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A B S T R A C T

Although studies have shown that air pollution can be devastating to population health, little is known about the health
implications of the intersection of air pollution and income inequality. We investigate if air pollution is especially
detrimental to the health of US state populations characterized by more inequitable distributions of income. In other
words, are the populations of states with higher levels of income inequality especially vulnerable to similar levels of air
pollution? We use two-way fixed-effects panel regression techniques to analyze longitudinal data for 49 US states and
the District of Columbia (2000–2010) to model state-level life expectancy as a function of fine particulate matter,
income inequality, and other state-level factors. We estimate models with interaction terms to formally assess whether
the association between fine particulate matter and life expectancy varies by level of state income inequality. Across
multiple life expectancy outcomes and additive models, states with higher PM2.5 levels tend to exhibit lower average life
expectancy. This general pattern is observed with our specifications for raw and weighted PM2.5 and with adjustments
for income share of the top 10%, total population, GDP per capita, median household income, median age, percent
college degree or higher, percent black, and percent Hispanic/Latino. We also find that the association between state
PM2.5 levels and average life expectancy intensifies in states with higher levels of income inequality. More specifically,
PM2.5 levels are more detrimental to population life expectancy in states where a higher percentage of income is
concentrated in the top 10% of the state income distribution. We discuss the implications of our results for future
research in social epidemiology and environmental justice.

Introduction

Air pollution is devastating for population health. Over the past two
decades, studies have shown that various forms of air pollution (e.g., par-
ticulate matter, carbon monoxide, and ozone) increase the risk of heart
disease, cerebrovascular disease, all-cause mortality across the life course,
cause-specific adult mortality linked to respiratory diseases, cardiovascular
diseases, malignant neoplasms, and unintentional injuries (Brook et al.,
2010; Brunekreef & Holgate, 2002; Chay & Greenstone, 2003; Clancy,
Goodman, Sinclair, & Dockery, 2002; Currie & Neidell, 2005; Currie,
Neidell, & Schmieder, 2009; Franklin, Zeka, & Schwartz, 2007; Graff Zivin &
Neidell, 2013; Greenstone & Hanna, 2014; Heutel & Ruhm, 2016; Knittel,
Miller, & Sanders, 2016; Künzli et al., 2000; Laden, Schwartz, Speizer, &
Dockery, 2006; Mikati, Benson, Luben, Sacks, & Richmond-Bryant, 2018;
Mustafić et al., 2012; Pope & Dockery, 2006; Wellenius, Schwartz, &

Mittleman, 2005). Although air pollution potentially harms all segments of
society, environmental justice research in the United States (US) has found
distinct inequities regarding its impacts, such as in relation to the health of
younger, older, poorer, and non-white populations (Ard, 2016; Boyce &
Pastor, 2013; Currie et al., 2009; Devlin, Ghio, Kehrl, Sanders, & Cascio,
2003; Heutel & Ruhm, 2016; Mikati et al., 2018; Mohai & Saha, 2015).

In this study, we expand on previous health research and environmental
justice research by exploring the health implications of the intersection of
air pollution and income inequality in the US context (Charafeddine &
Boden, 2008). Although previous scholarship has shown that greater in-
come inequality is associated with poorer population health (Anderson,
Bjorklund, & Rambotti, in press; Clarkwest, 2008; Curran & Mahutga, 2018;
Diez-Roux, Link, & Northridge, 2000; Hill & Jorgenson, 2018; Lynch et al.,
2001; Kaplan, Pamuk, Lynch, Cohen, & Balfour, 1996; Kawachi & Kennedy,
1999; Neumayer & Plümper, 2016; Pickett & Wilkinson, 2015; Rambotti,
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2015; Wen, Browning, & Cagney, 2003; Wilkinson & Pickett, 2006, 2009),
in this study we are less interested in the direct effects of income inequality
on health. Instead, we consider whether air pollution is especially detri-
mental to the health of US states’ populations characterized by the in-
equitable distribution of income. In other words, are the populations of US
states with higher levels of income inequality especially vulnerable to similar
levels of air pollution?

Our assessment of the multiplicative impact of income inequality, as
illustrated in Fig. 1, is supported by three theoretical principles: Power,
Proximity, and Physiology. The Power principle suggests that income in-
equality could increase the vulnerability of populations to a given level of
air pollution due to the undermining of environmental regulations and
protections (e.g., public discussions and warnings, working conditions,
living standards, and other resources) through the concentration of wealth
and political power. Drawing on a political-economy approach initially
developed by Boyce (1994, 2007) and Boyce, Klemer, Templet, and Willis
(1999), Jorgenson, Schor, Knight, and Huang (2016), Jorgenson, Schor, and
Huang (2017), and Jorgenson, Dietz, and Kelly (2018) point out that those
with higher incomes and wealth are often the owners of polluting firms and
energy producing enterprises. To protect these assets, they are more likely to
use their economic resources to influence political power and to dominate
the policy environment in their favor (Boyce et al., 1999). These arguments
are consistent with Neo-Material theory, which suggests that income in-
equality concentrates wealth and power among elites and weakens broader
commitments to the general interests of society. This creates political
pressure to cut taxes, deregulate industries (including less environmental
regulations), and limit investments in public resources and social services
that promote public health, including, for example, education, consumer
protections, and health care infrastructure (Clarkwest, 2008; Kaplan et al.,
1996; Kawachi & Kennedy, 1999; Lynch, Smith, Kaplan, & House, 2000;
Neumayer & Plümper, 2016; Truesdale & Jencks, 2016).

The Proximity principle suggests that income inequality could increase
the vulnerability of populations to a given level of air pollution by con-
tributing to the segregation of vulnerable populations in geographic space.
Several studies show that income inequality is associated with higher levels
of residential segregation by race and class (Cheshire, Monastiriotis, &
Sheppard, 2003; Jargowsky, 1996; Lobmayer & Wilkinson, 2002; Reardon
& Bischoff, 2011). Reardon and Bischoff (2011: 1140) explain that “income
inequality appears to be responsible for a specific aspect of income segre-
gation—the large scale separation of the affluent from lower-income
households and families.” From public health and environmental justice
perspectives, segregation contributes to social inequalities in residential
proximity to sources of harmful pollution (Ard, 2016; Boyce & Pastor, 2013;
Mikati et al., 2018; Mohai & Saha, 2015). For example, a recent study by
Mikati et al. (2018) shows that impoverished and non-white communities
are disproportionately exposed to particulate matter emitting facilities. So-
cial Capital theory proposes that these concerns may be compounded, given
that income inequality generates widespread status competition, which
undermines interpersonal trust, social cohesion, cooperation, and, as con-
sequence, collective political efforts to support vulnerable populations
(Elgar & Aitken, 2010; Kawachi, Kennedy, Lochner, & Prothrow-Stith, 1997;
Kawachi & Kennedy, 1999; Truesdale & Jencks, 2016).

Finally, the Physiological principle suggests that income inequality could
increase the vulnerability of populations to a given level of air pollution by

undermining the physiological health of human populations (Charafeddine
& Boden, 2008). Psychosocial theory contends that the stress of relative
deprivation, from the unequal distribution of income, contributes to nega-
tive self-appraisals (e.g., low self-esteem), emotional distress (e.g., anxiety
and anger), risky coping behaviors (e.g., heavy alcohol consumption and
smoking), and, over time, physiological dysregulation or allostatic load
(Kawachi & Kennedy, 1999; Lynch et al., 2000; Truesdale & Jencks, 2016;
Wilkinson, 1996, 2005; Wilkinson & Pickett, 2009). More simply, income
inequality creates a wide range of chronic social stressors that in turn
overwhelm the physiological stress response or allostatic systems of the
human body. When stress is acute or short-term, allostatic systems can ef-
ficiently manage the physiological consequences of stress. When stress is
chronic or long-term, such as under the enduring economic conditions of
heightened income inequality, the result is allostatic load. According to
McEwen (1998: 171), allostatic load is “the wear and tear that results from
chronic overactivity or underactivity of allostatic systems.” A key indicator
of allostatic load is lung function (Crimmins, Johnston, Hayward, & Seeman,
2003; McEwen, 2002; Seeman et al., 2004). Stress and related hormones
can contribute to the physiological dysregulation of the lungs through
bronchodilation and increased respiration (lungs take in more air), airway
inflammation and difficulty breathing (lungs take in less air), and sup-
pression of the immune system, which leads to increased vulnerability to
respiratory infections (Kullowatz et al., 2008; Lehrer, 2006). These processes
are especially relevant for specific forms of air pollution, most notably fine
particulate matter, which can be inhaled deeply into the lungs.

In our review of the research literature, we could find only one quan-
titative study of the health implications of the intersection of air pollution
and income inequality. Using data from the 2001 Behavioral Risk Factor
Surveillance System, Charafeddine and Boden (2008) found that the asso-
ciation between county-level fine particular matter and individual-level fair
or poor self-rated health was moderated by state-level income inequality,
measured as a Gini coefficient. However, the association between fine
particular matter and individual-level self-rated health was most pro-
nounced at low levels of income inequality. The authors concluded that
their analyses could be limited by the “subjective nature” of their dependent
variable and recommended that future research explore more “objective
outcomes” like “mortality or hospitalization.”

Building on the work of Charafeddine and Boden (2008), we use
longitudinal statistical modeling techniques to directly assess the multi-
plicative impact of income inequality on the association between fine par-
ticulate matter and life expectancy, a well-established objective measure of
population health, at the US state level. In accordance with previous re-
search, which does not consider additional moderating effects, we expect
that states with higher levels of fine particulate matter will tend to exhibit
lower average life expectancy. Drawing on the theoretical principles of
Power, Proximity, and Physiology, we anticipate that the inverse association
between particulate matter and average life expectancy will be greater in
states with higher levels of income inequality.

Methods

Data

This study involves the analyses of two datasets. The first dataset
includes annual observations for average life expectancy at birth from
2000 to 2010 for 49 US states and the District of Columbia (550 total
observations). The second dataset is restricted to three annual ob-
servations (2000, 2005, and 2010) for sex-specific average life ex-
pectancy for 49 US states and the District of Columbia (150 total ob-
servations). These specific years were selected to include all available
comparable data for our focal independent and dependent variables.
Maine is excluded from all analyses due to data limitations for our
particulate matter measures. The second dataset is restricted to the
three yearly observations five years apart due to data availability lim-
itations for our sex-specific life expectancy measures.

Fig. 1. Income inequality as a moderator of the association between air quality
and life expectancy.
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Measures

Life expectancy
Our analyses include three dependent variables: (1) average life ex-

pectancy at birth, (2) average female life expectancy at birth, and (3)
average male life expectancy at birth. These data were obtained from the
Institute for Health Metrics and Evaluation’s (IHME) Global Burden of
Disease database. IHME provides these data for all states and the District of
Columbia (see Wang, Schumacher, Levitz, Mokdad, & Murray, 2013).

Air quality
Our focal indicator of air quality is particulate matter 2.5 (PM2.5). PM2.5

refers to fine inhalable chemical particles in the air. Most particulate matter
is a combination of chemicals (e.g., sulfur dioxide and nitrogen oxides)
emitted from transportation vehicles, power plants, and other industrial
sites. Because these chemical particles are 30 times smaller than a single
strand of hair, they can contribute to a host of health problems by travelling
through the respiratory tract into the lungs and bloodstream. We obtained
PM2.5 concentration data from Environmental Protection Agency’s Air
Quality System (AQS) database. AQS provides, among other measures,
annual average arithmetic mean PM2.5 concentrations by air quality
monitors. Following Heutel and Ruhm (2016), we weighted state average
particulate matter concentrations in order to compensate for the uneven
distribution of monitors across space and time by the product of the
monitor’s county population and the proportion of actual to potential ob-
servations. County populations were obtained from the U.S. Census Bureau’s
intercensal population estimates. Potential observations were defined as the
total number of observations required by Federal law for each monitor. As
robustness checks, in the analyses we estimate separate models with the
weighted and unweighted versions of PM2.5.

Income inequality
Following recent research (e.g., Hill & Jorgenson 2018; Jorgenson

et al., 2017, 2018), we measure income inequality as income share of
the top 10%. We gathered these state-level inequality data from the
World Wealth and Income Database (WWID), developed by Mark Frank
et al. (http://www.wid.world/#Database). These data are measured in
percentages. The inequality measures are constructed from individual
tax filing data available from the Internal Revenue Service. For in-depth
information on the creation of the state-level income inequality mea-
sures, see Frank, Sommeiller, Price, and Saez (2015).

Control variables
Consistent with previous studies of air quality and income inequality,

our analyses include a range of state-level time-varying control variables,
including median age (in years), percent black, percent Hispanic/Latino,
percent with a four-year college degree or higher, median household in-
come (in constant 2016 US dollars), GDP per capita (in chained 2007 dol-
lars), and total population size. Our GDP data were obtained from the
United States Department of Commerce Bureau of Economic Analysis da-
tabase. Data for all other control variables were drawn from the U.S. Census
Bureau’s online databases. Because several control variables were positively
skewed, the subsequent regression analyses employ a base 10 logarithmic
transformation for the state-level measures of percent black, percent
Hispanic/Latino, percent with a four-year college degree or higher, GDP per
capita, and total population.

Model estimation techniques

In our analysis of average life expectancy (annual observations for
2000–2010), we use the “xi:xtpcse” commands in Stata to estimate time-
series cross-sectional Prais-Winsten regression models with panel-corrected
standard errors, allowing for disturbances that are heteroskedastic and
contemporaneously correlated across panels (Beck & Katz, 1995). We cor-
rect for first-order autocorrelation (AR1 disturbances) within panels. Since
we have no theoretical basis for assuming panel-specific autocorrelation, we

treat AR1 disturbances as common to all panels. We control for both year-
specific and state-specific effects by including dummy variables for years
and cases. This approach is one of the most commonly used longitudinal
methods because it addresses the problem of heterogeneity bias. Hetero-
geneity bias in this context refers to the confounding effect of unmeasured
time-invariant variables that are omitted from our regression models. To
correct for heterogeneity bias, fixed-effects models control for omitted
variables that are time-invariant by examining variability within states ra-
ther than between states. To control for potential unobserved heterogeneity
that is cross-sectionally invariant within periods, we include dummy vari-
ables for our annual observations (i.e., period-specific intercepts) with the
year 2000 serving as the reference category. The inclusion of period-specific
intercepts is equivalent to modeling temporal fixed effects, and including
both period-specific intercepts and case-specific fixed effects is analogous to
estimating a two-way fixed-effects model (Wooldridge, 2010).

For our analysis of sex-specific average life expectancy (annual ob-
servations for 2000, 2005, and 2010), we use the “xtreg” commands in Stata
to estimate two-way fixed-effects panel regression models with robust
standard errors clustered by state and the District of Columbia. The time
fixed effects are accounted for by the inclusion of the year-specific inter-
cepts. With the xtreg suite of commands in Stata, the case-specific fixed
effects are estimated using the within estimator, which involves a mean
deviation algorithm for the dependent variable and each time-varying in-
dependent variable (Allison, 2009).

In our moderation analyses, we calculate and use interaction terms
(PM2.5*Income Share of Top 10%) to formally assess whether the as-
sociation between air quality and life expectancy varies as a function of
income inequality. We also estimate partial slope coefficients for the
effect of PM2.5 on life expectancy at percentile levels of the moderator
variable, income share of the top 10%. These slope coefficients are
estimated using the “margins” commands in Stata.

Results

Descriptive analyses

Table 1 provides univariate descriptive statistics for all substantive
variables included in our analyses. Although some variables are con-
verted to logarithmic form for the panel regression analyses, we report
descriptive statistics for each variable in their original metrics. The
mean for total average life expectancy is nearly 78 years. Average life
expectancy is closer to 80 years for females and 75 years for males.
Average raw (i.e., unweighted) and weighted air quality estimates in-
dicate moderate levels of PM2.5. Our income inequality estimates in-
dicate an average income share of the top 10% of nearly 44%.

Regression analyses

Tables 2–4 present the two-way fixed-effects models for total average
life expectancy (Table 2), female life expectancy (Table 3), and male life
expectancy (Table 4). The same 8 models are estimated for each dependent
variable. Model 1 includes all control variables as well as the raw form of
PM2.5, while Model 2 includes the controls and income share of the top
10%. Model 3 includes both raw PM2.5 and income share of the top 10% as
well as the controls, while Model 4 also includes the interaction between
raw PM2.5 and income share of the top 10%. Models 5–8 are structured the
same as Models 1–4, but they instead include the weighted form of PM2.5.

Across all outcomes and relevant additive models (1, 3, 5, and 7), states
with higher PM2.5 levels tend to exhibit lower average life expectancy. This
general pattern is observed with our specifications for raw and weighted
PM2.5 and with adjustments for income share of the top 10%, total popu-
lation, GDP per capita, median household income, median age in years,
percent college degree or higher, percent black, and percent Hispanic/
Latino. Since the estimated coefficients are unstandardized, comparing the
magnitude of the effects across the independent variables is inappropriate.

To formally assess whether the association between air quality and life

T.D. Hill et al. SSM - Population Health 7 (2019) 100346

3

http://www.wid.world/#Database


expectancy varies as a function of income inequality levels, we tested six
interaction terms in Tables 2–4. With the incorporation of the continuous
interaction term for PM2.5 * Top 10% Income Share, the linear coefficients
for the two variables are to be interpreted as conditional relationships
(Jaccard, Wan, & Turrisi, 1990). In other words, the linear coefficient for
PM2.5 or for income share of top 10% is the estimated effect on life ex-
pectancy when the other variable equals zero, which, like much research
across disciplines, does not occur for the analyzed cases. As shown in
Table 1, for the analyzed panel data, the minimum value of PM2.5 is 3.60,
and for income share of the top 10% the minimum value is 33.56.

Across the three life expectancy outcomes and multiplicative models (4
and 8), the negative association between state PM2.5 levels and average life
expectancy intensifies in states with greater income inequality. In other
words, PM2.5 levels are more detrimental to population life expectancy in
states where a higher percentage of income is concentrated in the top 10%.
Table 5 presents partial slopes for the association between PM2.5 and total
average life expectancy as a function of income shares to the top 10%
(based on the analyses reported in Table 2). At low levels of income in-
equality (1st and 10th percentiles), PM2.5 is essentially unrelated to average
life expectancy. Around the 20th percentile of the income inequality dis-
tribution, we begin to see the expected inverse association between PM2.5

and average life expectancy. These partial slopes increase in magnitude
through the 99th percentile of the income inequality distribution. Fig. 2
provides a graphic illustration of these patterns. The slope coefficients for
the inverse association between PM2.5 and average life expectancy clearly
increase in magnitude at higher levels of income inequality, measured as
income shares of the top 10%.

In a series of unreported sensitivity analyses, we estimated additional
models separately that systematically include only one of the control vari-
ables as well as all possible combinations of them, which all yield results
consistent with the reported findings. We also estimated additional models
that instead use measures of the income share of the top 5% and of the top
1%. The results of these unreported analyses are also entirely consistent
with the reported findings.

Discussion

Although numerous studies have shown that forms of air pollution can
be devastating to population health, little is known about the health con-
sequences of the intersection of air pollution and income inequality
(Charafeddine & Boden, 2008). In this study, we asked whether air pollution
is especially detrimental to the health of populations characterized by a
more inequitable distribution of income. In other words, are populations
with higher levels of income inequality especially vulnerable to similar le-
vels of air pollution? To answer this question, we used two-way fixed-effects
model estimation techniques to assess the extent to which state-level life
expectancy is a function of fine particulate matter and a range of time-

Table 1
Descriptive statistics.

Minimum Maximum Mean SD

Life Expectancy 72.58 81.30 77.61 1.68
Female Life Expectancy 76.20 83.50 79.82 1.48
Male Life Expectancy 68.30 78.20 74.82 1.94
Particulate Matter 2.5 (raw) 3.60 20.18 10.88 2.83
Particulate Matter 2.5 (weighted) 3.60 19.02 11.22 3.03
Income Share of Top 10% 33.56 62.26 43.64 4.98
Total Population 490,000 37,350,000 5887127 6,494,525
GDP Per Capita 26,644 151,257 42,467.61 15,938.14
Median Household Income 39,182 81,018 56,953.45 8648.20
Median Age in Years 27.10 41.50 36.56 2.11
Percent College Degree or Higher 17 66 29.50 7.27
Percent Black 0.26 60 11.09 11.30
Percent Hispanic/Latino 0.57 46.30 9.40 9.39

Notes: N = 550 for all variables except Female Life Expectancy and Male Life
Expectancy. N = 150 for Female Life Expectancy and Male Life Expectancy. All
measures are state-level.
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varying characteristics. We also calculated and used interaction terms to
formally assess whether the association between fine particulate matter and
life expectancy varies by the level of income inequality within states.

We anticipated that states with higher levels of fine particulate matter
would tend to exhibit lower life expectancy. This is what we found. Across
all three outcomes and additive models, states with higher PM2.5 levels tend
to exhibit lower average life expectancy. This general pattern was observed
with our specifications for raw and weighted PM2.5 and with adjustments
for income share of the top 10%, total population, GDP per capita, median
household income, median age in years, percent college degree or higher,
percent black, and percent Hispanic/Latino. These results are generally
consistent with previous research on the population health consequences of
air pollution (Brook et al., 2010; Brunekreef & Holgate, 2002; Chay &
Greenstone, 2003; Clancy et al., 2002; Currie & Neidell, 2005; Currie et al.,
2009; Franklin et al., 2007; Graff Zivin & Neidell, 2013; Greenstone &
Hanna, 2014; Heutel & Ruhm, 2016; Knittel et al., 2016; Künzli et al., 2000;
Laden et al., 2006; Mikati et al., 2018; Mustafić et al., 2012; Pope &
Dockery, 2006; Wellenius et al., 2005).

We also proposed that the inverse association between particulate
matter and life expectancy would be intensified in states with greater in-
come inequality. Across our three life expectancy outcomes and multi-
plicative models, the association between state PM2.5 levels and average life
expectancy intensified in states with higher levels of income inequality. Put
differently, PM2.5 levels were more detrimental to population life ex-
pectancy in states where a higher percentage of income was concentrated in

the top 10% of the state income distribution. To our knowledge, this is the
first study to examine the multiplicative impact of income inequality on the
association between air quality and life expectancy within the United States.

Our findings make an important contribution to the environmental justice
literature, which among other things, emphasizes that uneven levels of ex-
posure to human-caused pollution are tied to forms of structural inequality
(Ard, 2016; Boyce & Pastor, 2013; Currie et al., 2009; Devlin et al., 2003;
Heutel & Ruhm, 2016; Mikati et al., 2018; Mohai & Saha, 2015). Although
not a direct test, our results are also generally consistent with the noted
principles of Power, Proximity, and Physiology. Past research shows that
income inequality undermines the health and functioning of populations
(Anderson et al., in press; Clarkwest, 2008; Diez-Roux et al., 2000; Hill &
Jorgenson, 2018; Lynch et al., 2001; Kaplan et al., 1996; Kawachi & Kennedy,
1999; Neumayer & Plümper, 2016; Pickett & Wilkinson, 2015; Rambotti,
2015; Wen et al., 2003; Wilkinson & Pickett, 2006, 2009). While we observe
an inverse relationship between income inequality and life expectancy, we
also provide additional evidence to suggest that income inequality can am-
plify the health risks associated with environmental degradation.

Our analyses should be considered within the context of multiple lim-
itations. First, our data are limited to only one decade (2000–2010). Second,
we examined only one indicator of air quality (fine particulate matter),
population health (average life expectancy), and income inequality (income
shares to the top 10%). We note that our findings are generally the same if
we instead use measures of the income share of the top 5% and the top 1%
(see also Hill and Jorgenson, 2018; Jorgenson et al., 2017). Third, income
inequality stands in as a black box in our analyses. We offer various theo-
retical explanations for why income inequality might intensify the effects of
particulate matter on life expectancy, but in the present study none of these
explanations are assessed empirically. Fourth, we acknowledge that our
two-way fixed-effects models likely led to the estimation of relatively con-
servative coefficients, especially since such models account for multiple
forms of heterogeneity bias with the use of case-specific and year-specific
intercepts, or the equivalent (Allison, 2009; Treiman, 2009; Wooldridge,
2010). Thus, our results could be viewed as conservative estimates of the
effects of particulate matter and income inequality on life expectancy. Fifth,
it is possible that our state-level analyses overlook important variation
within states, such as at the county level. Finally, our analyses focus ex-
plicitly on US states. The extent to which air pollution and income in-
equality impact population health could be quite different in other Global
North nations as well as in nations throughout the Global South. With these
limitations in mind, the veracity of our analyses is contingent upon re-
plication using data for subnational units for the US and other nations, with
longer study periods and lower levels of aggregation (e.g., county-level
analyses), more indicators of air pollution, population health (e.g., infant
mortality and cause-specific mortality), and income inequality (e.g., Robin
Hood, Atkinson, and Theil), and more direct tests of the theoretical prin-
ciples of Power, Proximity, and Physiology.

Conclusion

Our findings indicate that fine particulate matter is especially detri-
mental to life expectancy in US states with higher levels of income in-
equality. One important implication for social epidemiology is moving be-
yond the direct and indirect effects of income inequality. Reframing income
inequality as an effect modifier, as we have done, opens new doors to the
seemingly countless ways in which income inequality can make other es-
tablished risk factors for population health even worse. Further, a notable
implication of our results for environmental justice research is the indexing
of environmental inequality according to the broader inequitable conditions
of states, in this case income inequality. Thus, a next step includes con-
sidering additional moderating effects in relation to racial composition and
other sociodemographic characteristics of populations, which could provide
a more comprehensive environmental justice analysis. Research along these
lines will become increasingly important as broader trends toward neoli-
beralism continue to drive the deregulation of economic systems, health-
care, and environmental protections (Coburn, 2004; Harvey, 2006).

Table 5
Slope coefficients for the association between particulate matter and average
life expectancy as a function of income shares.

Percentiles for income share of
top 10%

Raw particulate
matter

Weighted particulate
matter

1st Percentile [34.43704] 0.004(0.010) 0.005(0.010)
10th Percentile [38.02291] -0.015(0.008)# -0.010(0.008)
20th Percentile [40.01854] -0.026(0.009)** -0.020(0.008)*
30th Percentile [40.90752] -0.030(0.009)*** -0.024(0.008)**
40th Percentile [42.03272] -0.037(0.010)*** -0.029(0.009)**
50th Percentile [42.81685] -0.041(0.011)*** -0.033(0.010)***
60th Percentile [43.98028] -0.048(0.012)*** -0.039(0.011)***
70th Percentile [45.03413] -0.053(0.014)*** -0.043(0.013)***
80th Percentile [47.13808] -0.065(0.017)*** -0.053(0.015)***
90th Percentile [50.45599] -0.083(0.022)*** -0.069(0.020)***
99th Percentile [58.59861] -0.129(0.035)*** -0.107(0.032)***

Notes: N=550. * p < .05, ** p < .01, *** p < .001 (two-tailed), #p < .05
(one-tailed). Raw percentile values appear in brackets. Panel corrected standard
errors appear in parentheses.

Fig. 2. Slope coefficients for the association between particulate matter
and average life expectancy as a function of income shares. Notes: Values
obtained from Table 5. Y axis includes slope coefficients for particulate matter.
X axis includes percentiles for income shares of top 10%.
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