassett 2017). Cortical parcellation studies have revealed
that the brain functional regions at a coarse scale can
be subdivided into subregions at finer scales (Hawrylycz
et al. 2012; Schaefer et al. 2018) and the corresponding
functional connectomes are multiscale, hierarchically
organized in its nature. Such a multiscale hierarchy orga-
nization of brain connectomes have been regarded, by
both theoretical modeling and empirical data analysis,
crucial for efficient information processing in the brain.
For example, it facilitates the flexibility for switching

between information integration and segregation (Wang,
Lin, et al. 2019a; Wang, Liu, et al. 2021b), and the sen-
sitivity in the responses to external inputs (Liang et al.
2021). The multiscale FCN-based analysis on brains with
SVCI, serving as a lesion model, could reveal more details
on functional significances of multiscale FCNs during
cognitive processes.

Second, it is noticeable that most of the abovemen-
tioned FCN-based SVCI studies typically used a group
comparison or a correlational analysis as the main
analysis methods. They could fail to exam out-of-sample
generalizability of the revealed effects (Linden 2012;
Whelan and Garavan 2014; Gabrieli et al. 2015; Lo et al.
2015). It is necessary to leverage the superiority of
machine learning methods and prediction frameworks,
which can sensitively identify generalizable diagnostic
features (Fan et al. 2008; Jie et al. 2015). In the recent
structural MRI-based SVCI studies, machine learning
methods, especially deep learning, have already been
adopted in identifications of SVCI patients. In our previ-
ous studies, we applied a convolutional neural network
(CNN) to 3D fluid-attenuated inversion recovery (FLAIR)
images and successfully classified different cognitive
outcomes in SVCI patients, with above 90% accuracy in
the out-of-sample data (Wang, Tu, et al. 2019b; Chen
et al. 2020). However, in these works, CNN was used as
a black box, where the interpretable features were not
provided for further clarifications of the associations
between brain and behavior changes. Meanwhile, deep
learning methods have not been well explored in the
FCN-based SVCI studies. Conventional deep learning
methods cannot effectively extract the information
encoded in the topological structure of the FCNs, because
of its non-lattice-like graph structure. Attributing to the
recent technology developments, the graph convolu-
tional network (GCN) provides a promising solution to
implement deep learning algorithms in the FCN-based
SVCI studies. A GCN can learn feature representations
from the FCN via, for example, message passing of
nodal features based on graph Laplacian, preserving the
topological information of FCN. This method has been
successfully applied in the identifications of AD (Song
et al. 2019; Wee et al. 2019), autism spectrum disorder
(Parisot et al. 2018), attention-deficit/hyperactivity
disorder (Saboksayr et al. 2020), and major depressive
disorder (Jun et al. 2020). In addition, GCNs have demon-
strated certain interpretability by highlighting predictive
nodes (brain regions) and subnetworks (Li et al. 2020;
Xing et al. 2021).

In order to fill the aforementioned gaps, in the present
work, we hypothesize that the FC changes under SVCI
can be more properly characterized from the FCNs at
multiple spatial scales. To verify this hypothesis, we per-
form analysis to differentiate SIVD subjects with NCI,
aMCI, and naMCI using multiscale FCN given by the
pre-defined multiscale atlases, using both comparison-
based and prediction-based frameworks. In addition, a
novel GCN method is further proposed to differentiate
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the cognitive outcomes (i.e., NCI, aMCI, or naMCI) more
accurately in the SIVD patients based on the multiscale
FCNs, with an ability of providing interpretable features
for better understanding of the FCN changes under SVCI.

Materials and Methods
Ethics
The current study is approved by the Research Ethics
Committee of Renji Hospital, School of Medicine, Shang-
hai Jiao Tong University, China. Written informed con-
sents were obtained from all participants.

Participants
We investigate a total of 197 subjects (male/female =
151/46, ages at first scan = 50–84 years, right-handed),
who were recruited from the outpatient clinic at the
Neurology Department of Renji Hospital from July 2012
to January 2018. For each subject, we collected sociode-
mographic and clinical data, patient history, laboratory
examinations, and conventional MRIs (see more details
in Wang, Tu, et al. 2019b). Two experienced radiologists
identified the SIVD by detecting WMH lesions as
at least one lacunar infarct on the T2-FLAIR image
(Galluzzi et al. 2005).

In line with our previous work (Wang, Tu, et al. 2019b),
subjects with the following conditions are excluded: 1)
cerebral hemorrhages, cortical and/or corticosubcortical
non-lacunar territorial infarcts, and watershed infarcts;
2) specific causes of white matter lesions (e.g., multiple
sclerosis, sarcoidosis, and brain irradiation); 3) other neu-
rodegenerative diseases (including AD and Parkinson’s
disease); 4) signs of normal pressure hydrocephalus
or alcoholic encephalopathy; 5) low education levels
(<6 years); 6) severe depressions (Hamilton Depression
Rating Scale ≥18), other psychiatric comorbidities, or
severe cognitive impairments (inability to perform
neuropsychological tests); 7) severe claustrophobia, and
contraindications to MRI (e.g., pacemaker and metallic
foreign bodies); 8) VaD (with diagnostic criteria described
below).

Neuropsychological Assessment
The neuropsychological assessments for subjects were
conducted within 2 weeks before or after MRI scans. The
details of neuropsychological assessments can refer to
our previous papers (Wang, Tu, et al. 2019b; Chen et al.
2020). In brief, a battery of neuropsychological tests is
used to test multiple cognitive domains of participants,
which covers attention, executive function, memory, lan-
guage, and visuospatial function. In addition, the popu-
lation distribution of the scores was constructed based
on the scores for each measure of normal-aged people
in Shanghai, China (Guo et al. 2007). The scores fallen
beyond ±1.5 standard deviations (SDs) from the mean
are regarded as cognitive dysfunction. In addition, the
VaD is identified as cognitive dysfunction in more than
two cognitive domains with the abnormality in Lawton
and Brody’s Activities of Daily Living (ADL) Scale Test.

MCI diagnosis is based on the following criteria: 1) ADL
score should be normal or mildly impaired; 2) does not
meet criteria for VaD; and 3) mild quantifiable cognitive
impairment within one or more domains. The subjects
who have suffered strokes or transient ischemic attacks
between their assessments and MRI scans are excluded.
Furthermore, the study also excludes the disable par-
ticipants due to cognitive damages and motor sequelae
using cognitive impairment histories and clinical judg-
ments. Due to the lack of amyloid-β exams, MCIs induced
by the mixed effects of vascular pathology and AD could
not be fully excluded. The subtyping of MCIs followed the
conventional Peterson/Winblad criteria (Winblad et al.
2004). NCI is identified by 1) detection of subcortical vas-
cular disease and 2) the scores in all neuropsychological
tests falling within the normal range (≤1.5 SDs).

Based on the abovementioned assessments, the
included SIVD patients are subdivided, based on their
cognitive statuses, into subcortical vascular disease
with NCI (81 subjects, with 96 longitudinal fMRI scans,
male/female = 67/14, Mini-Mental State Exam [MMSE] =
28.6±1.3, Montreal Cognitive Assessment [MoCA] = 25.6
±2.6, and ages at first scan = 65.7±7.8 years) and subcor-
tical vascular disease with MCI (116 subjects, with 125
fMRI scans). The MCI group is further divided into aMCI
(59 subjects, with 64 fMRI scans, male/female = 43/16,
MMSE = 27.1±2.1, MoCA = 21.2±3.4, and ages at first
scan = 65.5±7.0 years) and naMCI (57 subjects, with
61 fMRI scans, male/female = 41/16, MMSE = 27.8±1.8,
MoCA = 22.1±3.6, and ages at first scan = 64.8±7.1 years).
We do not further classify the aMCI and naMCI into
single-domain and multi-domain MCI due to the sample
size limitation. There are no significant differences
among NCI, aMCI, and naMCI groups in gender or age
(Table 1).

MRI Protocol
MRI scan is performed using a SignaHDxt 3T MRI scanner
(GE Healthcare, United States), with an eight-channel
standard head coil with foam paddings to restrict head
motions. The parameters of the echo-planar imaging
sequence for the resting-state fMRI data collection are
as follows: repetition time (TR) = 2000 ms, echo time
(TE) = 24 ms, matrix = 64 × 64, flip angle = 90◦, field of view
(FOV) = 230 × 230 mm2, slice thickness/gap = 4/0 mm, and
number of slices = 34. The duration of the resting-state
fMRI is 440 s (220 volumes). The sagittal T1-weighted
images covering the whole brain were acquired by a 3D-
fast spoiled gradient recalled echo sequence: TR = 5.6 ms,
TE = 1.8 ms, matrix = 256 × 256, inversion time = 450 ms,
flip angle = 15◦, slice thickness/gap = 1/0 mm, number of
slices = 156, gap = 0, and FOV = 256 × 256 mm2.

fMRI Data Preprocessing
We adopt the standardized pipeline from the public avail-
able toolbox Data Processing Assistant for Resting-State
fMRI (Yan and Zang 2010) in Matlab (Mathworks. R2020b)
to preprocess the fMRI data. Each fMRI data undergo
slice timing correction, head motion correction, nuisance
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Table 1. Demographic and clinical statistics of the studied groups

Gender
aMCI naMCI

NCI χ2 = 1.96, P = 0.16 χ2 = 2.29, P = 0.13
aMCI χ2 = 0.01, P = 0.91

Age
aMCI naMCI

NCI t = 0.18, P = 0.86, CI = [−2.28, 2.75] t = 0.75, P = 0.46, CI = [−1.60, 3.53]
aMCI t = 0.56, P = 0.57, CI = [−1.86, 3.33]

MMSE
aMCI naMCI

NCI t = 5.22, P<0.01, CI = [0.96, 2.12] t = 3.20, P<0.01, CI = [0.33, 1.41]
aMCI t = −1.77, P = 0.08, CI = [−1.42, 0.08]

MoCA
aMCI naMCI

NCI t = 8.31, P<0.01, CI = [3.41, 5.54] t = 6.27, P<0.01, CI = [2.41, 4.64]
aMCI t = −1.33, P = 0.19, CI = [−2.36, 0.47]

χ2: the χ2-statistics from chi-square test. t: the t-statistics from t-test. CI: 95% confidence interval for the difference in population means.

covariate regression, spatial normalization to the Mon-
treal Neurological Institute space, temporal filtering, and
spatially smoothing. Specifically, the nuisance covari-
ates include head motions (ridge body with 6 degrees of
freedom model), white matter signals, and cerebrospinal
fluid signals. The spatial normalization is performed
using Diffeomorphic Anatomical Registration Through
Exponentiated Lie Algebra algorithm (Ashburner 2007)
with the aid of T1-weighted images. And we apply a band-
pass filter (0.01 ≤ f ≤ 0.1 Hz) for temporal filtering and
a Gaussian kernel with full-width at half-maximum of
4 × 4 × 4 mm3 for spatial smoothing.

We then apply the multiscale brain parcellation
atlases (Schaefer et al. 2018), which were generated by
clustering the FC patterns of all brain gray matter voxels
from 1489 participants based both on their local and
global similarities. By tuning the resolution parameter
in the clustering analysis, multiscale parcellations (from
100 ROIs to 1000 ROIs) were generated and were made
publically available.1 In the presented work, we use the
atlases at the scales from 100 to 500 ROIs (Fig. 1A). The
ROIs given by different parcellations at different scales
preserve a similar structure of the seven resting-state
functional networks (RSNs) defined by Yeo (Thomas Yeo
et al. 2011). The spatial relationships among ROIs in these
multiscale atlases can thus be regarded as a biologically
meaningful brain hierarchy.

Based on one of these atlases, the FCN at a specific
spatial scale can be built (Fig. 1B). At each scale P
(with P ROIs), averaging the BOLD signals within voxels
belonging to each ROI leads to the ROI signals, which are
then pair-wise inter-correlated by Pearson correlation
to generate the FCN at the scale P, called FCNP. We
further regress out the effects of gender and age from
each off-diagonal FC in the individual FCN to ensure the
differences among groups barely depend on the effects
of disease conditions.

1 :https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/
brain_parcellation/Schaefer2018_LocalGlobal/Parcellations

Differentiating Power of Each RSN
Previous FCN-based works on SVCI reported that
significant differences are detected in distinct RSNs
(Ye and Bai 2018; Wang et al. 2020). We systematically
test whether the detected differences are specific to
a certain investigating scale or widely detectable at
different scales. To do this, we conduct group-level
statistical analysis on each FC link to identify significant
group differences (P-value<0.01) in the FC links of each
FCNP at a certain scale P (we only check the upper
triangle part of the FCN because the FC matrix is
symmetry). The amount of the detected significant FC
links is counted for intra-RSN connections of each RSN
and inter-RSN connections between each pair of RSNs.
Since the RSN size and the scale are both different,
we further normalized the quantities of the intra- and
inter-RSN FCs with group differences with respect to the
possible numbers of the FC among the consisting RSNs
under the fully connected condition at a certain scale.
This leads to a comparable metric to evaluate distinct
differentiating powers (DPs) among the 14 intra-RSN and
42 inter-RSN connections in both hemispheres as well as
those at different scales when conducting paired group
comparisons among NCI, aMCI, and naMCI.

Machine Learning Methods
Single Scale-Based Methods
Connectome-Based Prediction Model

Among the traditional machine learning-based study, the
connectome-based prediction model (CPM) is a represen-
tative method (Shen et al. 2017; Sui et al. 2020). It initially
uses brain–behavior correlations to select informative
FCs as features and then uses these features to train a
machine learning-based classifier (such as a support vec-
tor machine [SVM]) or a simple linear regression model to
predict individual behaviors (Kristanto et al. 2020; Wang,
Goerlich, et al. 2021a). We adopt this method as the
baseline method.

With the CPM, we perform two steps to generate
diagnostic predictions. First, the feature selection is

https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal/Parcellations
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal/Parcellations
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Figure 1. The schematic illustration of the main method. (A) The procedures to obtain multiscale FCNs. (i) the fMRI data from one individual is inputted
and preprocessed. (ii) The application of the Schaefer’s multiscale atlases to the fMRI data. The black border lines indicate boundaries of ROIs and
the colors encode the resting-state network (RSN) to which the ROI belongs. The RSNs include DMN, frontoparietal network (FP), limbic network (LIM),
salience network (SAL), attention network (ATT), somatomotor network (SM), and visual network (VIS). (iii) The extraction of ROI-averaged signals. (iv)
The construction of multiscale FCNs from individual fMRI data. (B) The architecture for multiscale atlas-based GCN (MAGCN). The multiscale FCNs are
extracted via a series of GCNs connected by the APs. The nodal features h are integrated with skip connections and concatenations, based on which
individualized diagnosis is generated.

performed based on the P-values calculated from sta-
tistical comparison between two groups in the training
set. The FCs with significant differences (at a P-value
<0.05) are selected as features and used in both training
and testing. Second, the selected features (connectivities)
are vectorized and inputted to a SVM classifier. Different
kernels for SVM are tested, including linear, polynomial,
Gaussian, and Sigmoid, which leads to different results
on the validation set. We report the best one among
them. The other hyperparameters are kept as the default
setting in the “SVC” function in the “Scikit-learn” package
(Pedregosa et al. 2011).

Graph Convolutional Neural Network

The GCN can automatically abstract the feature rep-
resentations for graph data by propagating the nodal
features via graph Laplacian and further select features
by applying an learned kernel on the features. Here,
we choose the most prevalent version of GCN, namely

spectral graph convolution (Defferrard et al. 2016; Kipf
and Welling 2017). For a given adjacency matrix A and
nodal features h, the graph convolution operation can be
formulated in as:

hGC = GC
(
A, h

) = σ
(
D̃− 1

2 ÃD̃− 1
2 hW

)
, (1)

where Ã = A + I, I is the identity matrix, D̃ is the
corresponding degree matrix of Ã, W is the estimated
kernel weight matrix, and σ(•) is a nonlinear activation
function.

During implementation, we choose the ReLU function
as the nonlinear activation function. An identity matrix
is used as a nodal feature to let the GCN model focus
on the topology of the FCN. The GCNs are attached
with dropout functions (rate = 0.3), followed by two fully-
connected layers (FLs). Each FL is associated with a batch
normalization and a Rectified Linear Unit (ReLU) acti-
vation function. The outputs from the second FL are
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normalized by a Softmax function to generate a predicted
probability for two classes (Fig. 1B). These configurations
for GCN and FL are kept consistent in all tested methods.

Multiscale-Based Methods
Classical Multiview Methods

To integrate multiscale features of the brain functional
interactions, we apply two classical methods, namely
“feature fusion” and “decision fusion.” In the feature
fusion, we train a model with multiple GCNs to inde-
pendently process the FCNs at the different scales. The
outputted features from these GCNs are combined by
concatenation and further feed into FLs to generate pre-
dictions. We call this method multiple GCNs (MGCN).
Second, we choose Majority Voting as the representative
method for decision fusion. We utilize GCN-based clas-
sifiers established in the independent trainings at the
different scales and regard each of their predictions as
one vote. These votes are pooled and counted, where the
most voted class generates the final prediction of the
whole model. During multi-classifications, under equally
voted conditions (two of the three classes got equal votes
since we used five scales), the model is forced to give
prediction to the disease class (aMCI, or naMCI). Note
that, in case of the aMCI-vs-naMCI classification with
equal votes, the model’s prediction is set to the aMCI
class.

Multiscale Atlas-Based Graph Convolutional Neural
Network

The Multiscale Atlas-Based Graph Convolutional Neural
Network (MAGCN) is proposed in our previous paper (Liu
et al. 2021), where the method is described in detail
and systematically validated. Briefly, MAGCN extracts
the features from multiscale FCNs by layers of GCNs and
feature poolings following the hierarchical relationships
defined in the multiscale atlases. First, an Atlas-guided
Pooling (AP) operation is defined based on the spatial
overlapping among ROIs defined by atlases at different
scales (as illustrated in Fig. 1B). The AP operates on the
node features defined by the atlas at scale P and converts
them into the feature map for the atlas at scale Q (P > Q),
based on the mapping matrix in the following form:

MR→℘

(
i, j

) =
{

1, ρ > Th
0, Otherwise

, (2)

where the Th is a threshold applied to the overlapping
ratio ρ, which is computed by the number of voxels of ROI
i in the atlas at scale P that is spatially overlapping with
ROI j in the atlas at scale Q divided by the total number
of voxels of ROI i. For the results reported below, we use
Th = 0, which is consistent with our previous paper (Liu
et al. 2021). Through a matrix multiplication with MP→Q ,
feature map hGC

P defined at scaleP from GCN is pooled
into a new feature map hAP

Q defined at scale Q.
The MAGCN is then built by stacking GCNs and APs

in a hierarchical manner (as shown in Fig. 1B). Each GCN

is processing FCN at a specific scale with the inputs of
nodal features from GCN at the neighboring finer scale
(except that the first GCN uses identify matrix as the
initial nodal feature input, that is, the h500 in Fig. 1B). The
APs thus introduce inter-dependencies among the GCNs
based on the hierarchy, which is expected to promote the
feature representation process. The skip connections are
further added into the architecture to enable the features
from FCNs at different scales to jointly determine the
final prediction. The joint feature is inputted into the two
FLs to provide probabilistic predictions for two classes in
bi-classification.

Feature Interpretability of MAGCN
To reveal the predictive features of deep learning
methods in the NCI, aMCI, and naMCI classifications,
we utilize the Gradient-guided Class Activation Map
(Grad-CAM) algorithm proposed in the study of Selvaraju
et al. (2017). In short, the Grad-CAM regards the gradient
between prediction outputs and the feature maps at
intermediate hidden layers of the deep neural network as
the importance of features. It thus applies the gradient
values to weight the elements in the feature maps, that
is, the product between gradient map and feature map,
namely the class activation map (CAM), which offers a
visible map for spotting the predictive features. In this
work, we detect the predictive brain regions with CAM.

In the analysis, we first compute the CAM of the dis-
ease group based on models from bi-classifications (in
the aMCI-vs-naMCI classification, it is naMCI) for each
individual from the models trained in the cross valida-
tions. Note that for a given individual, the CAMs from
the two classes are anti-correlated. The results from
the models are then weighted-averaged based on the
AUCs, and the individual results are further averaged to
obtain the group-wise CAM, with the patterns shown in
Figure 4. We further coarse-grain the CAM patterns using
the correspondences between ROIs and RSNs defined in
the atlas, resulting in the statistics of RSN-wise averaged
CAM values in Figure 5.

Experiments
Implementation
All the prediction algorithms are implemented in Python
(Version 3.6.2). The SVM algorithm is based on the “SVC”
function from “Scikit-learn” package (Pedregosa et al.
2011), while the neural network models are based on
“Pytorch” framework (Paszke et al. 2019). The training
parameters for neural network models are identically set
as training epoch = 100, learning rate = 0.001, and batch
size = 30. Adam (Kingma and Ba 2015) with a weight decay
of 0.01 is used as an optimizer, and the weighted cross-
entropy loss is adopted as the loss function. The weights
are adaptively set by the inverse of the sample ratio in
the training set. Other parameters of the neural network
models are initialized with random weights. One Nvidia
GTX 3080 GPU is used to accelerate the training.
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Validation Scheme and Evaluation Metrics
Due to the existing longitudinal scans for the same sub-
ject, we design a special 5-fold cross-validation to eval-
uate the performance of the models. The subjects are
assigned into the 5-folds with the same sample size, with
4-folds as the training set and the remaining 1-fold as
the testing set. The roles of folds were exchanged till all
folds played as testing set once. Each model is respec-
tively trained and tested using different training–testing
splits. We assign the fMRI scans according to the subject
assignments, which ensures that no repeated scans from
the same subject shall appear in both training and testing
sets. Noted that the size of the image in each training and
testing set can be different. Also, since the diagnosis may
change at different longitudinal scans (e.g., NCI converts
to aMCI), for each bi-classification, we exclude all the
irrelevant longitudinal scans with diagnosis being not
used in the classifications.

Under the sample imbalance, we choose four metrics
from different aspects to evaluate the performance, that
is, the accuracy (ACC), sensitivity (SEN), specificity (SPE),
and area under the receiver operating characteristic
curve (AUC). The means and SDs of the four performance
metrics are calculated. For the multi-classification task,
we assess the performance with overall ACC and the
SENs for each class.

Statistical Analysis
To identify the difference at FCs among NCI, aMCI, and
naMCI groups, two-sample t-tests are performed using
the build-in function “ttest2” in Matlab (R2020b, Math-
works Inc, USA). The differences in age, MMSE, MoCA, and
gender among the groups are tested using two-sample
t-tests and chi-square tests with “ttest2” and “chi2test”2

in Matlab. We also apply one-sided paired t-test with
“ttest” in Matlab to measure if our proposed method sig-
nificantly improve the diagnosis performance compared
to the competing methods. When results are marginal
significant (0.05 ≤ P ≤0.10), we provide the P-values and
associated statistics for references. Note that a non-
significant result (P >0.10) may be due to either small
improvement by MAGCN, or large variation in the results
from either (or both) method(s).

Results
Variation of the RSNs’ Differentiating Powers,
across Multiple Scales, for SVCI
First, we explore whether the amount of the detected
significant FC differences for intra- and inter-RSN con-
nections had any interplay with the investigating spatial
scale. The DPs for each intra- and inter-RSN connection is
visualized in Figure 2A. The group differences as revealed
by DPs are found distinctive depending on different
RSNs with notable variation at different spatial scales.
Along with the spatial scale changed, some connections

2 https://www.mathworks.com/matlabcentral/fileexchange/16177-chi2
test

(e.g., between the limbic and somatomotor [SM] networks
in NCI vs. naMCI) keep showing high DPs, while others
(e.g., between the limbic and frontoparietal (FP) networks
in NCI vs. naMCI) have high DPs only at a certain scale.
Such varying DPs from RSNs at multiple spatial scales
suggest that the SVCI could exert distinct impacts on the
FCNs at different spatial scales and that a scale specific
study could only reveal one facet of such a complex
influence.

Interestingly, in all the comparing conditions, intra-
DMN subnetworks do not exhibit high DP. This phe-
nomenon can be attributed to our normalization of sub-
network size. DMN has the largest size among all the
RSNs in the used atlases (Schaefer et al. 2018), with its
size increased along with the enlargement of scale. This
leads to a higher chance to identify significant FCs in
DMN. Indeed, in the unnormalized results (Fig. 2B), the
connections between left and right DMNs are identified
as the highest DP when comparing aMCI and naMCI.
These findings suggest that the heterogeneity in net-
work sizes and the size changes along scales could be
important aspects that are commonly neglected in the
previous studies when evaluating the cruciality of RSNs
under SVCI.

More Accurate Diagnoses by Using Multiscale
Hierarchical FCNs
The group comparison framework may not guarantee
the generalizability of the revealed differences. We fur-
ther demonstrate that the abnormalities in FCNs can be
heterogeneous at different scales using the prediction
framework. We apply two prediction methods, that is,
CPM (with SVM as the classifier) and GCN, on NCI-vs-
aMCI, NCI-vs-naMCI, and aMCI-vs-naMCI classifications.
In Figure 3 and Tables 2–4, it can be observed that the sin-
gle scale-based predictions exhibit distinct performances
at different scales. For the CPM-based predictions, the
scale with 500 ROIs is consistently identified as the opti-
mal scale for NCI-vs-aMCI, NCI-vs-naMCI, and aMCI-vs-
naMCI classifications. And, for the GCN-based analysis,
the 200-ROI scale can be regarded as the optimal scale
for these three classification tasks. These observations
are again consistent with the above interpretation that
the SVCI-related FCN alternations could diverge when
investigating different scales. In addition, the SVM-based
CPMs generally yield values from 50% to 60% in all met-
rics, while the GCN-based predictions achieve values in
a range from 65% to 70%, suggesting advantages of the
GCN-based FCN processing over the SVM-based CPM.

We then test three multiscale-based classification
methods, including our proposed method (MAGCN). First,
all multiscale-based methods yield higher performance
than single scale-based methods in terms of ACC
and AUC (Fig. 3 and Tables 2–4). This indicates the
effectiveness of the joint analysis using multiscale FCNs.
Since disease-related changes are separately identified
at multiple scales, our result suggests that it is crucial to

https://www.mathworks.com/matlabcentral/fileexchange/16177-chi2test
https://www.mathworks.com/matlabcentral/fileexchange/16177-chi2test
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Figure 2. Different DPs of the intra- and inter-RSN connections at different scales, when conducting pairwise group comparisons among NCI, aMCI,
and naMCI. For comprehensive illustrations, we show both DPs (a normalized metric, with respect to the RSN sizes at a certain scale) in (A) and the
non-normalized metrics (i.e., the original number of the FC links with significant group differences) in (B). Networks 1–7 and 8–14 represent the seven
RSNs in the left and right hemispheres, respectively. Only the upper triangle of the connectivity matrix is presented since the matrix is symmetric.

combine all those different-scale features to obtain accu-
rate diagnosis. In addition, in all three bi-classifications,
our proposed method MAGCN obtains higher perfor-
mances over the simple feature-fusion and decision-
fusion methods on three of the four metrics, where 11
out of the 18 pairs of comparisons show significances or
marginal significances (Tables 2–4). We further conduct a
NCI-vs-aMCI-vs-naMCI multi-classification using GCN-
based and multiscale-based methods (Table 5). The
changing trends of the performances are akin to those
under the bi-classification scenarios. This supports
the effectiveness of MAGCN in integrating distributed
information at different scales based on the priors
of the brain hierarchy. Note that the feature-fusion
and decision-fusion methods “independently” consider
the information at multiple scales, while the MAGCN
introduces the inter-scale dependencies during the
feature extraction and leverages the hierarchically
refined features in the classification stage. Such a better
performance of the MAGCN may also indicate that the
SVCI could influence multiscale FCNs in a cascaded
manner.

Diagnostic Features in MAGCN Emerged in
Multiple RSNs at Multiple Scales
The predictive features encoded inside the MAGCN are
explored using Grad-CAM (see Materials and Methods).
The spatial patterns of the feature importances (i.e.
predictabilities) are offered in Figure 4, and the RSN-
wise distributions are depicted in Figure 5. In Figure 5A,
we can first note that the limbic network (LIM) exhibits
the highest predictability for differentiating aMCI from
NCI at almost all investigated scales (100–400 ROIs). It
could be reasonable that LIM is the most predictive for
the amnestic impairment because the memory abilities
are associated with the LIM (refer to the orbitofrontal
cortex and temporal pole according to the atlas) (Frey
and Petrides 2002; Smith and Kosslyn 2006; Barbey et al.
2011; Farovik et al. 2015). In addition, DMN is regarded
as the second predictive RSN at the 200- and 400-ROI
scales. However, for the identification of naMCI from
NCI, the predictive features are contributed by different
RSNs at multiple scales, that is, FP at 100-ROI scale, SM at
200-ROI scale, DMN at 300-ROI scale, and salience (SAL)
networks at 400- and 500-ROI scales (Fig. 5B). To separate
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Figure 3. Classification performances shown as bars along with error plots.

aMCI and naMCI, although the features from LIM are still
regarded as crucial, other RSNs are contributing to clas-
sifications more remarkably (Fig. 5C), which matches the
observations in Fig. 5A,B. At the 300- and 500-ROI scales,
DMN is ranked as the top predictive RSN in NCI-vs-
naMCI and aMCI-vs-naMCI classifications, respectively.
However, DMN does not consistently show importances
during the prediction when the parcellation scale is
altered.

Discussion
Dysfunction in Multiple Scales Not Single Scale
We first demonstrate that the differentiating features
emerged at multiple scales of the brain functional
communications. The investigation scale could be crucial
when evaluating the predictability of RSNs. Comparing
to the independent analysis at each scale, joint analysis
to integrate all these features provides a better way of
predicting clinical cognitive outcomes under SIVD. Our
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Table 2. The results of NCI-vs-aMCI classifications

Method ACC SEN SPE AUC

Single scale-based methods 100 ROIs CPM 57.5±3.9∗∗ 40.4±11.4∗∗ 69.1±5.1∗ 54.7±5.9∗∗

200 ROIs CPM 54.8±4.2∗∗ 39.4±13.0∗∗ 65.0±7.6a 52.2±4.7∗∗

300 ROIs CPM 53.2±5.0∗∗ 40.6±13.4∗ 61.6±8.3∗ 51.1±5.8∗∗

400 ROIs CPM 57.5±2.0∗∗ 44.3 ±13.1∗ 67.6±10.6b 56.0±2.7∗∗

500 ROIs CPM 58.1 ±1.8∗∗ 42.4±10.6∗∗ 70.8 ±12.0c 56.6 ±2.6∗∗

100 ROIs GCN 69.4±2.0∗∗ 63.1±10.9∗ 72.0±10.2 67.6±0.9∗∗

200 ROIs GCN 73.6 ±5.0∗ 70.7±4.6∗ 75.5 ±9.3 73.1 ±3.8∗

300 ROIs GCN 67.4±2.2∗∗ 74.5 ±17.7 68.0±15.6∗ 71.2±3.2∗∗

400 ROIs GCN 70.0±4.9∗∗ 65.7±6.8∗ 74.8±8.8 70.3±3.4∗∗

500 ROIs GCN 70.7±4.6∗ 66.6±11.0d 74.6±11.2 70.6±2.0∗

Multiscale-based methods MGCN 77.6±5.1e 69.0±9.0∗ 86.1 ±9.8 77.5±4.8∗

Majority Voting 79.4±2.6 75.0±9.5f 84.3±5.7 79.6±3.3g

MAGCN 80.4 ±3.0 81.8 ±10.6 82.3±11.5 82.1 ±2.2

The mean and SD of performance in each cross-validation are reported (in %). The underlines indicate the best performances among scales using the same
single-scale based methods. The bolds highlight the best performances among all the methods. ∗: MAGCN has a significantly higher performance than the
competing method at P<0.05 level. ∗∗: P<0.01. a: MAGCN shows marginal significant improvement over this result, with t = 2.09, P = 0.05, CI = [−0.3, +∞]. b:
t = 1.98, P = 0.06, CI = [−1.1, +∞]. c: t = 1.89, P = 0.07, CI = [−1.5, +∞]. d: t = 1.75, P = 0.07, CI = [−3.3, +∞]. e: t = 1.59, P = 0.09, CI = [−0.8, +∞]. f: t = 1.49, P = 0.10, CI = [−3.0,
+∞]. g: t = 1.83, P = 0.07, CI = [−0.4, +∞].

Table 3. The results of NCI-vs-naMCI classifications

Method ACC SEN SP- AUC

Single scale-based methods 100 ROIs CPM 62.9±4.5∗∗ 54.6±8.4∗∗ 69.0±4.8∗ 61.8±4.4∗∗

200 ROIs CPM 56.3±1.8∗∗ 48.5±9.5∗∗ 63.4±10.7∗ 55.9±1.3∗∗

300 ROIs CPM 56.3±4.0∗∗ 50.6±15.2∗∗ 63.1±6.1∗∗ 56.9±5.9∗∗

400 ROIs CPM 59.0±4.3∗∗ 51.5±9.2∗∗ 66.7±12.5a 59.1±4.7∗∗

500 ROIs CPM 64.0 ±4.9∗∗ 55.0 ±9.2∗∗ 71.5 ±12.2b 63.2 ±5.5∗∗

100 ROIs GCN 72.0 ±2.2∗ 58.9±3.6∗∗ 80.6 ±4.6 69.8±2.7∗

200 ROIs GCN 71.4±6.7 81.9 ±9.2 67.5±11.3 74.7 ±4.9
300 ROIs GCN 68.1±3.1∗∗ 70.0±13.1c 66.7±10.8d 68.3±1.6∗∗

400 ROIs GCN 70.7±3.4∗ 72.2±9.6 69.3±6.6e 70.8±3.5∗

500 ROIs GCN 68.2±3.9∗ 81.6±6.0 61.0±4.9∗∗ 71.3±3.0∗

Multiscale-based methods MGCN 76.4±3.3∗ 66.6±7.2∗ 83.4 ±2.6 75.0±2.7∗

Majority Voting 78.4±4.8 78.2±14.3 80.0±6.0 79.1±6.3
MAGCN 79.0 ±4.8 82.2 ±9.3 78.0±7.2 80.1 ±5.3

∗: MAGCN has a significantly higher performance than the competing method at P < 0.05 level. ∗∗: P < 0.01. a: MAGCN shows marginal significant improvement
over this result, with t = 1.99, P = 0.06, CI = [−0.8, +∞]. b: t = 1.77, P = 0.07, CI = [−1.3, +∞]. c: t = 1.62, P = 0.09, CI = [−3.9, +∞]. d: t = 1.59, P = 0.09, CI = [−3.8, +∞].
e: t = 1.61, P = 0.09, CI = [−2.8, +∞].

Table 4. The results of aMCI-vs-naMCI classifications

Method ACC SEN SPE AUC

Single scale-based methods 100 ROIs CPM 52.3±6.1∗∗ 57.1±8.2∗ 49.4±16.5∗∗ 53.2±6.5∗∗

200 ROIs CPM 55.1±10.0∗∗ 56.6±15.2∗ 56.6±18.3∗ 56.6±10.4∗∗

300 ROIs CPM 49.1±12.0∗∗ 48.0±10.5∗∗ 52.6±22.8∗ 50.3±12.8∗∗

400 ROIs CPM 53.7±7.6∗∗ 56.7±13.8∗ 53.8±17.5∗ 55.2±8.1∗∗

500 ROIs CPM 59.0 ±8.7∗∗ 57.9 ±13.7∗∗ 63.5 ±20.8 60.7 ±8.7∗∗

100 ROIs GCN 70.3 ±4.8∗ 70.8±11.6∗ 71.6±13.7a 71.2±3.8∗

200 ROIs GCN 70.3 ±3.5∗ 60.8±7.7∗ 83.1 ±9.0 71.9 ±3.4∗

300 ROIs GCN 66.3±2.0∗∗ 73.8±7.2 61.6±3.7∗∗ 67.7±2.9∗∗

400 ROIs GCN 67.9±3.0∗∗ 76.6±2.4 59.3±3.8∗∗ 68.0±1.4∗∗

500 ROIs GCN 68.7±3.5∗∗ 80.1 ±9.1 59.8±5.2∗∗ 70.0±3.1∗∗

Multiscale-based methods MGCN 72.0±6.7b 77.3±10.4 72.4±14.7 74.8±5.0c

Majority Voting 75.0±6.7 80.1 ±9.1 70.9±12.6d 75.5±3.7
MAGCN 77.5 ±2.4 78.8±7.4 77.6 ±6.8 78.3 ±2.1

∗: MAGCN has a significantly higher performance than the competing method at P < 0.05 level. ∗∗: P < 0.01. a: MAGCN shows marginal significant improvement
over this result, with t = 1.59, P = 0.09, CI = [−2.1, +∞]. b: t = 2.02, P = 0.06, CI = [−0.3, +∞]. c: t = 2.04, P = 0.06, CI = [−0.2, +∞]. d: t = 1.57, P = 0.09, CI = [−2.5, +∞].

proposed MAGCN that integrates the features following
the brain hierarchy further boosts the classification
performances. The results suggest that, under SVCI, the
brain vessel pathology induces focal lesions and further
have impacts on the efficiency of the brain functional

communications at varying spatial scales. The results
also show the clinical significance of investigating atyp-
ical configurations in multiscale hierarchical brain con-
nectomes. This could be a general principle beyond the
context of SVCI. Existing studies found that normal brain
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Table 5. The results of NCI-vs-aMCI-vs-naMCI classifications

Method ACC_all SEN_NCI SEN_aMCI SEN_naMCI

Single scale-based methods 100 ROIs GCN 46.7±2.7∗∗ 46.3±10.5∗ 49.1±11.7 48.0±4.7
200 ROIs GCN 49.7±4.3∗ 55.1±8.3∗ 41.0±6.8∗ 52.9±6.6
300 ROIs GCN 44.5±3.2∗∗ 42.2±7.4∗∗ 40.6±6.5∗ 55.3±12.7
400 ROIs GCN 46.7±2.9∗∗ 50.9±9.1∗ 45.6±9.1 44.7±8.2
500 ROIs GCN 50.2±5.5∗ 48.5±10.7∗ 51.4±14.4 51.3±8.6

Multiscale-based methods MGCN 54.9±3.8 57.7±7.1 50.8±6.9 56.2±5.8
Majority Voting 56.5±6.6 57.5±13.8 55.4 ±11.4 59.9 ±7.5
MAGCN 58.3 ±2.4 67.2 ±10.1 50.2±5.3 52.2±13.5

∗: MAGCN has a significantly higher performance than the competing method at P < 0.05 level. ∗∗: P < 0.01.

Figure 4. The multiscale spatial patterns of predictive features.

functional and structural connectomes exhibit different
topological characteristics, such as degree distribution
and small worldness, at different scales (Wang et al. 2009;
Zalesky et al. 2010). This implies that the connectomes
at distinct scales may reflect non-overlapping aspects of
the brain information processing, although connectomes
are correlated along the brain hierarchy. There are also
accumulating evidence showing that the normal aging
or disease could modify functional interactions intra-
or inter-scales (Betzel et al. 2015; Zhang et al. 2017).

For example, Betzel et al. (2015) illustrated that the
investigated scale could have an impact on the asso-
ciation between the segregation of communities in
FCN and the age effects. Zhang et al. (2017) observed
that the intra- and inter-scale brain functional interac-
tions in the hierarchical FCN, measured by so-called
associated high-order functional connectivity, could
be more informative than the single-scale FCNs in
the MCI identification. These converging evidences
demonstrate the functional significance of multiscale
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Figure 5. The RSN-wise distributions of predictive features from the MAGCN.

hierarchical connectomes underlying the cognitive
processing.

Backing to SVCI, an interesting question to be fur-
ther explored is the mechanism of how different struc-
tural lesions under SIVD associate with FC abnormalities
across different spatial scales. One possibility is that
different types of structural lesions could impact on
white matter fibers at scales corresponding to their sizes
and separately induce consequences on FCs at multiple
scales. Another scenario can be that the focal lesion
could affect the hubs shared by multiscale structural and
functional networks and thus simultaneously influence
connections at different scales. Also, since we do not
compare NCI to healthy control group, it is also unknown
whether the multiscale FCNs could provide alternative
information pathways and thus underlie the reserve and
compensatory mechanisms to protect the NCI subjects
from cognitive impairments (Stern 2009; Brickman et al.
2011). In principle, when failures only occur in FCs at
specific scales, the functional information exchanges
could still be maintained by FCs at other scales and
thus the cognitive ability remains normal. And here we
observe that aMCI are associated by dysfunctions in
limbic networks across several scales, which may offer
indirect evidences to support the roles of multiscale FCNs
in the brain reserve. Answering these two key questions
could offer a whole picture of how the structural lesions
influence neural dynamics and lead to cognitive impair-
ment.

Dysfunction in Multiple RSNs Not Single RSN
Previous fMRI-based SVCI studies highlighted DMN as an
important RSN being influenced by pathological factors

and relating to cognitive impairments. However, some
studies also reported that the FC abnormalities distribute
in different RSNs besides DMN, including dorsal atten-
tion network, central-executive network, somatomotor
network, and visual network (Ye and Bai 2018; Wang
et al. 2020). The distributed abnormality involving mul-
tiple RSNs, favored by our results, can be reasonable
since brain structural lesions are widely distributed in
the brain (Wang et al. 2017; Qiu et al. 2021) and some
of them demonstrate both local and remote impacts on
brain connectivity. Therefore, it could be more natural to
expect that the SCVI cannot be barely associated with
DMN, but a joint of multiple RSNs. The observation can
also deeply rooted into the complex nature of the MCI in
cognitive symptoms. Previous SVCI studies highlighting
DMN did not separately explore aMCI and naMCI, but
treated MCI as an entire symptom (Sun et al. 2011; Yi
et al. 2012; Zhou et al. 2016). However, the subtyping
of the MCI reveals that the cognitive impairment can
cover single and multiple cognitive domains, involving
memory, executive functions, attention, and visuospatial
ability or language (Petersen 2000; del Carmen et al.
2017). Therefore, when associating with multiple cogni-
tive domains, the MCIs are less likely to be explained by
a single RSN.

Pathology and Etiology behind aMCI and naMCI
Our results detect the limbic network and DMN as crucial
indicators for aMCI under SIVD. Coincidently, these RSNs
are also considered to be most pronouncedly damaged
under AD (Van Hoesen et al. 2000; Zhang et al. 2010;
Dhikav et al. 2014; Berron et al. 2020; Liang et al. 2021).
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On the contrary, for naMCI, there is few RSN being con-
sistently highlighted during the prediction.

Although AD-related effects are not completely
excluded due to the lack of PET scans, these results may
still indicate a potentially overlapping pathology between
aMCI and AD, there is less similarity between naMCI and
AD, in patients with SIVD. Consistently, previous clinical
records found that aMCI (single- or multi-domain) is
more related to a degenerative etiology and more likely
to develop into AD dementia, while naMCI tends to
originate from other etiology and to develop into non-AD
dementia (Salvadori et al. 2016). From the perspective of
clinical applications, our findings again deliver a clear
message that differential clinical cares and treatments
for different MCI subtypes could be important and might
benefit to the prognosis. In addition, if the progression of
aMCI under SIVD involves degenerative etiology besides
vascular etiology, aMCI could serve as a clinical model
to explore the interplays between vascular pathology
and AD factors and elucidate the mechanism under the
conversion from SVCI to AD (Beishon et al. 2017).

Deep Learning towards a More Precise SVCI
Diagnosis
From the methodology viewpoint, our results also
emphasize that the deep learning methods (GCN,
MAGCN) have advantages in processing FCN over the
classical machine learning methods, with the SVM-
based CPM as a representative. The CPM performs
the feature selection by comparisons under linear
assumptions and uses a collection of the selected FCs
in the subsequent prediction. However, features may
not be properly selected using linear relationships, and
the topological structure can be diminished by such
“masking” using the P-values from group comparisons. In
contrast, the GCN preserves the topological structure and
automatically learns more suitable representations to
abstract features from the entire FCN with better tackling
on the nonlinearity, resulting in better performances
in the subsequent prediction. Noticeably, the GCN is a
general architecture that can be used in the processing
of other graph data, such as the structural networks from
DTI and dynamic FCN (Liu et al. 2021; Chen et al. 2017).
The development of advanced GCN-based analysis could
be promising to assist the diagnosis of SVCI and more
other brain diseases.

However, we would like to indicate that our current
deep learning model is still not robust to meet clini-
cal demands, due to the use of limited sample. Further
increase of the data size, for example, through multicen-
ter collaborations, and systematic external validations
on the methods could essentially push our deep learning
model towards clinical applications.

Conclusion
In this work, we investigate the differences among NCI,
aMCI, and naMCI using FCNs from multiple spatial scales

and develop a novel automatic diagnosis algorithm. First,
the results from single scale-based analyses clearly sug-
gest that the disease-related information carried on FCNs
is scale-dependent. Second, the joint multiscale analysis
is beneficial for the diagnosis of SVCI, and multiscale
features are thus complementary to each other. Third,
our proposed MAGCN is able to more effectively integrate
the distributed information at different scales based on
the brain hierarchy and provide more accurate classifi-
cations among NCI, aMCI, and naMCI groups. Finally, the
predictive features by MAGCN are located distributedly
in RSNs, further showing variations across the investi-
gating scales. Among all located RSNs at different scales,
the limbic network is consistently regarded as crucial
for identifying aMCI, indicating its FC deficits across all
scales. To the best of our knowledge, we are the first to
apply the GCN method to analyze FCNs from multiscale
atlases for the SVCI study.

Overall, the results provide novel insights about SVCI
and emphasize that the brain is a multiscale hierarchical
complex system with distributed information process-
ing based on interactions among functional subsystems
(Colom et al. 2006; Gläscher et al. 2010). Under the atyp-
ical state, the pathology could be more properly char-
acterized in the multiscale brain system, rather than a
single RSN at a chosen scale.
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